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Abstract. A foundational approach is developed for a mathematical theory of managerial dis-
closure in relation to asset pricing; this involves both the earnings guidance disclosed by firm
management and market ‘trackers’ pricing the firm’s exposure to quotable risks.

1. Introduction. Asset-pricing models make assumptions about how information ar-
rives and is disclosed to its investors (henceforth the market). For assets arising out of a
productive activity by a firm, management reports based on internal audits of the various
accounting numbers (accounting variables), prepared in time for the scheduled (publicly
pre-specified) dates, are one such source. If, by the nature of their activity, management
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make more frequent audits (for instance in directing replenishment to a specific level,
which enforces frequent stock-taking, as in the retail business), then opportunities arise
for ‘early’ (unscheduled) disclosure. How should this additional information be used to
signal the firm’s superior value, i.e. to upgrade its share-price? When (or how) should
the market ‘price in’ the absence of early disclosures by a firm to include the possibility
that no news is bad news. The answer must rely on an equilibrium between the market’s
ability to down-grade the share-price and the firm’s ability to take advantage of igno-
rance: hiding some bad news within the uncertain cause of absent news, i.e. censoring
the information.

The accounting literature has usually approached this question by including a specified
(i.e. known in advance), single, ‘additional’ interim reporting date, ahead of the next
scheduled disclosure, and allowing for absence of an early disclosure by randomizing the
possibility that management has held an additional audit — see [Dye], [JunK]. However,
with the early date a datum, this approach places limits on comparative analysis; for an
equally spaced multi-period model see [EinZ].

1.1. Earnings guidance: strategic considerations. In this the companion paper to
[GieO] we propose an alternative general approach, by instilling more realism into the styl-
ized Black–Scholes model of [GieO]. There the market determination of the (share-)price
of the firms in a sector reflects only the discretional information strategically released by
a firm (i.e. with anticipation of its price effect), usually in the form of earnings guidance,
as below, at a stochastic time-point (i.e. at unknown dates in advance of a subsequent
mandatory date of information disclosure). Despite this highly specific origin for the ar-
rival of information in the market, that model holds considerable advantages, thanks to its
continuous-time approach which overcomes the limitations of the traditional ‘two-period
analysis’ just mentioned. There unspecified moments in time offer an early disclosure. By
way of an example from [GieO], which goes beyond the scope intended here, there is a
derivable ‘band-wagon’ effect whereby the introduction of multiple sources of information
reduces an individual firm’s optimal frequency of disclosures by reference to time left to
the next mandatory disclosure date.

Typically, however, the market responds also to other public sources of information,
such as trading in the shares of the firm, and by assessing the exposure of the firm to
such economic risks as may be priced by market-quoted options.

Here we create a more general framework to include such other, already existing,
market-based information enabling the market to make proper use of this additional in-
formation about the firm. This prompts a deeper analysis, equivalently a formalization
at a foundational level, of the various mechanisms at work, offered in the Complements
Section. For simplicity, we consider here only the situation where the market’s concern is
for a single firm, rather than a whole sector. In this we are guided by the clarifying simpli-
fications that occur in the case of an isolated (‘single’) firm in the stylized model [GieO].

There the firm itself comes to know (‘observes’) its own state Vt only at discrete,
stochastically generated times t, not known to the market; the manager, occupied by a
variety of tasks, cannot receive observations except when these breach agreed thresholds,
as reported by personnel delegated to collect this information, perhaps continuously. This
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feature of a hidden observation scheme enables the firm to bury (hide) ‘bad’ news and
only report ‘sufficiently good’ news, principally because the manager cannot at any time
credibly claim as absent an observation at that time. That model prices the firm in
periods of silence, i.e. when the firm fails to supply an early report of information. Key to
this is identifying at each time t a value Lt such that if Lt happened to coincide with the
true and currently observed state Vt, the firm would be indifferent, as regards its market
valuation (i.e. given the market’s information ex ante), between choosing to disclose or to
withhold the current observed state Vt. Such an indifference level Lt, determined by the
information available from before time t, is typically unique. Censoring, i.e. suppression of
an observation below this unique Lt, draws from the market a valuation of the firm at Lt.
In fact, Lt is the largest possible valuation of the firm, consistent with the information
available from before time t. As such it is termed the optimal censor of time t. Note that
observations above Lt that are disclosed cause an upward jump in the firm’s valuation.
We should emphasize that only truthful disclosures are allowed in the model.

The mathematical argument is based on risk-neutral valuation, which must incor-
porate the potential future re-evaluations of firm-value consequent upon future early
disclosures.

The existence of an indifference pricing process is directly attributable to the firm
knowing the market’s filtration F ∗ = {F∗t }t and the mechanics of how the market per-
forms computations based on past disclosures (in particular, the probabilities at each
instant which the market attaches to the firm suppressing an observation of its state).
Since the firm’s filtration F = {Ft}t is an enlargement of F ∗ [Jeu], in that the firm feeds
the market with information by choosing when to supply its private observations, one may
say that the firm emulates (can simulate) the market. In turn the market’s calculations
are based on the firm’s algorithm, though not on the firm’s up-to-date observations. The
indifference price arises from characterizing a notional parametric equilibrium between the
two agents: the firm and the market (we do not differentiate between informed and noisy
traders), selecting parameters in the computation they use to second-guess each other.

The paper identifies the mechanisms underlying some fairly general valuation proce-
dures, allowing the market to form its beliefs from additional information and the firm to
exploit the market beliefs by disclosing value superior to that belief, but nevertheless to
give a fair view of future disclosures. As these mechanisms are inspired by the principal
argument and findings of [GieO], we close here with a summary of that argument (in
the simplified notation used below). Suppose the next mandatory disclosure is at the
terminal time 1 and that, under the market’s risk-neutral measure Q, at time t < 1 the
probability of a disclosure to the market occurring at time T ∈ (t, 1] is τT . (In [GieO]
opportunities to observe the state of the firm are generated by a Poisson clock.) Based
on its information at time T , the earnings guidance announced at that time by the firm
gives its target terminal value as V T = EQ[V1|FT ]; the target and the two filtrations
above are related to the indifference level LT of time T by the two equations

V T = τTE
Q
[
V1|VT ≥ LT ,FT

]
+ (1− τT )LT ,(1.1.1a)

LT = EQ
[
V1|NDT (LT ),F∗T

]
.(1.1.1b)

Here NDT (L) is the event that no disclosure occurs at time T , which means that either
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there has been no opportunity to observe VT or else the manager has observed VT but
VT ≤ L. From here, in the context of [GieO], given how F∗T is generated from FT via
F∗T -measurable decisions, one deduces in the limit as T → t from (1.1.1a) that t 7→ Lt
satisfies a simple ordinary differential equation (involving the instantaneous variance of Q
and the Poisson clock’s intensity). Assuming multiplicative scalability, that VT+u = VT Ṽu
with independence of VT and Ṽu, equations (1.1.1) can be further simplified.

In summary, apart from simplifications, this paper’s contributions include: announce-
ments of both sufficiently good and additionally of sufficiently bad news (dual, ‘mate-
riality’ aspects in the release of private information), incorporation of current public
information in modelling market sentiment, and comparative statics of early disclosures.

The paper is organized as follows. Section 2 contains a preliminary discussion of our
modelling aims. Section 3 models the market’s beliefs as to firm value, based on expected
performance indices and is supported by a geometric Brownian (GMB) implementation.
This is followed in Section 4 by a model of the firm setting its target values; using a
benchmark scheme to be followed by the firm in observing its own state, this is shown
at its simplest to be similar to determining option exercise values, and is supported
by an indicative GMB implementation. This enables us to perform comparative statics
in Section 5, which we conclude meets a primary objective: to show how parameter
values determine early or delayed voluntary release of information in equilibrium. We
comment briefly on the implications of our approach in Section 6, thus rounding off the
paper’s contribution, and close in Section 7 with Complements indicating a framework for
generalizations and potential variations. An Appendix collects and reviews GMB formulas
pertinent for the paper.

2. Model preliminaries. In this section we introduce a model of how a firm F decides
to disclose information intermittently at times t to the market M about its state Vt, vol-
untarily between legally mandated (mandatory) disclosure dates. This involves modelling
how the market forms beliefs in periods of silence about the true current value Vt; this
aspect will be captured by V ∗t , the market’s proxy for Vt. (We regard the market as dual
to the firm, hence the ‘star’ notation here and below.)

Our first two tasks are: to model the beliefs of M (in Section 3) and then to model
F ’s choice of ‘equilibrium’ indifference level (in Section 4), below which an observation
of Vt, if any, is not disclosed (as in the Introduction). We will rely on tractable Black–
Scholes frameworks, and in the second task we will be guided by the findings of [GieO].
In Section 5 we prove the existence of these indifference levels in a benchmark context.
We may then pass to calculations which will yield conclusions, in particular, about the
likelihood of early disclosure. This enables us in Section 6 to address comparative statics
of voluntary (i.e. early) disclosures, matters beyond the reach of [GieO].

Thereafter, we discuss generalizations identifying potential for more sophisticated
models (e.g. inclusion of analyst forecasts).

The firm has ‘private’ access, according to some observation scheme — possibly also
intermittent — to its ‘state’ Vt (thought of as the income stream). This is modelled as
a random time τ not known to M . The firm applies fixed decision rules by which it
determines at time t whether to withhold any observation it may have, or to disclose its
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information voluntarily (and truthfully) to the market via two items of information: (i) the
current value Vt, and (ii) the expected state at the terminal date, i.e. the next mandatory
disclosure date. We term the former the declared current value V C and the latter its
declared target value V T (current as at the date of its disclosure). The firm’s intention
is to achieve the highest possible market valuation at each point in time; here this is
implemented by use of a fixed decision rule, based both on its own private information
about its state and on the market’s public belief about the state of the firm, which in
turn depends on the market’s information base. We term this, publicly held belief about
the value, the market sentiment. F forms its expectations by reference to a measure QV T
(labelled by the last declared target) under which its (discounted) observation process is
a martingale.

To model market sentiment, we borrow and amend a concept from control theory, that
of a state observer (a.k.a. ‘state estimator’) system; for a discussion see Section 7.1(iv).

In the [GieO] model the observation scheme was a Poisson clock with known jump
intensity; the market sentiment was an equilibrium valuation obtained from the latest
disclosed state-value, prudently discounted downwards (i.e. by incorporating the possi-
ble undisclosed poor performance); discounting is by a rate determined by the (known)
Poisson jump intensity.

Below, V ∗t , the market’s proxy for Vt, gives expression to this market sentiment.
This proxy will typically be in terms of the latest disclosed information and the current
value of some fixed portfolio of traded assets with value S∗t (e.g. current value, average
value, record value to date). The portfolio, termed the tracker, is viewed by the market
as capturing the firm’s exposure to quotable (market-priced) risks. The key property
of S∗t is that it is priced by a risk-neutral (i.e. market) measure. That is, M forms its
expectations by reference to a measure Q∗ under which the (discounted) tracker process is
a martingale. This measure is connected with that of F ; at each time t, it is the case that
F has access to M ’s information F∗t ; hence, its own filtration {Ft}t is an enlargement of
{F∗t }t, and this implies

Q∗| F∗t = QV T | F∗t .
As in [GieO], so too here, the link between market sentiment as expressed by V ∗ and

asset S∗ needs to be determined by equilibrium considerations: if at time t the firm applies
a decision rule h to the observations of S∗ and V , it will determine an indifference level
L (as in the Introduction) which, if F observed that Vt = L, would make F indifferent
between disclosure or otherwise of Vt. While the firm determines its disclosure using a
rule h (below) that exploits any superiority of the observed value over market sentiment,
rather than its expected terminal value, it complements such a disclosure by supplying
the market with information about the expected terminal value.

We take the decision rules for F and consequently also for M (with starred notation
for the latter’s rules) in the (time-independent) form
(2.0.1) hε,a(t, x, y) = (x− (1 + a)y)ε, (x, y ∈ R, t > 0)
where a > −1 is termed a mark-up, and ε = ±1 its signature, positive when deciding a
good-news disclosure event at time u, say, when
(2.0.1a) Vu ≥ (1 + a)V ∗u ,
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and respectively negative for a disclosure of bad news. (A dynamic variant is considered
briefly in Section 7.1.) These may be viewed as backed by a theoretical justification for
such a ‘principal-agent’ delegation (here a shareholder-mandated policy): see the classic
paper [BaiD, Proposition 1.4] for a rigorous derivation of control limits, using an ‘eval-
uation and control’ method. The argument there refers to the costs versus the benefits
of extracting information and the authors claim support of (perhaps, anecdotal) hard
evidence that such rules are observed in practice.

We close by stressing that the various asset-price dynamics here are modelled only
between consecutive disclosures — in ‘periods of silence’.

3. Market sentiment: shadowing the firm. For the first of the two tasks we iden-
tified in Section 2, the modeling of market sentiment via V ∗, we focus on the period of
time between two consecutive dates for mandatory disclosure, which is formalized as the
(open) time interval (T0, T1), such that the (firm) F has disclosed at T0 two items of
data: current state V C and declared target V T . At each of point T during this period,
F has to decide on voluntary disclosure. We make this decision take into account also
the time-T value of some observation variable that gives expression to publicly available
information; we call this value XT . Here, to fix ideas, we consider the simple but typical
case where X coincides with the market’s proxy for V , choosing X = V ∗.

Disclosure will occur at time T if we have

h(T, VT , V ∗T ) ≥ 0;

here F applies its decision rule h, taken in general to depend on the time-T values of V
and V ∗, and possibly on T itself (a possibility ruled out below to simplify calculations,
hence the rules in Section 2 above).

To explain what happens when there is a (first) time T where disclosure occurs, write
T+ for this time. Then, firstly, F will declare VT+ as its (new) current state V C and set
a (new) target value V T . Secondly, the above monitoring for voluntary disclosure will
re-start now on the period of time between T0 = T+ and T1, the next date of mandatory
disclosure after T+.

It remains to devise justifiable models for, firstly, the market’s proxy process V ∗,
which we will view below as ‘shadowing the firm’, and, secondly, for the targets V T ,
whose construction in Section 4 applies actuarial principles.

3.1. Two modelling assumptions. We begin by identifying how to model V ∗t . This
will be determined by two components. Although the entire process is driven by a specified
market portfolio S∗, the tracker, nevertheless, at each non-disclosure time-point t in
(T0, T1) a correction term needs to be included to price in the effects of any possible
future disclosure event, say of time τ . We thus aim for a two-component model

(3.1.1) V ∗t = S∗t + ∆V ∗t ,

which requires that we model ∆V ∗t . The latter must refer to contingent claims in regard
to whether or not F has attained its target to date; with h∗ a market decision rule,
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this requires pricing contingent claims on [t, τ ] characterized by the instantaneous time-τ
pay-off

(3.1.2) S∗τ1{h∗(τ,S∗
τ ,V T )≥0}, for τ = τV T .

So this is a ‘securitization’ similar to standard derivative instruments. It depends on a
‘random time’ τ = τV T (with values in (t, T1]) unknown to the agent M . Unfortunately,
pricing these depends on individual investor attitudes, so on micro level information,
typically unobservable. The pragmatic approach is to replace the pricing of these claims
with approximations. Assuming a constant risk-free rate r in force, we now make explicit
a first modelling assumption, that with τ = τV T

(3.1.3) ∆V ∗t := exp(−r(T1 − t))EQ
∗[
S∗τ 1{h∗(τ,S∗

τ ,V T )≥0} | F∗t
]
− S∗t ;

here Q∗ is an assumed risk-neutral measure conditional on market information — con-
ditional at time t on market information F∗t (with the expectation on the right assumed
meaningful). The formula identifies ∆V ∗t as the excess over S∗t of the fair value of the
effect of a disclosure occurring at time τ . The final step at time t is to pass to an approx-
imation, which make explicit a second modelling assumption, that

(3.1.4) S∗τ 1{h∗(τ,S∗
τ ,V T )≥0} ≈ E∗t 1{h∗(t,Σ∗

t,T1
,V T )≥0}.

Here, on the one hand, Σ∗t,T1
is some chosen tracker-performance index over the entire

remaining time interval, for instance

(3.1.5abc)

Σ∗t,T1
= max{S∗u|u ∈ [t, T1]}, or

Σ∗t,T1
= 1/(T1 − t)

∫
[t,T1]

S∗u du, or

Σ∗t,T1
= min{S∗u|u ∈ [t, T1};


and, on the other hand, a typical choice for E∗t is obtained by solving h∗(t, E∗t , V T ) = 0.
This last has a unique solution, the result of the simple form of decision rule in Section 2.
Thus in good-news situations E∗t identifies a value at-least-as-good-as the true value
S∗τ at disclosure; in bad-news situations such an E∗t will be at-most-as-bad-as that. We
summarize these modelling considerations in:

Proposition 3.1. The two modelling assumptions (3.1.3), (3.1.4) imply that

V ∗t = (S∗t + ∆E∗t )Q∗
(
h∗(t,Σ∗t,T1

, V T ) ≥ 0 | F∗t
)

exp(−(T1 − t)r),

where:

(i) S∗ is assumed to start with the value V C at time T0,
(ii) ∆E∗t = E∗t − S∗t , and
(iii) Σ∗t,T1

is chosen as in example (3.1.5) above.

3.2. A geometric Brownian implementation. On the firm side we take the firm’s
observation process V to be modelled by a geometric Brownian motion X:

(3.2.1) Xs+t = Xt exp
(
(µV T − 1

2σ
2
V T )s+ σV TWV T,s

)
, s ∈ [0, T − t];

here WV T is a Brownian motion independent of time-t information Ft, with σV T > 0
and µV T ∈ R fixed.
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Likewise, on the market side we adopt a Black–Scholes model with one risky secu-
rity S∗, so modelled again by a geometric Brownian motion; this specification satisfies
the requirements of Proposition 3.1 and carries several advantages beside: firstly, model-
completeness (see for example [MusR, Proposition 8.2.1, p. 302] for the completeness of
the multi-dimensional model) and, secondly, the ability of being re-started with value
V C at time T0. We take the dynamics in the form

(3.2.2) S∗t+u = S∗t exp(µ∗u+ σ∗W ∗u ), u ∈ [0,∞),

with Brownian motion W ∗ independent of time-t information F∗t , and two parameters:
volatility σ∗ > 0 and drift µ∗ = r − δ − (1/2)σ∗2, for some δ ∈ R.

This modelling choice ensures that the probabilities in the formula of Proposition 3.1
are well-defined (see below), emerging as tail probabilities for good-news decisions, since

h∗(t,Σ∗, V T ) ≥ 0 iff h+1,a∗(Σ∗, V T ) ≥ 0 iff Σ∗ ≥ (1 + a∗)V T,

for Σ∗ any random variable. We will provide explicit formulae for these in the next sub-
sections. We focus here on the choices of (3.1.5a,c) of max- and min-tracker-performance
indices Σ∗t,T1

(S∗), leaving aside the average value index.

3.2.1. V ∗ from the running-max approximation. We first deal with the running-max

Σ∗ := max{S∗u |u ∈ [t, T1]}.

We note a reversion from bad-news to good-news decisions via:

Q∗
(
h+1,a∗(Σ∗, V T ) ≥ 0

)
+Q∗

(
h−1,a∗(Σ∗, V T ) > 0

)
= 1.

The actual influence of the second term on the first is determined by the relative size of
(1 + a∗)V T and S∗t , so according to the sign of

(3.2.3) A∗ = log
(
(1 + a∗)V T/S∗t

)
.

Below Erfc is the complementary error function, for which see Section A.2 of the Ap-
pendix. Equations (A.7a) and (A.7b) in the Appendix yield the following results.

Proposition 3.2. If A∗ ≤ 0, equivalently, S∗t ≥ (1 + a∗)V T , then

Q∗
(
h−1,a∗(Σ∗, V T ) > 0

)
= 0,

and there is no ‘bad-news’ influence; thus

(3.2.4a) Q∗(h+1,a∗(Σ∗, V T ) ≥ 0) = 1, if S∗t ≥ (1 + a∗)V T.

If A∗ > 0, equivalently S∗t ≤ (1 + a∗)V T , then ‘bad-news’ carries influence measured by

(3.2.4b) Q∗(h+1,a∗(Σ∗, V T ) ≥ 0) = 1−Q∗(h−1,a∗(Σ∗, V T ) > 0),

and we have

(3.2.4c) Q∗(h+1,a∗(Σ∗, V T ) ≥ 0)

= 1
2 Erfc

(
A∗t − (T − t)µ∗

σ∗
√

2(T − t)

)
+ 1

2 exp
(

2µ∗A∗t
(σ∗)2

)
Erfc

(
A∗t + (T − t)µ∗

σ∗
√

2(T − t)

)
.
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To complete the picture, note that the bad news scenario when Σ∗ is the running-
maximum can be read back from:

(3.2.5) Q∗(h−1,a∗(Σ∗, V T ) ≥ 0) = 0, if S∗t > (1 + a∗)V T,

and that for A∗ > 0 this probability is given by equation (3.2.4c) above.

3.2.2. V ∗ from the running-min approximation. We now deal with running-min

Σ∗ := min{S∗u |u ∈ [t, T1]}.

The good-news and bad-news formulas hold good and, viewed technically, may be derived
by replacing µ∗ by −µ∗ and A∗ by −A∗ = log

(
S∗t /((1 + a∗)V T )

)
; and switching to

probabilities complementary to those in (3.2.1): see the discussion for equation (A.8) in
Section A.2 of the Appendix. From there, we have explicitly:

Proposition 3.3. If S∗t ≤ (1 + a∗)V T , then

Q∗
(
h+1,a∗(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0

)
= 0,(3.2.6a)

Q∗
(
h−1,a∗(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0

)
= 1.(3.2.6b)

If S∗t > (1 + a∗)V T , then

(3.2.6c)
Q∗(h+1,a∗(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0

= 1−Q∗
(
h−1,a∗(min{S∗u |u ∈ [t, T1]}, V T ) > 0

)
,

and we have

(3.2.6d)
Q∗
(
h+1,a∗(min{S∗u |u ∈ [t, T1]}, V T ) ≥ 0

)
= 1

2 Erfc
(
A∗t − (T − t)µ∗

σ∗
√

2(T − t)

)
− 1

2 exp
(

2µ∗A∗t
(σ∗)2

)
Erfc

(
−A

∗
t + (T − t)µ∗

σ∗
√

2(T − t)

)
.

4. Setting new targets. The previous section determined how the firm triggers disclo-
sure by reference to a fixed decision rule h and an observation process X in terms of V ∗,
the proxy for market sentiment; above we took X as being identical to this proxy for an
observer-system of control theory, setting X = V ∗. This replaces and simplifies the dy-
namics of the equilibrium approach of [GieO], but comes at the cost of losing information
about the expected terminal firm-value (value at the next mandatory disclosure date).
The model of [GieO] identifies that expected ‘terminal value’ as equal to the disclosed
value. The modelling in the current section adapts and extends this line of reasoning into
a construction of the target value V T introduced in Section 3. This ‘plugs the gap between
the models’ by using an indifference level (see equations (1.1.1) in the Introduction).

If the firm were to use a threshold L to trigger disclosure at some, for the moment
arbitrary, future time moment u in (t, T ], the firm’s adopted decision rule, hV T,u say,
determines disclosure iff hV T,u(u,Xu, L) ≥ 0. As only truthful disclosures are assumed,
this entails a market valuation at whatever is the disclosed level. However, absence of a
disclosure entails, for some appropriately selected threshold L, as in the model of [GieO],
a valuation of L. In summary, if L = Lu is selected appropriately for time u, then the
time u valuation of the firm is given by the random variable

(4.0.1a) ZV T,u(Lu) = Xu 1{hV T,u(u,Xu,Lu)≥0} + Lu 1{hV T,u(u,Xu,Lu)<0}.
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Now let τV T be a random time, with the interpretation that the event τV T (u) = u for
u > 0 means that F observes Xu, the complementary event being τV T (u) = 0.

We now modify the random variables in (4.0.1a) by taking into account the times of
observation and non-observation and define
(4.0.1b) ZτV TV T,u(L) = ZV T,u(L) 1{τV T (u)=u} + L1{τV T (u)=0},

as a function of the level L. Then the expected valuation is∫
(t,T ]

EQV T [ZτV TV T,u(Lu) | Ft ] τV T (du),

denoting here the distribution of τV T by τV T again, for notational convenience. As in
Section 1.1 (cf. [GieO]), since QV T is risk-neutral, this should agree with Xt. Without
loss of generality to the analysis of the interval (t, T ], we may agree to resize (rescale) the
observation process at time t to unity. Interpreting the values as discounted to present
time t, our modelling assumption is to seek a constant L = LV T that solves

(4.0.2) 1 =
∫

[t,T ]
EQV T

[
ZτV TV T,u(LV T ) | Ft

]
τV T (du).

In setting the new target level, via the definition V T = LV T , this formula relies not on
the market filtration F∗ (so not on future market sentiment), but on fair value computed
from the larger filtration F with which the firm is equipped.

Granted the existence of a solution to (4.0.2), a matter addressed in Section 4.2 below,
we take Lu = LV T = V T to correspond to each hV T,u.

4.1. A benchmark observation scheme. For a tractable implementation of the mod-
elling assumption in formula (4.0.2), we replace the random observation scheme τ by a
deterministic one, known only to the firm but most certainly not known to the market.
This permits a decomposition
(4.1.1) [t, T ] = CV T ∪ DV T ∪NV T
according as observation extends over continuous intervals, or either at a finite number
of (discrete) time moments, or not at all.

Then equation (4.0.2) reduces to finding some real L such that we have

1 =
∫
CV T

EQV T [ZτV TV T,u(L) | Ft ] du
T − t

(4.1.2)

+
∑

u∈DV T

EQV T [ZτV TV T,u(L) | Ft ] qV T +
(

1− vol(CV T )
T − t

)
L

with qV T = 1/#DV T , effectively the constant probability of discrete monitoring.
Furthermore, taking hV T,u to be hε,aV T,u (with a mark-up aV T,u > −1) leads to a

decomposition of the variable ZV T,u into an option part and a non-option part, appropri-
ately corresponding to good-news and bad-news events. For the good-news case (ε = +1),
it can readily be checked that this is
(4.1.3a) ZV T,u(L) = L+ max{Xu − (1 + aV T,u)L, 0}+ aV T,uL1{Xu≥(1+aV T,u)L},

and similarly for bad-news (ε = −1)
(4.1.3b) ZV T,u(L) = L−max{(1 + aV T,u)L−Xu, 0}+ aV T,uL1{Xu≤(1+aV T,u)L}.
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So the ‘optionality’ in ZV T,u(L) reduces to a plain vanilla option corrected by a digital
option. Turning to the practicalities of options, one way to handle positions in digital
options is to approximate them by plain vanilla positions using a selection of slightly
amended strikes. From this perspective, the optionality of ZV T,u(L) can be regarded as
approximately induced by a plain vanilla call- (respectively put-) option with strikes close
to (1 + aV T,u)L. In view of its broader role we refer to LV T as the optimal censor (cf.
Section 1.1).

Proposition 4.1 (Optimal censor optionality). When aV T,u = 0 for all u, with the
additional assumption of only discrete observations (CV T = ∅), the equation (4.1.2) for
the optimal censoring thresholds specializes for the good-news event to
(4.1.4a) 1 = 2LV T + qV T

∑
u∈DV T

EQV T [max{Xu − LV T , 0} |Ft ],

and for bad-news
(4.1.4b) 1 = 2LV T − qV T

∑
u∈DV T

EQV T [max{LV T −Xu, 0} |Ft ].

4.2. Existence of LV T for the benchmark observation scheme. This section
demonstrates the existence of a target value V T = LV T for the benchmark observation
scheme of the preceding subsection as characterized by equation (4.1.2). The existence
theorems splits into two cases according as the decision rule determines good- or bad-news
announcements; in both cases we analyze the functional form on the right of equation
(4.1.2), treating L as a free (non-negative real) variable. It is convenient to begin with
bad-news announcements.

4.2.1. Bad-news case. The final term in equation (4.1.2), corresponding to non-monitor-
ing, has a simple functional form: it is linear in L. To understand the other contributions,
we rewrite the equation in a form which reflects the complementary conditioning in the
two summands of the earlier equation (4.0.1b). This gives rise below to two corresponding
functions of L and recasts the characterization of LV T in the form:
(4.2.1a) 1 = NV T (LV T ) + BSV T,1(LV T ) + BSV T,2(LV T ).
The three functions appearing here are defined as follows:

NV T (L) =
(

1− vol(CV T )
T − t

)
L,(4.2.1b)

BSV T,1(L) =
∫
CV T

EQV T
[
Xu1{Xu≤(1+aV T,u)L} | Ft

] du
T − t

(4.2.1c)

+ qV T
∑

u∈DV T

EQV T
[
Xu1{Xu≤(1+aV T,u)L} | Ft

]
,

BSV T,2(L)/L =
∫
CV T

EQV T
[
1{Xu>(1+aV T,u)L} | Ft

] du
T − t

(4.2.1d)

+ qV T
∑

u∈DV T

EQV T
[
1{Xu>(1+aV T,u)L} | Ft

]
(with ‘B for bad news’ and ‘S for Black–Scholes’). The relation between their behaviour
and consequent existence of a target value is captured in the following result.
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Proposition 4.2. In bad-news events, for a constant LV T to exist for which equation
(4.2.1a) holds, the following conditions (1) to (4) are sufficient.

(1) BSV T,1(L) and BSV T,2 are continuous maps on [0,∞).
(2) BSV T,1 (∞) > −∞.
(3) vol(CV T ) 6= T − t, or BSV T,2 is unbounded.
(4) 1 ≥ BSV T,1(0).

Proof. First consider the behaviour of the function summands as L grows large. In
BSV T,1(L) the indicator-functions for large L will become those of the entire space, i.e.
the constant function 1; the summands of BSV T,1(L) should thereby become expressible
in terms of the first moments of X as follows:

(4.2.1c)∞ BSV T,1(L)(∞) =
∫
CV T

EQV T
[
Xu | Ft

] du
T − t

+ qV T
∑

u∈DV T

EQV T
[
Xu | Ft

]
.

Little can be said about the behaviour for large L of BSV T,2(L) except for its being
non-negative for L non-negative. As a consequence,

NV T (L) + BSV T,1(L) + BSV T,2(L) ≥ NV T (L) + BSV T,1(L),
for any L ≥ 0. On inspection from (4.2.1b), the right hand side of this inequality will grow
linearly in L arbitrarily provided vol(CV T )/(T−t) 6= 1. Situations where vol(CV T ) = T−t
amount to monitoring X at all points in time in [t, T ] except perhaps on an infinite se-
quence of points; this is contrary to the spirit of this paper’s observation schemes τV T ,
and so little will be lost in excluding such schemes. A minor problem arises, when
BSV T,1(∞) = −∞. Also, granting this technicality, the above line of reasoning gives
conditions of unboundedness to the right (one is able to make the right-hand side of
the inequality (4.2.1a) bigger than any given real by choosing L sufficiently large); in
particular, in the same way, it gives conditions for making the right-hand side bigger
than 1.

Assume the functions are continuous in L. An application of the intermediate-value
theorem will then establish the existence of LV T provided there is a value of L for
which the right-hand side of (4.2.1a) is smaller than 1. There may be no way other than
to postulate this, and it is most sensible to do so for the smallest value L can take,
namely 0.

4.2.2. Good-news case. We proceed similarly in this case, rewriting the characterizing
equation again so as to reflect the relevant conditioning in (4.0.1). The difference here is
that now a reversal of inequalities in the passage from bad- to good-news decisions requires
corresponding new function definitions (below). These, alongside the term NV T (L) from
(4.2.1b), recast the existence problem to solving for LV T the equation
(4.2.2a) 1 = NV T (LV T ) + GSV T,1(LV T ) + GSV T,2(LV T ).
Here (with ‘G for good news’) we define:

GSV T,1(L) =
∫
CV T

EQV T
[
Xu1{Xu≥(1+aV T,u)L} | Ft

] du
T − t

(4.2.2b)

+ qV T
∑

u∈DV T

EQV T
[
Xu1{Xu≥(1+aV T,u)L} | Ft

]
,
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GSV T,2(L)/L =
∫
CV T

EQV T
[
1{Xu<(1+aV T,u)L} | Ft

] du

T − t
(4.2.2c)

+ qV T
∑

u∈DV T

EQV T
[
1{Xu<(1+aV T,u)L} | Ft

]
.

Their behaviour and consequent relation to the existence of a target value is again cap-
tured by a result analogous to Proposition 4.2.

Proposition 4.3. In good-news events, for a constant LV T to exist for which equation
(4.2.2a) holds, the two conditions (i) and (ii) below are sufficient.

(i) GSV T,1 and GSV T,2 are continuous maps on [0,∞).
(ii) 1 ≥ GSV T,1(0).

Proof. Mutatis mutandis, the line of reasoning developed for Proposition 4.2 now applies.
Here, the larger L is, the closer the indicator functions in GSV T,2(L) will come to the
indicator function of the entire space; this translates into GSV T,2(L) becoming similar
to some real GSV T,2(∞) as L grows large, and this real is positive. Since GSV T,1(L) ≥ 0
for every L ≥ 0, the line of reasoning of Section 4.2.1 now establishes without further
conditions the unboundedness in L of the right-hand side of (4.2.2a).

4.2.3. Worked example in the geometric Brownian case. Corresponding to the mark-up
decision rules of (2.0.1) there are six expectations appearing in the formulas of Sections
4.2.1 and 4.2.2 that are needed for an explicit determination of LV T . Assume that X
follows geometric Brownian motion:

Xt+s = Xt exp
((
µV T −

1
2σ

2
V T

)
s+ σV TWV T,s

)
, s ∈ [0,∞),

with µV T ∈ R, σV T > 0, and WV T a standard Brownian motion independent of time t
information Ft as in (3.2.1). For fixed u = t + s in [t, T1], these six expectations are
provided by standard results on Brownian motion. Corresponding to (4.2.1c)∞ one has

(4.2.3) EQV T [Xu | Ft] = Xt exp(µV T s);

likewise, corresponding to the pair (4.2.1d), (4.2.2c) and the pair (4.2.1c), (4.2.2b), taking

(4.2.4) ∆s :=
log((1 + aV T )L/Xt)− (µV T − 1

2σ
2
V T )s

σV T
,

one has respectively:

EQV T
[
1{Xu≥(1+aV T )L} | Ft

]
= 1

2 Erfc
(
∆s/
√

2s
)
,(4.2.5a)

EQV T
[
1{Xu≤(1+aV T )L} | Ft

]
= 1

2 Erfc
(
−∆s/

√
2s
)
,(4.2.5b)

EQV T
[
Xu1{Xu≥(1+aV T )L} | Ft

]
= 1

2Xt exp(µV T s)Erfc
(

∆s − σV T s√
2s

)
,(4.2.6a)

EQV T
[
Xu1{Xu≤(1+aV T )L} | Ft

]
= 1

2Xt exp(µV T s)Erfc
(
−∆s − σV T s√

2s

)
.(4.2.6b)

Here Erfc is again the complementary error function, for which specifically see Appendix
equations (A.7ab) and (A.8).
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For periods of continuous monitoring, integrals of these three expressions need to
be computed over time s. This is unproblematic for (4.2.3), where it reduces to differ-
encing of the right-hand side across the endpoints of the monitoring period (and di-
vision by µV T ). For (4.2.5ab) and (4.2.6ab) this will lead to expressions in terms of
non-standard special functions: the incomplete Bessel functions, given by integrals of the
form

∫
[t,T ] x

α exp(−(A/x2 + B2x)) dx for some real constants A, B ≥ 0 and α. Series
representations can be derived for these integrals; generically in α, the series are in terms
of values of the incomplete gamma function, namely

(4.2.7)
∫

[t,T ]
xα exp(−(A/x2 +B2x)) dx

= (B2)α+1
∞∑
m=0

(−1)m

m! (B2)2m
{

Γ
(
−(α+m+ 1), B

T

)
− Γ

(
−(α+m+ 1), B

t

)}
,

where the series may be expressed in terms of Erfc only for particular choices of α (integer
or half-integer values).

5. Comparative statics of early disclosure. Here we address matters on which
[GieO] is silent.

5.1. General performance index Σ

Theorem 5.1. With the modelling assumptions of Section 3.1, the following assertions
hold in the framework of Sections 4.1 and 4.2.

(1) Time-T disclosure becomes the more likely the smaller are a∗ and V T .
(2) In good-news situations time-T disclosure is the more likely the smaller is r and the

bigger are a and E∗T .
(3) In bad-news situations, time-T disclosure is the more likely the bigger is r and the

smaller are a and E∗T .

Proof. Working in the general process situation of Sections 4.1 and 4.2, the starting point
here is the relevant set of inequalities holding at any time T in (T0, T1] which trigger a
disclosure. In a good-news event this is

(5.1.1) VT ≥ (1 + a)e−r(T1−T )E∗TQ
∗(Σ∗T,T1

≥ (1 + a∗)V T | F∗T
)
;

and for bad-news this is

(5.1.2) VT ≤ (1 + a)e−r(T1−T )E∗T
(
1−Q∗

(
Σ∗T,T1

> (1 + a∗)V T | F∗T
))
.

Treating V T as a given (computed by the accounts department), the likelihood of the
validity of these inequalities is determined by the size of the respective right-hand side;
the good-news event (5.1.1) occurring is the more likely the bigger is the size of the
expression on the right; the bad-news event (5.1.2) becomes the more likely the smaller is
the size of the right. The variables on which the validity of these inequalities depend are
thus: a and V T , correspondingly a∗ and E∗T , the interest-rate r, the ‘time to maturity’
T1−T (time left to the mandatory disclosure), and the variables beyond these that enter
into the construction of Σ∗T,T1

; the latter variables include V C via S∗T .
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Remark 5.2. The effects of S∗T and T1 − T on a time-T disclosure decision depend
on the specific form of the law of Σ∗T,T1

. To justify this assertion as supplementary to
Theorem 5.1, we look at the effects of infinitesimal changes in S∗T and T1 − T on the
(right-hand sides of) (5.1.1) and (5.1.2). Granted for simplicity the partial differentiability
of these probabilities, we have the following two equations in terms of λ∗T , the law of Σ∗T,T1

contingent on time-T information F∗T :
∂T1−T

[
er(T−T1)Q∗(Σ∗T,T1

> (1 + a∗)V T | F∗T )
]

(5.1.3)

= er(T−T1)
∫ ∞

(1+a∗)V T
{∂T1−Tλ

∗
T − rλ∗T }(u) du,

∂S∗
T

[
er(T−T1)Q∗(Σ∗T,T1

> (1 + a∗)V T | F∗T )
]

= er(T−T1)
∫ ∞

(1+a∗)V T
∂S∗

T
λ∗T (u) du.(5.1.4)

We see from these two equations that the signs of the effects depend on the exact form
of this law, and so need to be determined on a case by case basis. Suffice it to say that
conditions needing to be imposed here in concrete cases of λ∗T include conditions that
entail that no sign changes occur in the respective integrands on the right-hand sides of
these equations. To determine these signs explicitly requires concrete choices, at the least
for S∗ and for how exactly S∗ enters into the definition of Σ∗T,T1

.

5.2. Comparative statics for changes in S∗T . We show that the assumption that the
process S∗ follows a Markov process is sufficient for the determination of the effect of S∗T
on early disclosure. So we work with processes with two properties: firstly that, for any
time u ≥ 0,
(5.2.1) S∗T0+u = S∗T0

exp(X∗u), where ST0 = V C,

where (X∗u)u≥0 is a process independent of time-T0 information F∗T0
; secondly that, also

for arbitrary T ∈ (T0, T1],
(5.2.2) S∗T+u = S∗T exp(X∗u), u ∈ [0,∞),
where, by abuse of language, (X∗u)u≥0 (or a suitable version of the process in (5.2.1)
denoted by the same symbol) is a process independent of time-T information F∗T .

Theorem 5.3. We have ∂S∗
T
Q∗
(
Σ∗T,T1

> (1 + a∗)V T | F∗T
)
> 0 in (5.1.4) under the

additional Markovian conditions (5.2.1) and (5.2.2) on S∗; so in both good-news and
bad-news situations a time-T disclosure becomes the more likely the larger is S∗T . This
conclusion holds more generally for all constructions of Σ∗T,T1

that preserve scaling (in
the sense that we have Σ∗T,T1

(S∗) = S∗TΣ∗T,T1
(exp(X∗))).

Proof. The assumptions (5.2.1) and (5.2.2) imply that S∗ is the product of a scaling
factor S∗T and a ‘standardized version’ of S∗. This yields a representation for Σ∗T,T1

(S∗)
as a product of two positive factors, the scaling factor S∗T and the random variable that
results from the application of the respective construction for Σ∗T,T1

to the standardized
version of S∗.

In (5.1.1) and (5.1.2) the partial derivatives with respect to S∗T of the probability
factors will thus be positive so long as we have independence of the normalized versions
of S∗ from time T -information.
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5.3. Early disclosure for geometric Brownian performance indices. We consider
here the other parameter mentioned in Remark 5.2, namely T1−T , i.e. the time left to the
next mandatory reporting date. At first sight, one might expect a proposition asserting
that the shorter is this time, the less likely are decisions made for an early disclosure.
However, on reflection, such decisions may well depend on the actual evolution of the
market capitalization of the firm, and market forces may lead to changes in the size
of this capitalization forcing early disclosure also at dates comparatively close to the
mandatory date. Therefore, a discussion of the effects of T1−T needs to be incorporated
in a model framework that includes S∗.

Here we adopt a standard Black–Scholes modelling for S∗, and therefore consider now
the process X∗ in Section 5.2 as following scaled Brownian motion with drift:

(5.3.1) X∗u = X∗(µ∗, σ∗)u = µ∗u+ σ∗W ∗u , u ∈ [0,∞),

where W ∗ is a Q∗-Brownian motion independent of time-T information started with
value 0 at time 0, with parameters σ∗ > 0 and µ∗ = r − ∆∗ − (1/2)(σ∗)2 ∈ R. Recall
the former parameter is a measure of market volatility, while r −∆∗ is the excess of the
(riskless) short rate, r, over the dividend rate of the firm ∆∗ as seen by the markets; in the
present context this difference should be viewed as an ‘appreciation rate’ for investments
in F (again as seen by the markets).

With V ∗ modelled as in Proposition 3.1, the four effects to consider now are those
induced by changes in T1 − T and also in σ∗, r −∆∗, and r. These four will depend on
which of good-news or bad-news situations occurs; they enter via the market proxies, and
hence even a qualitative picture will depend on the concrete form of Σ∗T,T1

. We focus on
modelling Σ∗T,T1

as the running minimum or maximum of S∗, as in equations (3.1.5a)
and (3.1.5c), specifically in the good-news situations, so that by equation (5.1.1) we must
consider the inequalities

(5.3.2) VT ≥ V ∗• , • ∈ {max,min},

with

V ∗max := (1 + a)E∗T exp(−r(T1 − T ))Q∗max,(5.3.3a)
Q∗max := Q∗

(
max

u∈[0,T1−T ]
{X∗(µ∗, σ∗)u} > A∗T

)
,(5.3.3b)

V ∗min := (1 + a)E∗T exp(−r(T1 − T ))Q∗min,(5.3.4a)
Q∗min := Q∗

(
min

u∈[0,T1−T ]
{X∗(µ∗, σ∗)u} > A∗T

)
,(5.3.4b)

where

(5.3.5) A∗T = log
(
(1 + a∗)V T/S∗T

)
.

5.3.1. Explicit results for geometric Brownian performance indices. We give a paradigm
discussion of the effects of T1 − T on the likelihood of disclosure decisions, when for the
good-news case of (5.3.2) the running maximum is used in the construction of market
proxies according to (5.3.3ab). These effects turn out to depend on the sign of the mark-up
parameter A∗T as follows.
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Theorem 5.4. In the framework of Section 5.3, assume a situation of time-T non-
disclosure of good news. When using the running maximum of S∗ in Proposition 3.1
for Σ∗T,T1

, the following two assertions are equivalent.

(1) Early disclosure in [T, T1] is the more likely the nearer is T to T1.
(2) sign(∂T1−TV

∗
max) < 0.

Here the partial derivative in (2) depends on the sign of AT ; for A∗T ≤ 0 this is
∂T1−TV

∗
max = −rV ∗max,

while for A∗T ≥ 0 this is

∂T1−TV
∗
max = −rV ∗max + (1 + a)E∗T exp(−r(T1 − T )) A∗T exp(−η2)

σ∗
√

2π(T1 − T )3
,

where
η = (A∗T − (T1 − T )µ∗)/σ∗

√
2(T1 − T ) .

To indicate the typical line of reasoning for results like this, start from (5.3.2), observ-
ing that (in these good-news situations) disclosure decisions at some fixed point in time T
are the more likely the larger V ∗T is. The effects of some parameter on the likelihood of
early disclosure thus translate into the determination of the corresponding partial deriva-
tive of V ∗T , and so a determination of their qualitative effect reduces to a determination
of the sign of these partials. Early disclosure thus becomes more likely the larger the
relevant parameter, provided the corresponding partial of V ∗T is positive, and vice versa.
The point of our choice of a geometric Brownian framework is that explicit formulas for
the probability factors Q∗• are available as standard results in Brownian motion; these
are reviewed in Appendix A below, with equations (A.7ab) pertinent for the present case
of running-maximum performance parameters. Establishing comparative statics results
therefore reduces to straightforward partial differentiation of explicitly given functions,
albeit of some complexity. Theorem 5.3 collects the results when the relevant parameter
there is the time left to the next mandatory date.

Remark 5.5. Proceeding along the same lines in the same situation, one obtains results
similar to those of Theorem 5.3 concerning the effects of the volatility σ∗, whereas the
effects of r −∆∗ and r are unequivocally unidirectional (with the signs of the pertinent
partials being equal to minus that of E∗T ). Provided E∗T > 0, early disclosure within
(T, T1) is the more likely the smaller are r −∆∗ and r.

5.3.2. Explicit results for running-min. Here we note only that if the market proxies
are instead constructed using the running minimum of S∗ analogues of Theorem 5.3 and
Remark 5.5 again hold and preserve all the conclusions above except for a sign reversal
in A∗T . This shows how derivation of the effects of T1−T on early disclosure requires the
specifics of a given model.

6. Managerial implications. This paper’s approach to asset pricing allows the devel-
opment of a richer appreciation of how voluntary disclosure by firms can affect firm asset
valuation in equilibrium. Existing research has typically modelled voluntary disclosure as
the choice by firms to make additional voluntary disclosures to the market at fixed time
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points. As such this literature does not consider the possibility that firms may choose not
only what to disclose voluntarily but also when to disclose. Thus voluntary disclosure has
at least two dimensions: content and timing. As existing models typically do not consider
the latter dimension, they are not truly dynamic, and hence do not provide the necessary
building blocks to develop a realistic empirical model of (‘two-dimensional’) voluntary
disclosure. Here we have explicitly modelled the joint content-timing interaction, so en-
abling more realistic formal modelling of problems faced by managers of firms: when
private news is uncertain, how good does that private news have to be before it is in the
interests of the firm to issue a voluntary disclosure. The other side of this coin is what
materiality standard needs to be followed in managing the voluntary disclosure process.
The comparative statics derived in the preceding section permit an understanding of how
changes in parameter values may explain differences in equilibrium behaviour between
firms — some voluntarily releasing additional information early, others not. This meets
the challenge of modelling equilibrium asset-pricing with endogenously determined vol-
untary disclosures, wherein both the content and the timing of disclosures are rationally
chosen, making delay or early release of information in capital markets an equilibrium
outcome.

7. Complements. We close with some observations about the potential of the approach
above especially with regard to variations on the themes presented and generalizations
away from the Brownian framework followed above.

7.1. Mechanisms. Implicit in our development of a markets-based general modelling
framework was the need to pick apart the ‘who does what and how’ into ‘building bricks’,
and with these to build a variety of models. We implicitly identified five such bricks,
which in fact are best considered as mechanisms, to borrow a phrase from economic
theory. These are made explicit here so as to stress both the sensitivity of a model to its
assumptions and its adaptability to alternative contexts.
Mechanism (i). Evolution rules. The perspective adopted above is rather like that of
a scientist designing experiments and subsequently observing outcomes and evolution.
Ingredients thus include design dynamics, start time and observation times. Thus mech-
anism (i) amounts to formal rules for encoding these three aspects. Real-life features
mapped via such ‘experiments’ include informational interplay between economic agents
and firm-to-market communications. See the summary in Section 7.5 for an explicit il-
lustration of how this can be further developed.
Mechanism (ii). Decision-rule strategies. The task here is to provide rules for trigger-
ing ‘events’ (typically, public disclosure of privileged information), and the idea is that
these be the consequence of some ‘rule’, i.e. functional relation, applied to some obser-
vation variables. At a technical level, this mechanism thus amounts to the selection of
functional relations subject to the specification of observation variables. The mechanisms
we adopted, starting from Section 3, are motivated by the provision of approximations
to equilibrium-induced decision rules as derived in [GieO]. There they correspond to
‘value-enhancement’ disclosures when observations are ‘sufficiently high’. Whilst outside
the scope of the present paper, the argument there may be dualized to correspond to
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equilibrium-induced ‘value-erosion’ alerts when observations are ‘sufficiently low’, with a
resulting notion of endogeneous ‘materiality thresholds’. Such an understanding leads to
the following

Conjecture 7.1. First-order approximation of equilibrium decision-rules based on the
notion of materiality yields decision-rules using functions taking the form

hε,a(t, x, y) = (x − (1 + at)y)εt

for some families of signs ε = (εt)t∈[T0,T1] and mark-ups a = (at)t∈[T0,T1], and vice versa.

Mechanism (iii). Observation processes. These generalize the processes V introduced
in Sections 1.1 and 2, and give expression to the fundamental notion of informational
asymmetry. Here the task is to construct a ‘variable’ (which can be multi-dimensional)
with two properties. Firstly, it is capable of observation over time and is observed over
time by the informationally privileged agents of whatever model is to be constructed
(denoted by the symbol F , typifying firms); secondly, the variable is at best partially
observable by the remaining agents (denoted by the symbol M).

As to observation variables, we focus on a portfolio view. Continuing to think of F
as a firm for a moment, F will not in general observe just a single source of information
to set a target, but a portfolio of these, say (X1, . . . , Xn, . . . , XN ). Formally, the chosen
observation process X will be a function of the Xn; simple, but typical, functions are
linear or multiplicative forms in the Xn as given respectively by

X =
N∑
n=1

anXn, or X =
N∏
n=1

Xan
n ,

with suitable real weights an ∈ R.
Examples of two factor portfolio observation variables. In the paper, we considered the
case where X = V and V represented the value of the firm F , i.e., a process internally
observed by F subject to privileged private information. It is natural to complement it
by a process that encodes the external view of the firm’s value subject to non-privileged
public information, such as provided by the firm’s market capitalization, S∗. Specializing
to portfolios of additive type, the associated observation variable may take the form

X = aV + bS∗,

for some a, b ∈ R. General structure of X apart, the modelling of V and S∗ is far from
straightforward, and Sections 7.2 to 7.4 below offer an amendment to the simplified
treatment given in the main body of the paper.
Mechanism (iv). Observation process proxies V ∗ from state observer systems. The task
here is to enable specifically the ‘informationally under-privileged’ agents in the models
to approximate V . To paraphrase a key idea in the paper: here S∗ is seen as a proxy
for V in creating an estimate V ∗t of Vt subject to public information; for tractability we
made specific approximation assumptions.

In so doing, we borrowed an idea from the control theory of an engineering plant,
where one way to deal with imperfect information about the plant is to build a laboratory
version (a model) of the plant with accessible full-information of its state at any time
(known as a ‘state observer’ system [Rus, Chapter 3], [Son, Chapter 7] — in reality a ‘state
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estimator’); state-correcting signals are sent to this model, using plant-based, imperfect,
or partial observations, with which to guide the ‘observer system’ (model) into greater
agreement with the plant.

Unlike in the engineering context, inclusion into a market-based model of an observer-
style system implies changes to the strategic behaviour of the firm in its decisions to hide
certain observations of its state. Indeed, here each side (each of the agents, F or M)
enriches its algorithmic opportunities. In this context, our version of an ‘observer system’
responds to strategic behaviour, so is far richer. To emphasize this difference when, for
example, F was a firm, the observer-style system was termed a proxy-firm.
Mechanism (v). Target value processes V T . Under this heading, the task is to provide
techniques for forecasting values of observation variables (and, significantly, of their prox-
ies), bearing in mind that such items are contingent on market developments as well as
on restrictions arising from (production) technologies. In Section 4 we marry account-
ing analysis with the analysis of Bermudean options: mechanism (v) involved observation
levels Lt for Vt qua strike prices at which the respective agent’s decision rule is indifferent
between disclosing or suppressing private observation of Vt, were Vt to take the value Lt
(as noted in the Introduction). This construction borrows from the stylized model of
[GieO], where these levels describe the market’s current view of the value during periods
of silence and so provide the basis of current guidance on its earnings target.

7.2. Modelling firm-value processes: uncertainty structure of profits. As to the
observation mechanism, one may ‘drill down’ to the basic structure of profits and address
the uncertainty effects created by reporting lags. The starting point is a formalization
of accounting practice: Vu the firm F ’s time-u value is the accrual of an instantaneous
variable πw over the period [T0, u] added to an initially given value V C of time T0, so
that

(7.2.1) Vu = V C +
∫

[T0,u]
πw dw, u ∈ [T0, T1],

implicitly assuming w 7→ πw to be summable over [T0, T1].
The simplest interpretation of Vu is incrementing V C by the firm’s actual profit flow

rate πw — as it actually arises at each time moment w between time-T0 and time-u.
Alternatively, to allow for the possibility of delays in reporting profits (due, say, to re-
porting delays of costs, as below), we can re-interpret this as the recognized profit flow
rate — namely, the value posted in some official ledger.

To introduce reporting lags into the model, fix Λ ≥ 0 and then at each time u, assume
the flow πw is certain only for ‘distant’ times w, namely times earlier than u−Λ, but for
times w nearer to u, i.e. in (u− Λ, u], πw is uncertain. A further refinement then occurs
in the decomposition (7.2.1) created by a deterministic part ∆nsVu , certain at time-u
(with ‘ns’ for non-stochastic), and a part ∆sVu uncertain at time-u:

(7.2.2a) Vu = V C + ∆nsVu + ∆sVu, u ∈ [T0, T1],

where

∆nsVu =
∫

[T0,max{T0,u−Λ}]
πw dw,(7.2.2b)



GUIDING THE GUIDERS 127

∆sVu =
∫

[max{T0,u−Λ},u]
πw dw.(7.2.2c)

We view V ns
u = V C + ∆nsVu as an accounting equality, namely, as data held, or stored,

by the firm F , and ∆sVu as a variable that needs to be modelled – e.g., as in Section 7.3
below.

Two obvious questions arise: first, how does (a manager) F respond to such operational
uncertainty. For example, will there be a period in which F is waiting for the time-T
accounting information to be corroborated and to be verified as reliable (up to a level
of security deemed appropriate for the decision-making), and how does F then respond
to the evolution of market sentiment during such periods of waiting? Second, is there a
correlation between market sentiment V ∗ and the degree of operational effectiveness of
the firm’s accounting department?

7.3. Modelling firm-value processes: Cobb–Douglas examples. As a second com-
plement to our discussion of mechanism (iii), we provide examples for modelling firm-value
observation processes V concretely.

7.3.1. Deterministic Cobb-Douglas profits. Here the construction of V needs to be linked
to the standard functional forms preferred by the theory of the firm in Economics and
Econometrics. We consider Cobb–Douglas technologies, and indicate how to model profits
derived from a Cobb–Douglas production function ([Var, Chapter 1, especially Examples
1.10, 1.11], [Rom, Chapter 2]) corresponding to a single output from two input factors
(such as capital and labour) with respective parameters a, b ≥ 0 satisfying a+b < 1. This
yields profits as a function of input prices w = (w1, w2) and output selling-price p in the
form

(7.3.1) πCD(p, w)

= p1/(1−(a+b))
{(

a+ b

κ · c(w)

)(a+b)/(1−(a+b))
− κ · c(w)

(
a+ b

κ · c(w)

)1/(1−(a+b))}
,

for a cost function c(w) = (wa1wb2)1/(a+b), where
κ := ((a/b)a/(a+b) + (a/b)−(a/(a+b))/A1/(a+b), with A = (1− a)a−1/aa.

7.3.2. Stochastic Cobb–Douglas profits. To take into account uncertainties in the profit
function, assume that uncertainty in the output and input price is given by positive
stochastic processes on some stochastic basis, say X (Q) =

(
Ω,F ,F = (Fu)u∈[T0,T1], Q

)
.

As regards output, passing to logarithmic prices and so to an exponential price process
expY , (7.2.1) yields profits of the form
(7.3.2) πw = α exp(Yw)β = exp

(
log(α) + βYw)

)
, w ∈ [T0, T1],

for some fixed α > 0, β ∈ R, and some fixed stochastic process Y on X (Q). In turn this
gives the uncertain part of the time-u value of V the representation:

(7.3.3) ∆sVu = α

∫
[max{T0,u−Λ},u]

exp(βYw) dw, u ∈ [T0, T1].

Treating input (factor) prices w in similar vein preserves this general form for the
uncertain parts of V in (7.2.2c). In any of these representations, a notable choice for Y is
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Brownian motion on X (Q), and this provides an explicit illustration of how the modelling
above turns Vu itself into a random variable, given the time-u information (see Section 7.4
for scalable processes, which we consider here as candidate modelling mechanisms).

As mentioned, accruals in (7.2.1) can be modelled in (at least) two conceptually dif-
ferent ways, depending on whether instantaneous profits πs or their accumulated value
is taken as a primary variable. The matter of choice is not just a conceptual but also
a practical one, even assuming the classical Cobb–Douglas two-factor production tech-
nology above. For this purpose re-write (7.3.1) in the form

(7.3.4a) πCD(p, w1, w2)

= w
a/(a+b−1)
1 w

b/(a+b−1)
2 p(a+b−1)

{(a+ b

κ

)(a+b)/(1−(a+b))
− κ
(a+ b

κ

)1/(1−(a+b))
}
,

with constants a, b > 0 such that a+ b < 1 for
(7.3.4b) κ := ((a/b)b/(a+b) + (a/b)−a/(a+b))/((1− a)a−1/aa)1/(a+b).

Assume that non-deterministic profits are the result of fluctuations in any of these prices,
and, for simplicity, staying within the Brownian framework, assume the fluctuations follow
geometric Brownian motion. The resulting dynamic for πCD is of the form
(7.3.5) πCD,T+u = πCD,T exp(µπu+ σπWπ,u), u ∈ [0,∞),
with driver a Brownian motion Wπ independent of the information available for forecast-
ing at time T (as provided via the filtration of a stochastic basis specified for forecasting
purposes) and with real constants σπ > 0 and µπ. Return now to the choice of explicit
modelling variants; according to the choice of accumulated profits or instantaneous prof-
its, one has respectively

πs = πCD,T+s, s ∈ [0,∞),(7.3.6a) ∫
[T,T+s]

πw dw = πCD,T+s, s ∈ [0,∞).(7.3.6b)

This last requires for VT+u the integral of geometric Brownian motion, not covered by
the context of Section 4. For the first, the results of Section 4.2 do apply, and provide
the forecast target V T .

7.4. Scalable processes. As a third complement to Section 7.1, we suggest the use
scalable processes for modelling with mechanisms. These processes will be patterned after
the exponentials of strong Markov processes S∗, which satisfy two equations. Firstly, with
T0 fixed, for any time u ≥ 0,
(7.4.1) S∗T0+u = S∗T0

exp(X∗u), where S∗T0
= V C,

where (X∗u)u≥0 is independent of time-T0 information F∗T0
. Secondly, for arbitrary real T

in (T0, T1], the representation
(7.4.2) S∗T+u = S∗T exp(X∗u), u ∈ [0,∞),
where, by abuse of language, (X∗u)u≥0 (or a suitable version of the process in (7.4.1)
denoted by the same symbol) is a process independent of time-T information F∗T . We
now relax the second condition and define processes S∗ to be scalable if they are RCLL
and satisfy (7.4.1) and (7.4.2), except that now (7.4.2) need not necessarily hold for all T
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in (T0, T1] and instead is to hold necessarily for all T in some prespecified finite subset T
of (T0, T1]. Here we primarily think of T as containing the endpoints of benchmark
observation schemes along the lines of equation (4.1.1). Extending this notion of a scalable
process to allow the sets T to have at most countably many stopping times should not,
however, pose problems.

7.5. Modelling with mechanisms: a summary vista. A characteristic feature of
the mechanisms identified in Section 7.1 is that they identify the economic agents solely
in terms of how they act. In respectively Sections 4 and 3, as it happens, the agents F
posited by the mechanisms in disclosure situations are indeed interpreted as acting like
the manager of the firm, and agents M as acting like representative market participants.
For the wider guidance theme, however, specific market participants will also ‘act out’
the role of agent F within some of the mechanisms. An outline follows.

To tell our guidance story we need to single out a distinguished group of people from
among the market participantsM , whom we shall call analysts. The typical representative
member of this group being denoted by A, we continue to denote representative market
participants as agents M (as in Section 3).

The guidance theme then starts at time t with the announcement by manager F of the
current accounting numbers of the firm: V C and its target V T for the next mandatory
reporting date, T below. These numbers are processed by M as in the disclosure theme,
while now A is also assumed to make its own computations. For these computations A
will be assumed to use mechanism (v) of Section 7.1 (as though in the role of agent F ),
and make its own computations of the time-T target, possibly based on a re-estimation
of V , V ∗, S and S∗; call the result V TA, and assume that A will announce this number
to M and F at a time t + ∆A within [t, T ]. This announcement will possibly induce
a re-calibration of the price processes S and S∗; the analyst’s target V TA will now be
added as a new variable in the decision making of the manager F . Apart from a possible
consequent re-calibration of V ∗, the essential difference from the set-up of Section 3 is that
now manager F is assumed to use decision rules in four variables, say h(T, VT , VT∗ , V TA).
For present outline purposes, we will not make this four-variable rule explicit, leaving the
details to be established elsewhere. Now running the disclosure-mechanisms of Sections
3, 4, and 5 results, mutatis mutandis, in either an early disclosure at some time τ < T ,
or a regular one at time T . In both cases an announcement is made by manager F of
new current numbers V C and targets V T for the next reporting date; these numbers
will be announced simultaneously to the analysts A and to the market (as represented
by agent M) and the entire activity starts all over again. The details are intended to be
established elsewhere.

Appendix: Reductions. This section collects the simplifications arising for general
mark-up decision rules in Brownian contexts. We work with a fixed probability space
(Ω,F , P ) which is equipped with a filtration F = (Fu)u≥0 such that the resulting
stochastic basis X (P ) = (Ω,F ,F, P ) satisfies the usual conditions (see for example
[JacS, Def. 1.3, p. 2]). The mark-up decision rules are assumed, as above, in the form
hε,a(x, y) = ε(x− (1 + a)y), for fixed parameters ε = ±1 and a > −1.
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A.1. Bad-news to good-news reductions. For Σ a random variable on Ω, measur-
able with respect to Ft, and fixed t > 0,

EP
[
1{h+1,a(Σ,V T )≥0} | Ft

]
= P

(
{Σ ≥ (1 + a)V T} |Ft

)
,(A.0a)

EP
[
1{h−1,a(Σ,V T )≥0} | Ft

]
= 1− P

(
{Σ > (1 + a)V T} |Ft

)
.(A.0b)

These two yield a reduction of bad-news to good-news disclosures via
(A.1) EP

[
1{h−1,a(Σ,V T )≥0} | Ft

]
= 1− EP

[
1{h+1,a(Σ,V T )≥0} | Ft

]
,

granted absence of point-masses in Σ located at (1 + a)V T , given the continuous pro-
cesses in play here. Note the qualitative consequence that factors influencing the relevant
probabilities will have opposite effects on good-news and bad-news events; an increase in
a factor that leads to an increase of (A.0a) will decrease (A.1) and vice versa.

A.2. Running-minimum to running-maximum reductions. We collect here the
further reductions needed for good-news events when S∗ is a geometric Brownian motion.
With Σ∗ = Σ∗t,T1

the running maximum or the running minimum of S∗ on some fixed
time interval [t, T1], letW ∗ be an (F, P )-Brownian motion on X (P ) started at 0 at time 0;
for σ∗ > 0 take
(A.2) S∗t+u = S∗t exp(µ∗u+ σ∗W ∗u ), u ∈ [0,∞),
with µ∗ = r − δ − 1

2 (σ∗)2 for r − δ ∈ R; appealing to the strong Markov property of
Brownian motion, assume also W ∗ to be independent of Ft, and express the events in
terms of W ∗ as follows:

EP
[
1{h+1,a(max{S∗

w |w∈[t,T ]})≥0} | Ft
]

= P
(

max
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≥ A∗t
)
,(A.3)

EP
[
1{h−1,a(min{S∗

w |w∈[t,T ]})≥0} | Ft
]

= P
(

min
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≤ A∗t
)
,(A.4)

with
(A.5) A∗T := log((1 + a∗)V T/S∗t ).
Setting W ∗∗ := −W ∗ note that
(A.6) P

(
min

u∈[0,T−t]
{µ∗u+ σ∗W ∗u} ≤ A∗t

)
= P

(
max

u∈[0,T−t]
{−µ∗u+ σ∗W ∗∗u } ≥ −A∗t

)
.

It is special to the Brownian context that (A.6) provides a reduction of the running-
minimum event in (A.4) to a running-maximum event in (A.3), since, if W ∗ is Brownian,
then so is W ∗∗ as its negative. An explicit determination of the expectation (A.3) can be
had from the explicit law for the running-maximum of Brownian motion; see e.g. [Fre,
(30) Corollary, p. 25]. This relies, in this Brownian context, on the running-maximum
always being positive on time intervals of positive length; indeed, this follows from the fact
that the running-maximum of the process is zero on non-positive time arguments. This
is not directly of use here, since the drift µ∗ is in general non-zero. But an appropriate
Girsanov transformation applied to the measure P will achieve a reduction to the zero-
drift case (cf. [RogW, § I.13, eq. (13.9)]), at the cost, however, of an additional exponential
factor in (A.3); the results are as follows:
(A.7a) P

(
max

u∈[0,T−t]
{µ∗u+ σ∗W ∗u} ≥ A∗t

)
= 1,
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unless A∗t > 0, in which case

(A.7b) P
(

max
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≥ A∗t
)

= 1
2 Erfc

(
A∗t − (T − t)µ∗

σ∗
√

2(T − t)

)
+ 1

2 exp
(

2µ∗A∗t
(σ∗)2

)
Erfc

(
A∗t + (T − t)µ∗

σ∗
√

2(T − t)

)
,

with Erfc(z) := (2/
√
π)
∫

[z,∞) exp(−w2) dw, for any complex z, the complementary error
function. This result can be established, mutatis mutandis, along the lines of [MusR,
Lemma A.18.2, p. 617seq]); for a proof by a reduction to this result, start from the
equality

P
(

max
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≥ A∗t
)

= 1− P
(

max
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≤ A∗t
)
;

on the right-hand side we have from [MusR, eq. (A.85)] the equality

P
(

max
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≤ A∗t
)

= N

(
A∗t − (T − t)µ∗

σ∗
√
T − t

)
− exp

(
2µ
∗A∗t

(σ∗)2

)
N

(
−A

∗
t + (T − t)µ∗

σ∗
√
T − t

)
,

if A∗t ≥ 0, but otherwise this probability is 0; then successively use the identities 1 =
N(ξ) +N(−ξ) and N(ξ) = (1/2) Erfc(−ξ/

√
2) to arrive at (A.7ab).

Formulas for the tails of the running-minimum expressions of (A.4) are a consequence
of (A.7ab). For this start by passing to the complementary probability

P
(

min
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≥ A∗t
)

= 1− P
(

min
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≤ A∗t
)
;

now use (A.6) to translate the right-hand side in terms of probabilities for the running
maximum, and apply (A.7ab) to obtain

(A.8) P
(

min
u∈[0,T−t]

{µ∗u+ σ∗W ∗u} ≥ A∗t
)

= 1
2 Erfc

(
+A∗t − (T − t)µ∗

σ∗
√

2(T − t)

)
− 1

2 exp
(

2µ∗A∗t
(σ∗)2

)
Erfc

(
−A

∗
t + (T − t)µ∗

σ∗
√

2(T − t)

)
,

unless A∗t ≥ 0, in which case the probability is equal to 0; to obtain the first summand
here use the identity 2 = Erfc(ξ) + Erfc(−ξ) with

ξ := (A∗t − (T − t)µ∗)/
(
σ∗
√

2(T − t)
)
.
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