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Summary. We establish that the statement “For every infinite set X, every almost dis-
joint family in X can be extended to a maximal almost disjoint (MAD) family in X” is
not provable in ZF + Boolean prime ideal theorem + Axiom of Countable Choice.

This settles an open problem from Tachtsis [On the existence of almost disjoint and
MAD families without AC, Bull. Polish Acad. Sci. Math. 67 (2019), 101–124].

1. Introduction. In [T19], we initiated the study of almost disjoint and
MAD families (for the definitions see Section 2) within mild extensions of
ZF (i.e. Zermelo–Fraenkel set theory minus the Axiom of Choice (AC)) and
of ZFA (i.e. ZF with the Axiom of Extensionality weakened to allow the exis-
tence of atoms), that is, within ZF + Weak Choice and ZFA + Weak Choice.

In particular, the research in [T19] filled several gaps in information via
results which shedded light on the open problem of the placement of the fol-
lowing statements (among others) in the hierarchy of weak choice principles:
“Every almost disjoint family in an infinite set X can be extended to a MAD
family in X”; “No MAD family in an infinite set has cardinality ℵ0”; “Every
infinite set has an uncountable (1) almost disjoint family”.
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(1) A set X is called uncountable if |X| 6≤ ℵ0. That is, X is uncountable if there is no
injection f : X → ω, where (as usual) ω denotes the set of natural numbers.
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In view of the aim (as suggested by the title) of this note, let us men-
tion here what has been proved in [T19] regarding the first of the above
statements, and refer the reader to [T19] for the complete results therein on
almost disjoint and MAD families. Prior to this, let us note that, in [T19],
it has been established that the statement “Every infinite set has an infinite
almost disjoint family”, which is formally weaker than the third of the above
statements, is not provable in ZF + BPI, where “BPI” denotes the Boolean
prime ideal theorem.

So, regarding the set-theoretic strength of the statement

(∗) “Every almost disjoint family in an infinite set X can be extended to a
MAD family in X”,

the following results have been established in [T19]:

(1) (∗) is not provable in ZF.
(2) In ZFA, the Axiom of Multiple Choice (MC) implies (∗). Hence, (∗) does

not imply BPI in ZFA.
(3) (∗) does not imply MC in ZFA. In particular, (∗) is true in the Mostowski

Linearly Ordered Model of ZFA (Model N3 in Howard–Rubin [HR98]),
in which BPI is true but MC is false.

In view of (2) and (3), and especially of the fact that BPI and (∗) are true
in the model N3, as well as of the fact that both BPI and (∗) are maximality
principles, it is natural to inquire whether or not BPI implies (∗). This open
problem (until now) has been posed in [T19] (see [T19, Section 4, Ques-
tion 1]).

The goal of this note is to settle that problem. In particular, we will
provide a strongly negative answer by establishing in Theorem 6.1 that

(∗) is not provable in ZF + BPI + ACω,

where “ACω” denotes the Axiom of Countable Choice.
Our proof of the above result will comprise two steps: Firstly, we will

prove that “Every almost disjoint family in an infinite set X can be extended
to a MAD family in X” is false in a certain permutation model of ZFA +
BPI + ACω, and secondly we will apply a theorem of Pincus [P77] in order
to transfer the ZFA-independence result to ZF.

Before embarking on the proof, we will provide the following background:

(a) in Section 3, a concise account of the construction of permutation models
for the reader’s convenience;

(b) in Section 4, the description of the suitable permutation model;
(c) in Section 5, the terminology and the specific theorem of Pincus for the

transfer to ZF.
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2. Definitions and notation

Definition 2.1. Let X be an infinite set. (That is, X 6= ∅ and for all
n ∈ ω \ {0}, there is no bijection f : n→ X; otherwise X is called finite.)

(1) X is called denumerable if there is a bijection f : ω → X.
(2) A family A of infinite subsets of X is called almost disjoint in X if for

all A,B ∈ A with A 6= B, the set A ∩B is finite (2).
(3) An almost disjoint family A in X is called maximal almost disjoint

(MAD) in X if for every almost disjoint family B in X with A ⊆ B,
we have A = B.

Next, we provide the statements of BPI and ACω. For the reader’s con-
venience, we also supply the ones for MC and the Principle of Dependent
Choices since the latter two weak choice forms, though not having a key role
in this note, are mentioned at specific points.

Definition 2.2.

(1) The Boolean prime ideal theorem BPI (Form 14 in [HR98]): Every
Boolean algebra has a prime ideal.

(2) The Axiom of Countable Choice ACω (Form 8 in [HR98]): Every denu-
merable family of non-empty sets has a choice function.

(3) The Axiom of Multiple Choice MC (Form 67 in [HR98]): For every family
A of non-empty sets there is a function f with domain A such that for
all X ∈ A, f(X) is a non-empty finite subset of X. (f is called a multiple
choice function for A.)

(4) The Principle of Dependent Choices DC (Form 43 in [HR98]): If R is a
relation on a non-empty set X such that for every x ∈ X there exists
y ∈ X with xRy, then there is a sequence (xn)n∈ω of elements of X such
that xnRxn+1 for all n ∈ ω.

Let us also recall a couple of known facts about BPI and MC.
(a) BPI is equivalent to the statement “Every filter on a set can be ex-

tended to an ultrafilter” (see [J73, Theorem 2.2]). It is also a renowned result
of Halpern and Levy [HL71] that BPI does not imply AC in ZF. In particular,
BPI is true in the Basic Cohen Model (ModelM1 in [HR98]) of ZF + ¬AC.

(b) MC is equivalent to AC in ZF, but it is not equivalent to AC in ZFA
(see [J73, Theorems 9.1 and 9.2]).

(2) Our definition of almost disjoint family (here and in [T19]) differs from the usual
one, namely the one which states that given an infinite set X, a family A ⊆ [X]|X| = {Y :
Y ⊆ X and |Y | = |X|} is almost disjoint in X if for any two distinct members A,B of A,
|A∩B| < |X|; that is, there is a one-to-one mapping from A∩B into X but no one-to-one
mapping from X into A ∩B.
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3. Terminology for permutation models. For the reader’s conve-
nience, we provide below a brief account of the construction of permutation
models of ZFA; a detailed account can be found in Jech [J73, Chapter 4].

One starts with a model M of ZFA+AC which has A as its set of atoms.
Let G be a group of permutations of A and also let F be a filter on the
lattice of subgroups of G which satisfies the following:

∀a ∈ A ∃H ∈ F ∀φ ∈ H (φ(a) = a)

and
∀φ ∈ G ∀H ∈ F (φHφ−1 ∈ F).

Such a filter F of subgroups of G is called a normal filter on G. Every permu-
tation of A extends uniquely to an ∈-automorphism of M by ∈-induction,
and for any φ ∈ G, we identify φ with its (unique) extension. If H is a
subgroup of G and x ∈ M and for all φ ∈ H, φ(x) = x, then we say that
H fixes x. If E ⊆ A and H is a subgroup of G, then fixH(E) denotes the
(pointwise stabilizer) subgroup {φ ∈ H : ∀e ∈ E (φ(e) = e)} of H.

An element x ofM is called F-symmetric if there exists H ∈ F such that
H fixes x (equivalently, {φ ∈ G : φ(x) = x} ∈ F), and it is called hereditarily
F-symmetric if x and all elements of its transitive closure, TC(x), are F-
symmetric.

Let N be the class which consists of all hereditarily F-symmetric ele-
ments of M . Then N is a model of ZFA and A ∈ N (see Jech [J73, Theorem
4.1, p. 46]); it is called the permutation model determined by M , G and F .

4. The permutation model for the main result. The key ZFA-model
for our goal is due to Howard and Rubin [HR96], and it is labeled ‘Model
N38’ in [HR98].

We start with a modelM of ZFA + AC with a linearly ordered set (A,≤)
of atoms which is order isomorphic to Qω, the set of all sequences of rational
numbers, ordered by the lexicographic order, that is,

∀a, b ∈ Qω (a < b⇐⇒ ∃n ∈ ω ∀j < n (aj = bj ∧ an < bn)).

We identify the atoms with the elements of Qω to simplify the description
of the permutation model.

Definition 4.1.
(1) Assume b ∈ A and n ∈ ω.

(a) Anb = {a ∈ A : ai = bi for 0 ≤ i ≤ n} is the n-level block containing b.
(We note that if a ∈ Anb , then Ana = Anb , and if m,n ∈ ω with
m ≤ n, then Anb ⊆ Amb . Furthermore, the sets Anb will not be in the
permutation model defined below.)

(b) The sequence (bn+1, bn+2, . . .) is the position of b in its n-level block.
(c) Bn = {Ana : a ∈ A} is the set of n-level blocks.
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(d) ≤n is the relation on Bn defined by

Anc ≤n And ⇐⇒ c�(n+ 1) ≤ d�(n+ 1).

(e) Let f be an order automorphism of (Bn,≤n) (see Facts 4.2 and 4.3
below). We define φf to be the unique order automorphism of (A,≤)
which satisfies the following two properties:
(i) φf [Ana ] = f(Ana) for all a ∈ A, and
(ii) for all a ∈ A, a and φf (a) have the same position in their n-level

blocks. (By item (1b), this means that for every a ∈ A and every
i > n, ai = (φf (a))i.)

(2) For n ∈ ω, Gn is the group {φf : f is an order automorphism of
(Bn,≤n)}.

(3) G is the group
⋃
n∈ω Gn. (Note that for n ≤ m, Gn ⊆ Gm.)

(4) A set E ⊆ A is called a support if it satisfies (a)–(c) below:

(a) E is well-ordered by the ordering ≤ on A.
(b) For each n ∈ ω, {Ana : a ∈ E} is finite. (That is, for each n ∈ ω, the

set of nth coordinates of elements of E is finite.)
(c) E is countable.

(5) F is the filter on the lattice of subgroups of G which is generated by the
filter base {fixG(E) : E is a support}.
F is a normal filter on G. Firstly, note that for every a ∈ A, {a} is a

support, and thus fixG({a}) ∈ F . Secondly, let φ ∈ G and H ∈ F . Then
there exists a support E such that fixG(E) ⊆ H. It is not hard to verify now
that φ[E] is a support and fixG(φ[E]) ⊆ φHφ−1, i.e. φHφ−1 ∈ F .
N38 is the permutation model determined by M , G and F . By the

definition of F , it follows that for every x ∈ N38 there exists a support E
such that for all φ ∈ fixG(E), φ(x) = x. Under these circumstances, we call E
a support of x.

The following two facts are straightforward; the second of these follows
from the observation that (Bn,≤n) is order isomorphic to Qn+1 with the lex-
icographic order, which is a countable dense linear order without endpoints.

Fact 4.2 ([HR96, Lemma A]). For each n ∈ ω and a ∈ A, Ana is an
interval in the ordering ≤ on A (in the sense that if c, d ∈ Ana and c ≤ b ≤ d,
then b ∈ Ana).

Fact 4.3 ([HR96, Lemma B]). For each n ∈ ω, the ordering ≤n defined
on Bn by

Ana ≤n Anb ⇐⇒ a�(n+ 1) ≤ b�(n+ 1)

is well-defined and the ordered set (Bn,≤n) is order isomorphic to the rational
numbers with the usual ordering.
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Howard and Rubin [HR96, Sections 5 and 6] established the following
result about N38.

Theorem 4.4. The permutation model N38 satisfies BPI ∧ ACω ∧ ¬DC.

5. The suitable transfer theorem of Pincus

Definition 5.1. For any set X, let Pα(X) (where α ranges over ordinal
numbers) be defined as follows:

P0(X) = X,

Pα+1(X) = Pα(X) ∪ P(Pα(X)),

Pα(X) =
⋃
β<α

Pβ(X) for α limit.

For use in the transfer of our ZFA-independence result to ZF, we provide
below some terminology from Jech–Sochor [JS66] and Pincus [P72].

Let us point out that in the forthcoming Definitions 5.2 and 5.3(2), the
notation x stands for a tuple (x1, . . . , xn) of variables. In Definition 5.3(2),
the variables of y = (y1, . . . , yn) are assumed to be disjoint from those of x.
∃x (∀x) stands for ∃x1 · · · ∃xn (∀x1 · · · ∀xn).

⋃
x stands for x1 ∪ · · · ∪ xn.

Definition 5.2. Let C be a class and let Φ(x) be a formula in the lan-
guage of set theory with atoms. Then ΦC(x) is Φ with quantifiers restricted
to C. Similarly, if σ(x) is a term then σC(x) is defined by the same formula
that defines σ but with its quantifiers restricted to C.

Φ(x) is boundable if for some ordinal γ, ZFA ` Φ(x) ↔ ΦP
γ(

⋃
x)(x).

Similarly, the term σ(x) is boundable if for some ordinal γ, ZFA ` σ(x) =
σP

γ(
⋃

x)(x).
A statement is boundable if it is the existential closure of a boundable

formula.

In the following definition, |y| denotes the least ordinal α such that there
is a bijection f : α → y; so |y| does not denote the cardinal number of y
unless y is well-orderable.

Definition 5.3.

(1) Let x be a set. We define

|x|− = sup{|y| : there is an injection from y to x}.
|x|− is called the injective cardinality of x.

(2) A formula Φ(y) is injectively boundable if it is a conjunction of Φi(y):

Φi(y) = ∀x
((∣∣∣⋃x

∣∣∣
−
≤ σi(y) ∧

⋃
x ∩ TC

(⋃
y
)

= ∅
)
→ Ψi(x,y)

)
,

where σi(y) and Ψi(x,y) are boundable.



BPI and MAD families 111

A statement is injectively boundable if it is the existential closure of an
injectively boundable formula.

The following fact was noted in [P72, p. 722].

Fact 5.4. Boundable formulae and statements are (up to equivalence)
injectively boundable.

Theorem 5.5 ([P77]). If a conjunction of injectively boundable state-
ments and BPI and ACω has a permutation model, then it also has a ZF-
model.

6. The main result

Theorem 6.1. The statement “For every infinite set X, every almost
disjoint family in X can be extended to a MAD family in X” is not provable
in ZF + BPI + ACω.

Proof. Firstly, we will prove that in the permutation model N38, which
(by Theorem 4.4) satisfies BPI ∧ ACω, there exist an infinite set X and an
almost disjoint family in X which cannot be extended to a MAD family
in N38.

To this end, we take as our infinite set the set A of atoms of N38. We
define

e0 = (0, 0, . . .),

i.e. e0 is the constant sequence with value 0, and we also define

∀n ∈ ω \ {0}, (en)i =

{
i if i < n,
n otherwise,

so e1 = (0, 1, 1, . . .), e2 = (0, 1, 2, 2, . . .), e3 = (0, 1, 2, 3, 3, . . . ), etc. It is clear
that en < en+1 for all n ∈ ω, and that the subset

E = {en : n ∈ ω}

of A is a support. We let

H0 = (−∞, e0] = {a ∈ A : a ≤ e0},

and for n > 0, we let

Hn = (en−1, en] = {a ∈ A : en−1 < a ≤ en}.

We also let
H∞ = {a ∈ A : ∀t ∈ E (t < a)}

and
H = {Hn : n ∈ ω} ∪ {H∞}.
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Note that E is a support of every member of H, and thus H ∈ N38 and H
is denumerable in N38. Furthermore, H is a partition of A into infinite sets,
and hence H is almost disjoint in A.
H is not MAD in A. Indeed, let h ∈ H∞ and also let E0 = E∪{h}. Then

H0 = H∪ {E0} is in N38 since E0 is a support of H0, H0 is almost disjoint
in A and H ( H0.

Claim 6.2. H cannot be extended to a MAD family in the model N38.

Proof. Let G ∈ N38 be an almost disjoint family in A such that H ( G.
We will show that G can be properly extended to an almost disjoint family
in A, which is in N38. Let E′ ⊂ A be a support of G, and let

E∗ = E ∪ E′.
Clearly, E∗ is a support. Without loss of generality, we may assume that

(6.1) ∀a ∈ A [∀n ∈ ω (E∗ ∩Ana 6= ∅)→ a ∈ E∗].
This assumption is possible since if F ⊂ A is a support, then F ∪ {a ∈ A :
∀n ∈ ω (F ∩Ana 6= ∅)} is a support.

We assert that for every X ∈ G \ H, X ⊆ E∗. Fix X ∈ G \ H. First of
all, we have the following

Subclaim 6.3. X satisfies condition (b) of the definition of support, i.e.
for every n ∈ ω, {Anx : x ∈ X} is finite.

Proof. We will prove the subclaim by induction. Firstly, since H is con-
tained in the almost disjoint family G and X ∈ G, X ∩ H is finite for all
H ∈ H. In particular, X ∩H0 and X ∩H∞ are finite, and thus {A0

x : x ∈ X}
is finite.

Assume that for some n > 0, {An−1x : x ∈ X} is finite. If {Anx : x ∈ X}
is infinite, then, by the pigeonhole principle, there exists an infinite X ′ ⊆ X
such that xi = yi for x, y ∈ X ′ and i < n, and xn 6= yn for any distinct
x, y ∈ X ′. But then it is reasonably clear that for some H ∈ H, X ′ ∩H is
infinite, which is impossible. Thus, {Anx : x ∈ X} is finite, concluding the
inductive step and the proof.

Suppose that X * E∗. Since H is a partition of A, (X \E∗)∩H 6= ∅ for
some H ∈ H, and since G is almost disjoint, (X \E∗) ∩H is finite. Assume
that

(X \ E∗) ∩H = {x(1), . . . , x(r)},
where x(1) < · · · < x(r). There exists b ∈ H \ E∗ such that x(r) < b and

(6.2) [x(r), b] ∩ (E∗ ∪X) = {x(r)}.
For such a b, [x(r), b] ⊆ H since x(r), b ∈ H and H is an interval in the
ordering ≤ on A. Let L = {e ∈ E∗ ∩H : x(r) < e}. If L = ∅ (which yields
H = H∞), then for any b ∈ H with x(r) < b, (6.2) holds. If L 6= ∅, then since
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E∗ is well-ordered by the ordering ≤ on A, we let e∗ = min(L) and we also
let b ∈ H be such that x(r) < b < e∗. Then, for this b, (6.2) holds.

Fixing a b as above, we let, for i = 1, . . . , r−1, ni ∈ ω be such that x(i)ni <
x
(i+1)
ni , and we let nr ∈ ω be such that x(r)nr < bnr . Then Ani

x(i)
<ni A

ni
x(i+1)

and Anr
x(r)

<nr A
nr
b . Since x(r), b 6∈ E∗, by (6.1) there exist k, ` ∈ ω such that

Ak
x(r)
∩ E∗ = ∅ and A`b ∩ E∗ = ∅. Let m = max{n1, . . . , nr, k, `}. Then

(6.3) Am
x(1)

<m · · · <m Am
x(r)

<m Amb

and

(6.4) Am
x(r)
∩ E∗ = Amb ∩ E∗ = ∅.

Observe that for every x ∈ X \ {x(r)}, Amx 6= Am
x(r)

and Amx 6= Amb . Indeed,
if for some x ∈ X \ {x(r)}, Amx = Am

x(r)
or Amx = Amb , then x ∈ H since Am

x(r)

and Amb are contained in H. By (6.4), we deduce that x ∈ (X \ E∗) ∩ H,
which yields a contradiction to (6.3).

Let K = {Ame : e ∈ E∗} ∪ {Amx : x ∈ X \ {x(r)}}. By the previous
observation, (6.2), (6.4) and the definition of ≤m, we conclude that

[Am
x(r)

, Amb ] ∩K = ∅.

Furthermore, by Subclaim 6.3 and the fact that E∗ is a support, it follows
that K is finite.

Hence, as (Bm,≤m) is isomorphic to the rational numbers with the usual
ordering (see Fact 4.3), there exists an order automorphism f of (Bm,≤m)
such that f(Am

x(r)
) = Amb and f fixes all elements of K. Let φf be the

corresponding order automorphism of (A,≤). Then φf ∈ fixGm(E∗), and
thus φf (G) = G, since E∗ is a support of G. It follows that φf (X) ∈ G.
However, since φf fixes all elements of X \ {x(r)}, and since φf (x(r)) ∈ Amb
and Amb ∩ Amx(r) = ∅, we have φf (X) ∩ X = X \ {x(r)}, i.e. φf (X) ∩ X is
infinite, contradicting G’s being almost disjoint. Thus, X ⊆ E∗.

Let U = {H \E∗ : H ∈ H}. Since H is disjoint, so is U , and since E∗ is a
support of every member of U and H is denumerable in N38, U ∈ N38 and
U is denumerable in N38. Moreover, all members of U are infinite.

As ACω is true in N38, there exists a choice function for U in N38, g0 say.
Since ran(g0) 6∈ H and ran(g0)∩E∗ = ∅, we conclude (by the first part of this
proof) that ran(g0) 6∈ G. Thus, letting G0 = G ∪{ran(g0)}, we find that G0 is
almost disjoint in A and G ( G0, and note that G0 ∈ N38 since E∗ ∪ ran(g0)
is a support of G0. This completes the proof of the claim.

We are now ready to transfer the above ZFA-independence result to ZF.
Consider the following formula: Φ(x) = “x is infinite and there exists an
almost disjoint family A in x which cannot be extended to a MAD family
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in x”. Letting “AD” stand for “almost disjoint”, we may write Φ(x) as

Φ(x) = (x is infinite) ∧ ∃A
(
A is AD in x ∧ ∀B ((B is AD in x ∧ A ⊆ B)

→ ∃C (C is AD in x ∧ B ( C))
)
,

where “U is AD in x” is the formula

∀u
(
(u ∈ U)→ (u ⊆ x ∧ u is infinite)

)
∧ ∀u ∀v

(
(u ∈ U ∧ v ∈ U ∧ u 6= v)→ (u ∩ v is finite)

)
.

Since for any x, every n ∈ ω is a member of Pn+1(x), and thus of Pω+ω(x)
(see Definition 5.1), and for every y ⊆ x and every function f : n → y, f is
a member of Pn+3(x), and thus of Pω+ω(x), it follows that “y is infinite”
and “y is finite” in Φ(x) can be respectively expressed by
∀n ∈ Pω+ω(x) ∀f ∈ Pω+ω(x) ((n ∈ ω ∧ f : n→ y)→ (f is not a bijection))

and
∃n ∈ Pω+ω(x) ∃f ∈ Pω+ω(x) (n ∈ ω ∧ f : n→ y is a bijection).

Furthermore, every almost disjoint family in x is a member of P2(x), and
thus of Pω+ω(x), and Pω+ω(x) is transitive. Hence, all quantifiers in Φ(x)

can be restricted to Pω+ω(x), and thus Φ(x) is equivalent to ΦPω+ω(x)(x),
i.e. Φ(x) is a boundable formula.

It follows that the existential closure of Φ(x),
Ψ = ∃x (Φ(x)),

is a boundable statement, and hence (by Fact 5.4) an injectively boundable
statement.

Now, since the statement Ω = Ψ ∧ BPI ∧ ACω is a conjunction of the
injectively boundable statement Ψ , BPI and ACω, and has a permutation
model, namely N38, it follows (by Theorem 5.5) that Ω has a ZF-model.

The above arguments complete the proof of the theorem.
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