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Abstract. We consider statistical Markov Decision Processes where the decision maker is risk
averse against model ambiguity. The latter is given by an unknown parameter which influences
the transition law and the cost functions. Risk aversion is measured either by the entropic risk
measure or by the Average Value at Risk. We show how to solve problems of this kind using a
general minimax theorem. Under some continuity and compactness assumptions we prove the
existence of an optimal (deterministic) policy and discuss its computation. We illustrate our
results using an example from statistical decision theory.

1. Introduction. The following experiment has (in a variant) been suggested by Ells-
berg (1961) (see e.g. [GS1989]): An agent has to choose between two bets. For this she is
shown two urns, each containing 100 balls which are either red or black. Urn A contains
50 red and 50 black balls while there is no further information about urn B. Bet 1 is: ‘the
ball drawn from urn A is black’ and bet 2 is: ‘the ball drawn from urn B is black’. In case of
winning the bet, the agent receives 100 euros. Empirically it has been observed that most
agents prefer bet 1. One explanation for this behaviour is that in case of urn B agents
consider a set of possible distributions for the colours of the balls and being ambiguity
averse take into account the minimal expected utility.
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This point of view has become popular in economics and has been formalized later
on. In particular one has to specify the possible set of distributions which have to be
taken into account. For example [HS2001] consider in the framework of a continuous-time
consumption problem the set of distributions P whose relative entropy with respect to
a fixed distribution Py is less or equal to a constant. Using a Lagrange approach this is
equivalent to penalizing the robust problem with the distance of the distribution to Pg.
Optimization criteria like this have been put on an axiomatic basis by [MMR2006].

As far as Markov Decision Processes (MDPs) are concerned, robust approaches have
been considered in [[2005] among others. As in [HS2001] model ambiguity is here treated
with respect to the whole probability measure of the process. Since the probability mea-
sure in MDP theory is a product of transition kernels such robust optimization problems
can also be interpreted as games against nature.

In this paper we will take another point of view which is related to the models intro-
duced in [KMM2005]. There, the whole risk is separated into two parts: Model ambiguity
and operating risk. One has to operate a system under an unknown probability law which
is chosen by nature (from a finite set) in a worst case way. This model ambiguity is in-
corporated in the optimization criterion in a risk-sensitive way. For further literature on
ambiguity see the survey [GR2013].

We will start with a statistical Markov Decision Process where the transition kernel
and cost functions depend on an unknown parameter for which we have a prior distribu-
tion. Only the states of the process are observable. Since the Ellsberg experiment suggests
that the parameter (model) ambiguity should be treated different to uncertainty of the
evolution of the process, we will consider the expected cost of a policy as a random vari-
able and use the entropic risk measure for the model ambiguity. This is in this specific
setting similar to the approach in [KMM2005], but different to approaches where the
entropic risk measure is applied to the product measure of parameter uncertainty and
uncertainty of process evolution. The latter approach has been pursued in [BR2017] and
extended to robust problems in [RS2018]. Using the dual representation of the entropic
risk measure we can show that there is a connection of our risk-sensitive optimization
criterion to the robust penalty problem considered in [HS2001]. Relations like this have
already been discussed in [02012]. However, note that in our setting nature chooses only
the worst case measure with respect to the parameter uncertainty. Our model includes
both the classical Bayesian MDP (with risk neutral attitude towards ambiguity) and the
robust MDP as limiting cases. We use the general minimax theorem of Kneser, Fan,
Sion (see [S1958]) and results of [SI979] to solve our problem. It is easy to see from our
approach that the solution method not only applies to the case where model ambiguity
is evaluated by the entropic risk measure, but to any convex risk measure with a suit-
able dual representation. Thus, we will also consider the case where model ambiguity is
evaluated by the Average Value at Risk. This complements studies in which the Average
Value at Risk is applied to the whole discounted cost (see e.g. [BO2011l, [CTMP2015]).

Our paper is organized as follows: In the next section we introduce our statistical MDP

with a given prior distribution o and the optimization criterion which we consider. Al-
ternative representations and interpretations are also discussed. Section [3]is then devoted
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to the minimax theorem and the existence of optimal polices. It will turn out that under
some continuity and compactness assumptions, optimal policies exist and coincide with
the optimal policy of a classical Bayesian MDP with different (more pessimistic) prior
p* instead of pp. The model with Average Value at Risk is discussed in Section [4] and
yields from a structural point of view the same policy. Section [5] explains how the problem
can be solved in an algorithmic way. In the last section we explain our approach using
a specific example from statistical decision theory. In this example we are able to derive

the optimal policy for the entropic risk measure as well as for the Average Value at Risk.

2. MDP with entropic risk measure for model ambiguity. We suppose that a
statistical Markov Decision Process is given which we introduce as follows: We assume that
the state space E is a Borel space, i.e., a Borel subset of some Polish space endowed with
the o-algebra of Borel sets. Actions can be taken from a set A which is again a Borel space.
The set D,, C E x A is a Borel subset for n € Ng. By D, (z) := {a € A: (z,a) € D,,}
we denote the feasible actions depending on the state x at time n. We assume that
D,, contains the graph of a measurable mapping from F to A. Furthermore, there is a
non-empty parameter space © endowed with some o-algebra. The stochastic transition
kernel Qf; from D,,_1 to E which determines the distribution of the new state at time n
given the current state and action depends on a parameter ¥ € ©. So, QY (B|x,a) is the
probability that the next state at time n is in B € B(FE), given the current state is x and
action a € D,,_1(z) is taken. Q} is the distribution of the initial state. In what follows
we assume that the law of motion is given by

Qf(dz) := gf (x)Ao(dx),
QV(dx' |z, a) := ¢” (x,a, ") An(d2').
where A, are probability measures on E. Moreover, let
(@, 2) = g5 (@),
0, z,a,2") — ¢°(x,a,z")
be non-negative measurable functions on © x E and © x D,,_; x E for all n € N,
respectively.

REMARK. In general, \,, are assumed to be o-finite measures for all n. But then there
exists a probability measure A¥ and a finite positive density f,(z’) such that A, (dz’) =
fn(2")A%(dx"). Thus, we can replace A, by A\’ and ¢’ (z,a, ') by ¢°(x,a,z') fn(2") and
without loss of generality we may assume that A, are probability measures.

Next, we introduce policies for the decision maker. Here it is important to consider
the set of observable histories which are defined as follows:

H() =F
Hn = {(hnfhanfl) : hnfl S anlv an—1 € anl(znfl)} x E.
An element h, = (x0,a0,21,...,2) = (hn—1,0n-1,2,) € H, denotes the observable

history of the process up to time n which consists of the sequence of states and actions.
For a Borel set M we denote by P(M) the set of all probability measures on M. In what
follows we consider MDPs with finite horizon N € N.
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DEFINITION 2.1.

a) A measurable mapping m, : H, — P(A) with the property that m, (hy)(Dp(z,)) =1
for h,, € H, is called a randomized decision rule at stage n.

b) A sequence 7 = (g, 71,...,Tn—1) where 7, is a randomized decision rule at stage n
foralln=0,...,N —1, is called policy. We denote by II the set of all policies.

c¢) A decision rule m, : H,, — P(A) is called deterministic if m,(hn) = 0y, (1,,) for some
measurable function f, : H, — A with f,(hy,) € Dy(z,). Here ¢, is the one-point
measure on x. A policy is called deterministic if all decision rules are deterministic.

A policy m = (mp,m1,...,mn—1) induces according to the theorem of Ionescu—Tulcea
a probability measure

Pl =QameQlomeQl®...0my_1®Q%

on Hy. Since QY depends measurably on 9, we may infer that for any 7 € II, the mapping
(9, B) = PY(B) is a transition probability from © into Hy.
The corresponding stochastic decision process is given by (Xo, Ao, X1, 41,...,XN)
and determines the state-action process.
Next, we define our objective function. For this, consider measurable and bounded
real-valued cost functions
(0, x,a) — o (x,a)

on © x D,,n=0,1,...,N — 1 and a measurable and bounded terminal cost

(0,2) = g ()
on © x E. All cost functions may depend on the unknown parameter 9. Note that in this
case we assume that costs are not observable.
We are now interested in the costs incurred by this decision process over the finite
time horizon N. Therefore, we define for a policy 7
N-1
Cnal(¥) =B D7 ch (X, An) + g5 (X
n=0
where EV is the expectation with respect to PY. Note that ¢ + Cn,(¥) is measurable
on O. Suppose g € P(O) is a fixed initial belief about the unknown parameter 9. In the
established theory of Bayesian MDP (see e.g. [BR2011l, Section 5]) the aim would be to
minimize

/ Cove (9) po(d) (1)

over all policies w. This criterion implies that the decision maker is risk neutral with
respect to the operating risk as well as with respect to model ambiguity, given in form
of the prior po. In what follows we will now consider the case that the decision maker is
risk averse with respect to model ambiguity. More precisely, we consider

Vi(m) = %m( / &0 g (d)), (2)

Vy = il;f Vi (m) (3)
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with v > 0. For small 7 the criterion is approximately equal to (see [BP2003])

Viv(r) ~ [ Cova(0) no(d9) + 37 Ve O,

where Var, [Cnx] is the variance of the random variable Cn,(¢) when ¢ has distribu-
tion po. In particular for v | 0 we obtain in the limit the classical Bayesian MDP (|1).
For v > 0 the variability of the minimal cost in 1 is penalized. Moreover, we have the
following representation for (2), also known as ‘dual’ representation (see [ES2016, p. 279])
where

Va(r) = sup / Cvn( dﬂ)——f(unuo)}
HEP(O)

with the usual abbreviation

(%Y dp, if p <,
I(plv) = Jn .
00, otherwise,

for the relative entropy function or Kullback—Leibler distance between two measures
p, v € P(©). Note that [ Cn(9)u(dd) is finite since ¢ and g% are assumed to be
bounded. From this representation we see that the case v T oo corresponds to the case
of a robust optimization problem or worst-case optimization problem where we minimize
the cost if nature chooses the least favourable measure for the parameter 9. For v > 0
this means that potentially a whole range of beliefs about ¥ is considered but deviations
from the belief ug are penalized. A similar criterion has been used in [HS2001] where
preferences of an agent for a bet (r.v.) X : Q@ — R are expressed by

sup {Ez[x] — Z1(BBy)},
PeP(2) Y

where (2 is a reference probability space corresponding to the outcomes of the underlying
stochastic experiment. In our paper we relate model ambiguity only to the unknown
parameter . This is connected to what in economics is called two-stage approach and
where ambiguity typically arises in the first (model) stage. Empirically this has been
discovered in the famous Ellsberg experiment. In [KMM2005)] it has been suggested to

consider
Z pjf (EPJ‘ [U(X)])

as a preference function where £ is an increasing real-valued function which describes
the agent’s attitude towards ambiguity and U is a utility function. P; are here different
probability measures which correspond to different models.

In what follows we define

Civm(pt) = / Civn (9) u(d9).

When we insert the dual representation in , then we obtain

V=int s {Cnal) - Tt} (4)

T pEP(©
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Though it is well-known how the solution of the inner optimization looks like, namely
(see [DMS1999, Section 2])

O (9)
f CCN”(ﬁ/),U/O(d’lSU) H’O(dﬁ)a
it is impossible to solve the outer minimization problem directly, nor get some information
about the structure of the optimal policy, since fi depends on the policy, too.

fi(dd) =

3. Existence of optimal policies. It would be easier to solve the problem if we could
interchange the sup and the inf in . In order to achieve this we use the general minimax
theorem of Kneser, Fan, Sion (see [S1958]). The theorem uses the definition of concave-
convexlike functions.

DEFINITION 3.1. A function h on M x O is called concave-convexlike, if

(i) for all 1,20 € M and 0 < o < 1, there is an € M such that
ah(zy,y) + (1 — a)h(xe,y) < h(z,y), forallye O.

(ii) for all y1,y2 € O and 0 < « < 1, there is an y € O such that
ah(z,y1) + (1 — a)h(z,y2) > h(z,y), forallx € M.

Note in particular that any function A on M x O which is concave in the first com-

ponent and convex in the second component is concave-convexlike. Then Theorem 4.2 in
[S1958] tells us:

THEOREM 3.2. Let M be any space and O be a compact space, h a function on M x O
that is concave-convexlike. If h(x,y) is lower semi-continuous in y for all x € M then

supinf h(x,y) = inf sup h(z,y).
x Y Yy =z
We would like to apply the theorem to the function

L () = Cvnpt) - %I(uum

which is defined on P(©) x II. A topology on II can be introduced as follows: For any
7 € II denote by P2 the probability measure on Hy defined by
Pri=XA®@m®R®A ®...0 TN_1 ® Ay
and let I1* := {P) : 7 € I} C P(Hy) be the set of all probability measures P2 which are
generated by policies. Recall that A\, are the dominating measures of the transition law
introduced at the beginning of Section [2} On P(Hy) we consider the ws™-topology (see
[S1975]), i.e. the coarsest topology such that P+ [ g dP is continuous for all g : Hy — R
such that (ag,...,an—1) = g(xo,a0,...,an—1,2ZxN) is continuous for all xg,...,zy and
the function g is bounded and measurable. Given the relativization of the ws*-topology
on I1*, we can then endow II with the inverse image under the mapping 7 + P2 of the
topology on IT*. This is the coarsest topology on II for which 7+ P is continuous.
For the next statements we need some assumptions for all n =0,1,..., N — 1:

(C1) The set D,(z) is compact for all z.
(C2) The function a +— ¢?(z,a,z’) is lower semi-continuous for all z,2’ € F and ¥ € ©.
(C3) The function a + ¢V (x, a) is lower semi-continuous for all z € E and ¥ € ©.

)
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Then we obtain:
LEMMA 3.3. Under (C1)—(C3):

a) II is compact.

b) The mapping © — Ly (u, ) is lower semi-continuous on I1 for all p € P(O©). Further,
for all i, € 11 and « € (0,1) there exists a policy m € II such that Ly(p,m) =
aLn(p,m) + (1 — a)Ly(p, m) for all p € P(O).

c) P(O©) is conver and p+— Ly (u, ) is concave on P(O).

Note that b) and ¢) immediately imply that Ly is concave-convexlike.

Proof.

a) This is Corollary 7.3b) in [S1979].

b) follows from Corollary 7.3a) in [S1979]. It suffices to show that Cn.(u) is lower
semi-continuous on II. In order to see how our assumptions are needed we give the
following sketch of the proof. First note that

N-1

Cova0) = [ X, 40) + % (X)) P

n=

= O

N7
- /(Z & (Xo, Ao, - - ., Xn, An) + 32 (Xo, Ao, . . ,XN)) dP =: Cn (P}, 9)

n=0

where

Eg(hna an) = CZ(CUn, an)qZ(xnfly Ap—1, xn) T qg(xO)
g (hn) = gR (xn) gk 1 (TN —1,an—1,2N) - - qf (o).

We set Cn (P2, p) == [ Cn (P, 9) u(d¥) = Cnr(pr). To show that P s C (P, p) is lower

semi-continuous on II* in the ws™-topology we first assume without loss of generality that
0

¢? > 0. By (C2) and (C3) ¢? depends lower semi-continuously on the actions. Hence &7

can be written as an increasing sequence of functions which are bounded and continuous
in the actions. Thus P~ Cy (PP, 1) is lower semi-continuous as the limit of an increasing
sequence of bounded, continuous functions. The lower semi-continuity of Cn,(u) on II
follows since 7 ~ P2 is continuous.

Note that for the second statement it is important to work with randomized policies.

¢) The convexity of the set is obvious. Concavity of the mapping can also be shown:
For this purpose let p; < pg, @ = 1,2. According to the Radon-Nikodym theorem pu;
have densities with respect to o, say p; = [ g; duo. Hence for a € (0,1) the measure
w:=apy + (1 — a)us has density ag; + (1 — a)ge with respect to pg and we consider

I(ullo) = / In (g (9) + (1 — 2)g2(9)) (ag (9) + (1 — a)ga()) dv.

Since z — xIn(x) is convex for z > 0, we deduce that p — —%I(MHMO) is concave. Since
i = Cnr(p) is linear, the statement follows.
This concludes the proof. m

Consequently, under (C1)-(C3) all assumptions of Theorem [3.2] are now satisfied and
we obtain
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THEOREM 3.4. Under assumptions (C1)—(C3) we have:
a) min and sup can be interchanged, i.e.
min sup Ly(u,7)=Vy = sup min Ly (y,n).
T peP(©) perP@®©) T
b) There exists an optimal policy ©* for ([3), i.e. Vi (7*) = V.

Proof. Part a) is a direct consequence of Theorem [3.2]and the fact that Ly (u, ) is lower
semi-continuous in 7 due to Lemma on the compact set II. Part b) follows from a)
since 7 > sup,ep(e) Ln (1, m) is lower semi-continuous. =

For the second main theorem we need further conditions for all n =0,1,..., N —1:

(C4) The parameter space © is a compact metric space (endowed with the o-algebra of
Borel subsets of ©).

(C5) For all x,2’ € E, the function (9,a) — ¢°(x,a,2’) is lower semi-continuous on
O x anl(x).

(C6) For all x € E, the function (¢, a) +— c?(z,a) is continuous on © x D,,_;(z) and the
function ¥ — g% (z) is continuous on ©.

These assumptions imply that we obtain a worst prior measure (initial belief). Here
we endow P(0O) with the weak topology.

THEOREM 3.5. In addition to (C1) assume that (C4)—(C6) are satisfied. Then:

C
a) There exists a saddle point (u*,7*) of the function (u,m) — Ln(u,m) and

H;lnurerg()é) Ly(p,m)=Ly(p*,7*)=Vy = Hg%)agé) m#nLN(u,W).
b) The policy ©* is an optimal policy for and w* is an optimal Bayes policy with
respect to p*, i.e. Cnn+(1*) = inf; Cnr (™).
c) There exists a deterministic policy f* = (f5,..., fh_1) with Cnp-(1*) = Cnae (1¥),
i.e. f* is optimal for ,
Proof.

a) The assumption that © is compact implies that P(0) is weakly compact. Moreover,
the mapping p — Ly (p,m) is upper semi-continuous in the weak topology, since p —
JE2[Cnr(9)] u(dd) is continuous by our assumptions (see Corollary 8.3 in [S1979] and
the addendum for the lengthy proof) and the entropy function p — I(pllpo) is lower
semi-continuous with respect to the weak topology (see Theorem 1 in [P1975]). Hence
also g — inf; Ly(p,m) is upper semi-continuous and attains its supremum on P(O)
at p*. The pair (p*,7*) with 7* from Theorem b) is then a saddle point of the
function (p,7) — Ly (u, ).

Part b) follows directly from a) since Vy(7*) = Vy is equivalent to Cyn«(p*) =
inf; Cnr(u*). Part c) is well-known in Bayesian MDPs and follows with [H1970], Theorem
15.2 together with Lemma 15.1. m

Theorem [3.5] has the advantage that it is possible to solve the inner optimization
problem min, Ly (p, 7) explicitly. Since the entropy part does not depend on the policy T,
only the part Cn,(u) is interesting and it can be solved with the established theory of
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Bayesian MDP (see Section . Of course, the resulting optimal policy depends on u*
which has to be computed in a second step.

REMARK. It is possible to consider MDPs with infinite time horizon in the same way,
i.e. instead of Cn (1) we take

o0
Cocr(#) =B [ ch(Xn, An)|
n=0
and assume Y supy ., |¢h(x,a)| < 0o or a weaker convergence assumption. Then we
obtain the same results as for finite-stage MDPs with agents who are ambiguity averse.

REMARK. The entropic risk measure motivates to penalize the robust MDP formulation
by the deviation of the prior from the ‘statistically correct’ prior ug. Instead of taking the
relative entropy one could of course take any other distance which is convex. For example
if © C R, one could take the Bhattacharyya distance which for probability measures p
and pg with densities ¢ and ¢q is defined by

Dp(p, po) == —log(/ Ve(@)po(r) dx)

and is a convex mapping in u for fixed pg. For details see [B1943].

4. MDP with Average Value at Risk for model ambiguity. Instead of the entropic
risk measure one may apply any other convex risk measure to penalize model ambigu-
ity. For example convex risk measures have a representation in dual form (see [FS2016]
Theorem 4.33]) which can be used to apply the minimax Theorem. In what follows we
restrict the discussion to the Average Value at Risk since it is the most popular one in
this class. We consider the same Bayesian MDP framework as in Section [2] with a fixed
initial belief pp and define the Value at Risk at level v € (0, 1) for the random variable
¥ Cnr(¥) on © as

VaR, (Cnx) :=inf{z € R: uo({ € © : Cnr(¥) < 2}) > 7}.

Note that we consider the actuarial point of view here where large positive outcomes are
bad and + is usually close to 1. Moreover, note that VaR.(Cn) depends on pp.
When model ambiguity is measured by the Average Value at Risk, we obtain as
optimization criterion
1 1
Vn(m) == T VaRq(Cnr) dov,
Ty (5)
Vn = ir#f V().

Note that for a continuous random variable C'y,, the Average Value at Risk is the same
as Expected Shortfall and Tail Conditional Expectation. If v | 0 we get in the limit just
the expectation and thus the classical risk neutral setting. For v T 1 we obtain in the
limit the worst-case risk measure. Using the dual representation of Average Value at Risk
(see e.g. [FS2016 Theorem 4.52]) this amounts to

Vn =inf sup Cnr(p)
T pEQy
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with Cnr(p) := [ Cn<(9) p(d¥) and
du 1
Q::{ué’P@:u«uo,S}.
K ©) dpo — 1—7
The idea here is to proceed in the same way as in Section [3] and use the previously
established results. We obtain with some slight changes to the previous section:

THEOREM 4.1. Under (C1) and (C4)—(C6) we have:
a) There exists a saddle point (u*,7*) of the function (u,m) — Cnx(u) and

min max Cn.(p) = Cnpex (10*) = Vv = max min C . (p).
T pEQy HEQy T

b) The policy ©* is an optimal policy for , i.e. Vy(n*) = Viy, and 7* is an optimal
Bayes policy with respect to p*, i.e. Cnq+(u*) = inf; Cnn(u*).

c) There exists a deterministic policy f* = (f§,..., fx_1) with Cnp«(n*) = Cnr=(1*)
and f* is optimal for (), i.e. Vn(f*) = V.

Proof. First note that Lemma holds in the same way since Q. is convex. The state-
ments follow as in the proof of Theorem since Q, is weakly compact (see [ES2016),
Corollary 4.38]). =

5. Solving the Bayesian Dynamic Decision Problem. Theorems [3.5 and [.1] pro-
vide algorithms to solve MDPs with ambiguity. More precisely, the possibility to inter-
change min and max implies that we can first solve min, Ly (u, 7) and min, Cn,(u) and
then maximize over u. This inner optimization problem however is a standard Bayesian
Dynamic Decision Problem which can be solved with well-known tools. We will give a
sketch here. For a detailed explanation how these problems can be solved, see [BR2011l
Section 5]. First, let ug € P(©) be fixed. We consider the problem inf, Cnr(uo) =
Cn(po). Note that in order to obtain the optimal policy, we finally have to replace pg
by the optimal p* in the solution procedure. The problem can be solved by a state space
augmentation. The state which has to be considered is (z, 1) where € E and p € P(0)
is the current belief (conditional distribution) about ¥. This belief has to be updated as
follows:

fc 0 ) () po(d)

f@ do J () po(dd)’

Jo @z, a,2") p(dv)

Jo @3 (z,a,2") p(dd)’
D, (z, p,a, ") gives the new belief, if the previous belief was p, the previous state

was x, the new state is ' and action a is chosen. ug(z) is the new belief directly after

the observation of the first state. Thus, starting with the prior o we obtain a sequence

of beliefs i (hn—1,an-1,Zn) := Pp(Tn—1,pin—1(An-1),an-1,2,) depending on the ob-

servations and the history of the process: po(xo), p1(xo, ag, 1), u2(ha),.... The state

po(2)(C) := CeB(©),

D 1, 0,2) (C) =

CeBO), n=1,...,N.

transition kernel is given by

QX (Blo.p,0) = [ QUBle.a)u(@d). B e B(E), n=1,...,N.
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Under well-known continuity and compactness assumptions (see e.g. [BR2011, Theorem
2.4.10]) it is then possible to show that the value

O (j10) = / / Jo(@, po(x)) QU (der) po(dd)

can be computed recursively by
In (@, ) = /g%(x) p(dd),

. 9 / / X /
ot /@ A (@) + [ a0 ) @ (00 )}

INCADE

forn = N —1,...,0. If we denote by ¢ the (deterministic) minimizer of J,;1 on the
right-hand side of the equation for n = 0,1,...,N — 1, then the deterministic policy
7 = (f§,..., fAx_,) is optimal for the given problem with

f;(hn) = g;;(xnmun(hn)), hn GHna n:O,l,...,Nfl,

i.e. CN‘n'* (/,(,0) = CN(MO)

6. An example. We consider the following example which is taken from [dG1970, Ex-
ample 2, Section 12.6]. A statistician observes (sequentially) a sequence of at most N > 2
Bernoulli random variables with unknown success probability ¢ and has to determine
from this the true value of 9. Suppose that 9 is either % or % She has an initial belief pg
about the two probabilities. After each observation two actions are available: Either stop
the observation process and choose a terminal decision (whether the true probability is
either % or %) or make a further observation of the Bernoulli trial. After N observations
the statistician has to take a decision. The cost of one observation is 1 and if the decision
is correct, there is no cost. For a wrong terminal decision one has to pay the amount
of 10. What is the optimal Bayesian strategy? We assume that the statistician is risk

averse and uses the criteria presented in this paper.

We use Theorem and Theorem to solve these problems. We have to take as
the state space the current belief about the two hypothesis. Since the parameter set is
© = {3, 2} these beliefs are only two-point distributions. In what follows we assume that
the interval [0,1] is the state space where p € [0,1] is the current belief that ¢ = % is
the true parameter. The action space is A = {1,2} where a = 1 means to take another
observation and ¢ = 2 means to stop the observation process and choose a terminal
decision (which is then the hypothesis with higher belief). Note that since © and A are
finite, (C1)—(C6) are satisfied. In this case the cost is given by

c(p) := min{10g, 10(1 — u)}.

In case we decide to take another observation and the observation is a ‘success’ (indicated
by ‘1’) we obtain the following new belief:

_ 1/3 _ K
N Y e e R Sk
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In case we observe a ‘failure’ (indicated by ‘0’) we obtain for the new belief

2p/3 2p

B(p,0) = - :
0= s+ —m/3 ~ T+n
Then we get from the Bayesian MDP theory the following recursion for n =1,..., N:
Co(p) = c(p),
Cal) = min{e(u: 1+ (Gt 20— ) O (52
(@) = ming c(p); - —(1- 1| ——
I 0 ghtgl—p A
12 2
S ()
+ ( 3“ 3( 2 "1+ W
Working through this recursion finally yields:
10, 0<pu<s,
Co(n) = 1 2
01— p), F<p<l
and C,, = C for all n € N, where
10, 0<pu<i,
Cl(/’c): %7 %<M§%a
101 —p), 3 <p<l
The optimal decision at the beginning is to take another observation (a = 1) if

€ (13, 10), otherwise take a terminal decision (a = 2) immediately. After one obser-

vation the statistician will always take a terminal decision.

6.1. Problem with entropic risk measure. When we want to solve the problem
with risk aversion against ambiguity measured by the entropic risk measure, we have to
consider the following problem for N > 1 where g € (0, 1) is the initial belief

1
Vi — Cy(u) — =T .
w= s {Cal) = 2 Tlul) |

Using the fact that the function C; is symmetric, i.e. C1(p) = C1(1 — p), this boils down

to
1 I 1—1p
Vy =max{ sup 4 10p— — uln(—) +(1—p) ln( ) ;
o<pu<i v Ho 1 — o

oo L5 3 (mGe) a0

When the statistician is risk averse with parameter v = 0.1 and has initial belief yo = 0.1
about the hypothesis ¢ = % she will rather solve the Bayesian MDP with p* = 0.232.
Observe that p = % is the most risk averse choice of the prior. In Figure [1| the optimal

*

w* is plotted as a function of the risk aversion ~ for different py. Note that

1 .
Vn =Ci(p*) - ;I(/«L*H/wéo) ify>0

Vi = C1 (o) if y=0.
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Fig. 1. u* as a function of v for different o

What we observe in the example is that

(i) For po € [0, 3] we have po < p* < £
(if) limy o "(7) = po-
(i) Tim, oo p* () € [12, 1],

The interpretation of (i) is that a risk averse statistician will always shift the statis-
tically correct prior in direction of the uniform distribution. The case lim, o is in the
limit the classical Bayesian MDP with original prior pg. The case lim.1o corresponds
to the robust optimization where the most unfavourable prior is chosen. In this example
the most unfavourable prior is any prior in the interval [13 1

35 5] since this requires another
observation.

6.2. Problem with Average Value at Risk. We can also consider this example with
the ambiguity measured by the Average Value at Risk. Here we have to solve

1 1—up 1
C1(p), = €(0,1): — < , < .
mx Gl M= {ueon et 22 <
The set M., corresponds to Q.. The maximum pomt ©* as a function of v and po < 1
is given by (in case on non—uniqueness we give the whole range of optimal values)

1 7 < 1—%%
(30 1— ) 76(1_%“0’ 1= %2”0)
13 17 30

(30 30) T
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Due to symmetry reasons we restrict again to the case pg < % In Figure|2|the optimal p*
is plotted as a function of  for different . Note that

Vy =Ci(p") ify>0
Vn =Ci(po) ify=0.
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0.4 _;l / |
; 4 / |
' / |
P 7
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- /
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Y
— = puy =01 == py=0.2 - pno=20.3,+ - p=04

Fig. 2. u* as a function of v for different o
We again observe in this case that
(i) For po € [0, 3] we have po < p* < 1.
(i) imojo 1° (7) = po-
(i) Timo 1°(7) € [, 3]
Though in this case the interpretation of «y is different, the general behaviour of the
optimal p* is the same.

7. Conclusion. In this paper we present a proposal to deal with model ambiguity for
MDPs. Using a dual representation and a general minimax theorem we are able to solve
the ambiguity problem. The solution procedure is illustrated by an example taken from
statistical decision theory. The approach is closely related to robust MDPs.
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