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Summary. We define a symplectic form ϕ̂ on a free R-module R2n−2 associated to 2n
points on a circle. Using this form, we establish a relation between submodules of R2n−2

induced by Fox R-colorings of an n-tangle and Lagrangians or virtual Lagrangians in the
symplectic structure (R2n−2, ϕ̂) depending on whether R is a field or a PID. We prove that
when R = Zp, p > 2, all Lagrangians are induced by Fox R-colorings of some n-tangles
and note that for p = 2 and n > 3 this is no longer true. For any ring, every 2π/n-
rotation of an n-tangle yields an isometry of the symplectic space R2n−2. We analyze
invariant Lagrangian subspaces of this rotation and we partially answer the question
whether an operation of rotation (generalized mutation) defined in [A-P-R] preserves the
first homology group of the double branched cover of S3 along a given link.

1. Alternating form on the space of boundary points colorings.
Importance of symplectic structures in knot theory was probably first real-
ized by R. H. Fox in his review of A. Plans’s 1953 paper [Pla]. In the present
paper we construct a symplectic structure on the space of 2n-boundary
points colorings of an n-tangle. We note that our symplectic structure is
naturally related to the symplectic structure on the first homology group
of a surface (1). Using our symplectic structure, we are able to draw sev-
eral far-reaching conclusions. In particular, we partially answer the question
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(1) This relation might be viewed as a parallel of the well-known result that 3-
manifolds yield Lagrangians in H1(∂M,Q).
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whether a rotation operation (generalized mutation) as defined in [A-P-R]
preserves the first homology group of the double branched cover of S3 along
a given link; and we address the problem of “imprisoned colorings”.

Let R be a commutative ring with identity and p1, . . . , p2n be points on
a circle (or a square) as in Figure 1.
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Fig. 1. R-coloring of 2n points p1, . . . , p2n by a1, . . . , a2n ∈ R. Different shapes of a tangle
are useful for different applications.

Regarding R as a set of colors allows us to identify the set of all R-
colorings of 2n points with the elements of the free R-module R2n with basis
e1, . . . , e2n, where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 ∈ R in the ith position.

Let

W2n−1 =
{ 2n∑
i=1

aiei ∈ R2n :

2n∑
i=1

(−1)iai = 0
}
∼= R2n−1,

fi = ei + ei+1, i = 1, . . . , 2n − 1, and f2n = e2n + e1. Clearly f1, . . . , f2n−1
are in W2n−1 and form a basis (2). Notice that for any w ∈ R2n we have

w =

2n∑
i=1

aiei

= a1f1 + (a2 − a1)f2

+ · · ·+ (a2n − a2n−1 + · · · − a1)f2n−1 +
( 2n∑
i=1

(−1)iai
)
e2n.

Let W denote an R-module. Recall that an R-bilinear form ϕ : W ×W
→ R is called alternating (or skew-symmetric) if for all u, v ∈W,

ϕ (u, v) = −ϕ (v, u) .

Note that if 2 is invertible in R, then ϕ is skew-symmetric if and only if
ϕ (u, u) = 0 for all u ∈W .

(2) We note that f2n = e2n + e1 =
∑n

i=1 f2i−1 −
∑n−1

i=1 f2i.
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If a skew-symmetric form ϕ is non-degenerate we call it a symplectic
form (3).

Consider an alternating form ϕ on W2n−1 of nullity 1 given by

ϕ(fi, fj) =

{
j − i if |i− j| = 1,

0 if |i− j| 6= 1,

and let

v0 =

2n∑
i=1

ei =

n∑
i=1

f2i−1 =

n∑
i=1

f2i.

Then ϕ(v0, v) = 0 for all v ∈ W2n−1, i.e. v0 is an isotropic vector. We will
write v0 ⊥ W2n−1 as v0 is ϕ-orthogonal to W2n−1. It is useful to introduce
the free R-module W2n with the basis f1, . . . , f2n−1, f2n. We can extend ϕ
to a symplectic form ϕ′ on W2n by setting ϕ′(f2n, fj) = 0, j = 2, . . . , 2n− 2,
ϕ′(f2n, f2n−1) = 1, and ϕ′(f2n, f1) = −1.

Let w0 =
∑n

i=1(f2i−1 − f2i) and let

Rw0 = {rw0 : r ∈ R}
be the R-submodule of W2n generated by w0. We have

W2n−1 ∼=W2n/Rw0,

and if Rv0 denotes the R-submodule of W2n−1 consisting of all monochro-
matic R-colorings of 2n points on the circle, then

W2n−2 =W2n−1/Rv0.

As one verifies, ϕ descends to a symplectic form ϕ̂ on the free R-module
W2n−2.

Let r : W2n → W2n be defined by r(fi) = fi+1 for i = 1, . . . , 2n − 1
and r(f2n) = f1. It is easy to see that r is induced by a counterclockwise
π/n-rotation of the circle with 2n points and clearly r is a ϕ′-isometry ofW2n,
i.e.

ϕ′(r(fi), r(fj)) = ϕ′(fi, fj)

for all i, j ∈ {1, . . . , 2n}.
Lemma 1.1. Let r : W2n → W2n be the ϕ′-isometry of W2n defined

above.

(i) r descends to a ϕ-isometry of W2n−1 and a ϕ̂-isometry of W2n−2.
(ii) The map myz : W2n → W2n, myz(fi) = f2n−i, induced by the reflection

of the circle with 2n points in the yz plane in R3 is an anti-isometry,
i.e. ϕ′(myz(u),myz(v)) = −ϕ′(u, v) for all u, v ∈W2n.

(3) If a skew-symmetric form ϕ has nullity k, we often call it a symplectic form of
nullity k [Tur].
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Proof. Since for w0 =
∑n

i=1(f2i−1 − f2i),
r(w0) = −w0,

we see that −1 and w0 is an eigenpair for ϕ′. Also Rv0 ⊂ W2n−1 is an
invariant R-submodule of r. Thus (i) follows (recall that Rv0 is the null
R-submodule for ϕ).

Since ϕ′(myz(fi),myz(fj)) = −ϕ′(fi, fj) for all i, j = 1, . . . , 2n, the state-
ment (ii) also follows.

Let V be a free R- module and ϕ be a symplectic form on V . We say that
W is an isotropic R-submodule of V if ϕ(w1, w2) = 0 for all w1, w2 ∈ W .
A maximal isotropic R-submoduleW of V is called a Lagrangian submodule.
If R is a field, as we will see it later, the isotropic subspacesW ofW2n−2 form
a flag structure in (W2n−2, ϕ̂), hence a Tits building. An (n−1)-dimensional
isotropic subspace of (W2n−2, ϕ̂) is called a Lagrangian subspace and when
R = Zp (p prime) there are

∏n−1
i=1 (p

i + 1) of them (see [O]).
The above lemma will be used in Section 4 to analyze Fox R-colorings of

rotors (see Section 2 and [Pr-1] for introduction to Fox 3-colorings).

2. Tangles as Lagrangians. For every n-tangle T = T define the
R-module ColR(T ) of its Fox R-colorings (4) as follows. Let x1, . . . , xm be
arcs of T (parts of the tangle diagram from tunnel to tunnel) and c1, . . . , ct
be its crossings. Then ColR(T ) is a quotient of the free R-module Rm with
basis {x1, . . . , xm} modulo its submodule generated by 2xi − xj − xk for
each crossing cs, 1 ≤ s ≤ t (see Figure 2) An element c ∈ ColR(T ) is called

xi

vsxj

xk

Fig. 2. Fox R-coloring relation 2xi = xj + xk

a Fox R-coloring of T and it can be regarded as a mapping from the arcs
of T to R. Every R-coloring of T induces a coloring of its 2n boundary
points p1, . . . , p2n. Therefore, there is a homomorphism of R-modules ψ :
ColR(T ) → R2n with ψ(ColR(T )) ⊆ W2n−1 (see Proposition 2.2), i.e. ψ :
ColR(T ) → W2n−1. Moreover, since Rv0 ⊆ ColR(T ), the homomorphism ψ
descends to a homomorphism of the quotient R-modules

ψ̂ : ColR(T )/Rv0 →W2n−1/Rv0.

It is natural to ask which subspaces of W2n−2 'W2n−1/Rv0 are induced by
n-tangles. We answer this question partially when R is a field.

(4) If R = Zp we write Colp(T ) instead ColZp(T ).
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Theorem 2.1. Let ψ̂ : ColR(T )/Rv0 →W2n−2 be the homomorphism of
R-modules defined above.

(i) If R is a field then ψ̂(ColR(T )/Rv0) is a Lagrangian subspace of
(W2n−2, ϕ̂).

(ii) If R is a commutative ring with identity and T is a rational n-tangle
then ψ̂(ColR(T )/Rv0) is a Lagrangian submodule of (W2n−2, ϕ̂).

Before we give the proof of Theorem 2.1, let us recall some standard ter-
minology concerning tangles and sketch a rather general inductive procedure
which will be used later.

Define an (n, k)-tangle as a tangle with n inputs (on the left) and k
outputs (on the right). Tangles can be composed if the number of outputs
of the first one equals the number of inputs of the second (5). Let σi be a
crossing between the ith and (i + 1)th strands, Umi be a “local minimum”
and UMi be a “local maximum” (while moving in the direction of the x-axis)
that involve i and i+ 1 strands (6) respectively.

We say that an n-tangle is rational if it is obtained from an n-tangle
with no crossings and trivial components (7) by adding a finite number of
crossings σ±1i (i = 1, . . . , 2n). We see that the generators σi, Umi and UMi
(for n < i < 2n) yield maps

σi : T2n → T2n(
TT ... ...

......

... ...

......

)
,

Umi : T2n → T2n+2(
TT ... ...

......

... ...

......

)
and

UMi : T2n → T2n−2(
TT ... ...

......

... ...

......

)
where T2k denotes the set of all tangles with k inputs and k outputs. We

(5) Note that there is a general category of tangles with boundary points as objects
and tangles as morphisms.

(6) If inputs and outputs are labeled as in Figure 1 (right), then the standard ith
generator of the braid group Bn will be denoted by σ2n−i. However, it is convenient to
be able to add crossings, minima and maxima at any place in a given tangle T as we can
then take advantage of rotational symmetry that is important for this paper.

(7) Any n-tangle with no crossings or trivial components can be chosen as a starting
tangle.
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observe that each n-tangle T is a composition (8) of crossings σi, maxima Umi ,
and minima UMi (for n < i < 2n). Thus, to prove a property P for all tangles,
it is sufficient to argue that P holds for “basic” tangles and then show by
induction if a tangle T has property P , then so do the tangles Tσ±1i , TUmi ,
and TUMi . This idea will be used several times (including the proof of our
main theorem) and, in particular, we use it below to show that an R-Fox
coloring of a tangle T induces an R-coloring of its 2n boundary points that
satisfies the “alternating” condition (9).

Proposition 2.2. Let T be an n-tangle and ψ : ColR(T ) → R2n be
the homomorphism of R-modules which assigns to an R-Fox coloring of
arcs of T the corresponding R-coloring of their 2n boundary points. If c =∑2n

i=1 aiei and c ∈ ψ(ColR(T )) then c satisfies the alternating condition, i.e.∑2n
i=1(−1)iai = 0.

...
...

BId 0

Fig. 3. Tangles Id and B0

Proof. Consider an n-tangle (10) B0 shown in Figure 3. Since each Fox
R-coloring a1, . . . , an of the n arcs of B0 that join x1 and x2, x3 and x4, . . . ,
x2n−1 and x2n gives the corresponding R-coloring

c = a1e1 + a1e2 + · · ·+ ane2n−1 + ane2n ∈ ψ(ColR(T ))

of the boundary points of B0, clearly the alternating condition holds for B0.
Assume that the alternating condition holds for a tangle T , and consider
tangles Tσi, Tσ−1i , TUmi and TUMi . The local modification of T shown in
Figure 4 yields a−b = d−c for the first two tangles and a−b = 0 for the last
two. Hence the alternating condition holds for Tσi, Tσ−1i , TUmi and TUMi .
Therefore, it must also be true for an arbitrary tangle T ′, which completes
the proof.

(8) Since an n-tangle T is a 1-dimensional manifold properly embedded in a cube, T is
a Morse function along the x-axis with σi’s between extremal points.

(9) In [Pr-1], we gave a proof of this result in the case when 2 is not a zero divisor
in R.

(10) We could take the identity n-tangle Id shown in Figure 3 as an n-tangle with no
crossings or trivial components as a “basic” state, but due to our later considerations it is
better for us to choose B0.
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Fig. 4. The tangles σ±1, UM , and Um

Proof. To prove Theorem 2.1, we use an inductive argument similar to
that above.

(0) We easily verify that the R-submodule induced by the Fox R-colorings
of B0 is a Lagrangian. In fact ψ̂(B0) ⊆ W2n−2 is a free R-module with
basis f1, f3, . . . , f2n−3.

(1) If a tangle T yields a Lagrangian then T ′ obtained from T by adding
one crossing is also a Lagrangian. In fact, we can view adding a crossing
as a transvection in (W2n−2, ϕ̂). More precisely, a crossing between the
ith and (i + 1)th strands (1 ≤ i ≤ 2n and indices are mod 2n) yields a
transvection on W2n−2 defined by

ti(v) = v ± ϕ̂(v, fi)fi,
where the sign ± depends on the type of the crossing. It is well-known
(see [O] for example) that transvections are isometries of a symplectic
space, thus in particular they map Lagrangians in W2n−2 into Lagran-
gians in W2n−2.

(2) Minima as “expansions”. The symplectic space R2n is obtained from
the symplectic space R2n−2 by adding a 2-dimensional symplectic space
(with the symplectic form given by a standard 2 × 2 “hyperbolic” ma-
trix). Lagrangians in R2n are built from Lagrangians in R2n−2 by adding
a vector from the 2-dimensional subspace that was added.

(3) Maxima as “contractions”. Adding a “maximum” to T results in connect-
ing the ith and (i + 1)th strands. As a result an n-tangle T reduces to
an (n − 1)-tangle TMi . Consider the projection pi from R2n to R2n−2

defined by

pi

( 2n∑
j=1

xiei

)
=

2n∑
j=1, j 6=i, (i+1)

xiei.

One can verify that pi restricted to the subspace spanned by

{f1, . . . , fi−2, fi−1 − fi + fi+1, fi+2, . . . , f2n−1}
is a symplectic isometry. If R is a field then by a simple dimension
counting argument (11), the (n−1)-tangle TM also induces a Lagrangian
in R2n−2.

(11) This is a special case of Turaev’s “contraction lemma” (see [Tur, p. 180]).
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This completes the proof of Theorem 2.1(i). Theorem 2.1(ii) also follows,
because we note that step (1) also holds for an arbitrary ring.

It is also important to note that Theorem 2.1(i) is no longer true if R is
a ring rather than a field (not even for R = Z).

Example 2.3. Let R = Z and T be the 2-tangle Um2 σ21σ
−2
3 UM2 shown in

Figure 5. Then ψ̂(T ) ⊂W2 is generated by 2f1.

a

c 2a-c=2b-c

3a-2c

3b-2cb

2b-c

2a-c

Fig. 5. Tangle T = Um
2 σ

2
1σ
−2
3 UM

2

Using our previous considerations we obtain the following:

Theorem 2.4. If R is a PID then ψ̂(ColR(T )/Rv0) is a virtual La-
grangian of (W2n−2, ϕ̂), i.e. a finite index R-submodule of a maximal iso-
tropic R-submodule of W2n−2.

An important question that arises at this point is whether every La-
grangian subspace can be realized by a tangle. The answer is affirmative
when R = Zp, p > 2.

Theorem 2.5. For p > 2, every Lagrangian subspace of Z2n−2
p is induced

by an n-tangle.

Proof. This follows from the work of J. Assion [A] (for p = 3) and
B. Wajnryb [Wa-2, Wa-3] (for general p > 2).

When R = Z2 or Z, Theorem 2.5 is true for 2- and 3-tangles only and it
is related via the double branched cover to the fact that the mapping class
group of a torus and a genus two surface is generated by “horizontal” Dehn
twists. An algebraic proof is based on the observation that the symplectic
group Sp(2n − 2, R), n < 4, is generated by 2n − 1 transvections ti(v) =
v + ϕ̂(v, fi)fi. However, Theorem 2.5 is not true in general when p = 2.

Proposition 2.6. For p = 2 the number of Lagrangians of (Z2n−2
2 , ϕ̂)

is
∏n−1
i=1 (2

i+1) while the number of Lagrangians induced by n-tangles equals∏n−1
i=1 (2i+1). In particular, for n ≥ 4 not all Lagrangians of (Z2n−2

2 , ϕ̂) are
realizable by n-tangles.

Proof. When p = 2, the space Col2(T ) is an invariant of homotopy of
tangles (fixed on the boundary). Equivalently Col2(T ) is preserved by a
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crossing change. Thus, ψ(Col2(T )) depends only on connections between 2n
boundary points. Since there are (2n−1)(2n−3) . . . 3·1 such connections and
each of them yields a different n-dimensional subspace of Z2n−1

2 (and Z2n−2
2 ),

the statement follows.

Corollary 2.7. Let ψ : ColR(T ) → R2n be the homomorphism of R-
modules defined as before.

(a) dimψ(Colp(T )) = n for any n-tangle T .
(b) For every p-coloring c of 2n boundary points (an element of Z2n−1

p )
there is an n-tangle T and a Fox p-coloring of T that induces c, i.e.

Z2n−1
p =

⋃
T

ψ(Colp(T )).

Proof. (a) Follows from Theorem 2.1.
(b) Follows from Theorem 2.5 for p ≥ 3 as every vector in a symplectic

space is in some Lagrangian.
For p = 2, let (ε1, . . . , ε2n) ∈ Z2n

2 and assume that
∑2n

i=1 εi = 0. Then
the number of i ∈ {1, . . . , 2n} such that εi = 1 is even. Let T be an n-tangle
with no arc that connects boundary points labeled by 1 to those labeled by 0.
If we assign 1 to each arc of T with endpoints labeled by 1, and 0 to the
remaining ones, we see that such a Fox 2-coloring of T induces (ε1, . . . , ε2n)
(see Figure 6).

1

1

1

1

0

0

0

0

Fig. 6. A tangle T inducing (ε1, . . . , ε2n)

Remark 2.8 (Surfaces analogy). The best known example of a symplec-
tic Z-module in topology is H1(Fg,Z) (i.e. the first homology of a closed
surface Fg of genus g), with the symplectic form defined as the algebraic
crossing number of closed curves representing elements of H1(Fg,Z). In fact,
we can make the analogy more precise by considering the double branched
cover of (D3, ∂D3) along a given n-tangle. In particular, ∂D3 branched over
2n points lifts to a surface Fn−1. The symplectic structure on the space Z2n−2

p

of boundary points colorings lifts to the symplectic structure on H1(Fg,Zp).
As is well-known, any 3-manifold with boundary Fg yields a Lagrangian sub-
space in H1(Fg,Zp). In particular, the Lagrangian induced by an n-tangle
corresponds to the Lagrangian subspace induced by a 3-manifold of the
double branched cover. As noticed before, (for p = 2) not every Lagrangian
is induced by an n-tangle. This in turn has its consequences for branched
coverings and mapping class groups (see Remark 2.9).
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Remark 2.9. The mapping class group of a surface is generated by a
finite number of Dehn twists. Furthermore, one shows that it is enough to
take a “horizontal” Dehn twist (for genus g ≤ 2) together with one additional
non-horizontal Dehn twist (for g > 2) [Lic, Hu, Wa-1]. In fact horizontal
Dehn twists correspond to crossing changes, and the argument we used for
Z2-colorings shows the known fact (see [B-H]) that for g > 2 horizontal twists
are insufficient to generate the mapping class group of Fg. On the other hand
the above reasoning shows that for 3-tangles we produce all Lagrangians.

As is easy to see, the set T2n of all n-tangles with the operation of com-
position is an R-algebra. We will prove the following lemma.

Lemma 2.10. Let m : T2n → T2n be an isomorphism of R-algebras that
sends an n-tangle T to its mirror image T in the xy plane. Then m induces
an anti-isometry m∗ :W2n−2 →W2n−2 of the symplectic module (W2n−2, ϕ̂)
given by

m∗(fi) = (−1)ifi
that maps Lagrangian submodules of W2n−2 determined by T to Lagrangian
submodules of W2n−2 determined by m(T ) = T .

Proof. We see that

m∗(f2n−1) = m∗(−f1 − f3 − · · · − f2n−3) = f1 + f3 + · · ·+ f2n−3 = −f2n−1.

and analogously

m∗(f2n) = m∗(−f2 − f4 − · · · − f2n−2) = −f2 − f4 − · · · − f2n−2 = f2n.

Using the method from our proof of Theorem 2.1, we first show that Lem-
ma 2.10 holds for a basic tangle B0. Then we show that if the lemma holds
for an n-tangle T , it also holds for any n-tangle T ′ obtained from T by adding
a crossing, a minimum or a maximum.

(i) (Crossing) As noted earlier, adding a crossing σεi induces a transvection
on W2n−2:

ti(v) = v − εϕ̃(v, fi)fi.

Since the operation of taking the mirror image changes only ε to −ε in
the transvection ti, one easily verifies that the conclusion of Lemma 2.10
also holds for Tσεi .

(ii) (Minimum or maximum) Clearly a minimum and a maximum are fixed
when taking the mirror image. Since, as we saw in the proof of Theo-
rem 2.1, adding a maximum or a minimum changes by 2 the dimension of
the symplectic R-module associated to the boundary points R-coloring,
the conclusion holds for TUmi and TUMi .
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We note that an extension of the anti-isomorphismm∗ :W2n−2 →W2n−2,
m∗(fi) = (−1)ifi, to W2n−1 is defined by

m∗(f2n) = m∗(f1 + f3 + · · ·+ f2n−1 − f2 − f4 − · · · − f2n−2)
= −f1 − f3 − · · · − f2n−1 − f2 − f4 − · · · − f2n−2
= f2n − (f1 + f2 + · · ·+ f2n) = f2n − 2v0.

Using Lemmas 1.1(ii) and 2.10 we obtain as a corollary the following
result, important for our later analysis of rotors.

Corollary 2.11. Let my : T2n → T2n be an anti-isomorphism of the
R-algebra of tangles induced by the π-rotation about the y-axis in R3. Then
the corresponding isometry of R-modules m∗y :W2n−2 →W2n−2 defined by

m∗y(fi) = (−1)if2n−i
establishes a bijection between the sets of Lagrangians induced by T and
by my(T ).

3. Buildings. Let C be the Coxeter group defined by the presentation

G = 〈s1, . . . , sd+1 | (sisj)mij 〉,

where mii = 1, mij = mji and mij ≥ 2 is an integer for i 6= j (or∞ in which
case there is no ijth relation). We also let l(w) be the length of the shortest
word representing w in the generators si. A Tits building is a set X with a
C-valued distance function d : X×X → C that has the following properties:

1. d(x, y) = 1 iff x = y.
2. If d(x, y) = w and d(y, z) = si then d(x, z) = w or d(x, z) = wsi.
3. For each x, y ∈ X and si there is z ∈ X such that

d(y, z) = si, d(x, z) = d(x, y)si.

Moreover, z is unique if l(d(x, y)si) < l(d(x, y)).

We note that X can be realized geometrically as a simplicial complex Xt

as follows:

• Label the (d− 1)-dimensional faces of the simplex ∆d with s1, . . . , sd+1.
• Form X ×∆d and, for any w,w′ ∈ X with d(w,w′) = si, glue w×∆d and
w′ ×∆d along the face labeled (12) by si.

The same construction for C equipped with d(w,w′) = w−1w′ in place
of X yields the Coxeter complex Ct of C. The geometric realization of Xt

(12) Note that faces that are glued together have induced labeling of their faces by
the remaining generators of C, and the gluing has to preserve them.
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contains plenty of embedded copies of Ct (called apartments). Any pair of
chambers (d-dimensional simplices of Xt) is contained in an apartment (13).

Remark 3.1. Let c ∈ X be a chamber. Then the folding map fc : X → C
defined by

fc(c
′) = d(c, c′)

induces a simplicial morphism fc : Xt → Ct which is an isomorphism when
restricted to an apartment that contains c.

Assume that R is a field and consider the symplectic space (W2n−2, ϕ̂).
We show how to construct a Tits building using (W2n−2, ϕ̂) by describ-
ing its geometrical realization as a simplicial complex. Indeed, as shown in
[Brown, Ga], the simplicial complex Xn−1 whose vertices are isotropic sub-
spaces of W2n−2 and which has flags (14) of isotropic subspaces as simplices
forms a building. More precisely, each vertex ofXn−1 is labeled by the dimen-
sion of the corresponding isotropic subspace of W2n−2, and codimension one
faces of chambers are labeled using the corresponding labels of the opposite
vertices. Furthermore, the Lagrangian subspaces of W2n−2 are in one-to-one
correspondence with vertices of Xn−1 labeled by n − 1. We observe that
chambers of Xn−1 = Xt (elements of X) correspond to maximal isotropic
flags in W2n−2. In our case, the Coxeter group C is a signed permutation
group determined by

mi,j =


4 if i = n− 1, j = n− 1,

3 if 1 ≤ i < n− 2,

2 if |i− j| > 1,

mn−2,n−1 = 4, mi,i+1 = 3

and the corresponding Coxeter complex can be identified with the first
barycentric subdivision of the boundary of an (n−1)-dimensional cube In−1.

We now describe how to define apartments for our Coxeter complex.
Choose a basis B = {v1, w1, . . . , vn−1, wn−1} of W2n−2 with the property

ϕ̂(vi, wi) = −ϕ̂(wi, vi) = 1,

ϕ̂(vi, vj) = −ϕ̂(wi, wj) = ϕ̂(vi, wj) = 0

for i 6= j and consider all isotropic subspaces (15) spanned by subsets of B.
Vertices corresponding to these subspaces span an apartment A(B) in Xt.
Moreover, the 2n−1 Lagrangian subspaces in A(B) consisting of all subspaces

(13) One may use the family of apartments to give another definition of buildings (see
[Brown, Ron]).

(14) A flag in a vector space is a strictly increasing sequence of subspaces.
(15) Such a subspace can be obtained by choosing at most one vector from each pair

{vi, wi}.
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of W2n−2 with exactly one vector from each pair {vi, wi} correspond to ver-
tices of the cube In−1.

Lemma 3.2. Let L be the family of Lagrangian subspaces corresponding to
(n−1)-labeled vertices of an apartment A ⊂ Xn−1. Then for each Lagrangian
M ⊂W2n−2 there exists an L ∈ L with M ∩ L = {0}.

Proof. Suppose this is not the case. Then for each L ∈ L there is a
length ≤ 2 path PL in the 1-skeleton of Xn−1 connectingM and L. Choose a
chamber c ∈ A and consider the folding map fc. The family {fc(PL) | L ∈ L}
is a family of length ≤ 2 paths in the 1-skeleton of Ct connecting fc(M) to
every vertex of the cube In−1. However, fc(M) cannot be connected by such
a path to the vertex opposite to it. In other words, if L corresponds to the
vertex antipodal in A to fc(M), then L intersects trivially with M .

To finish this section, we give an example of a family L as in the lemma
describing its elements in terms of Catalan tangles (i.e. n-tangles with no
crossings). Let B = {vi, wi : i = 1, . . . , n− 1}, where

v1 = fn−1, w1 = fn,

v2 = fn−2 + fn, w2 = fn−1 + fn+1,

v3 = fn−3 + fn−1 + fn+1, w3 = fn−2 + fn + fn+2,

etc.

Proposition 3.3. Each Lagrangian subspace of W2n−2 corresponding to
a vertex of A(B) is represented by exactly one n-tangle from the following
family L. A tangle T is in L iff

(a) T is a Catalan n-tangle;
(b) each boundary point pi is connected to one of pi−1, pi+1, p2n−i, p2n−i−2.

Proof. We construct tangles from the family L inductively, starting from
the left of the square (see Figure 1), adding the ith arc while choosing a
vector from the pair {vi, wi} at the same time. In the first step the choice
of v1 results in joining pn to pn−1 by an arc and the choice of w1 corresponds
to connecting pn and pn+1 by an arc. If in the kth step vk was chosen, then
in the next step one can choose vk+1 (and, at the same time, add an arc
connecting the lowest available boundary points) or wk+1 (and, at the same
time, connecting the two lowest available boundary points on the right hand
side of the square).

If in the kth step wk was chosen, then in the next step one can choose
wk+1 (and add a strand across the square connecting the lowest available
boundary points) or vk+1 (and connect the two lowest available boundary
points on the left hand side of the square).

Finally, one connects the remaining two boundary points.
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4. Rotors. In this section we given criteria when a dihedral flype (see
Definition 4.2) preserves the space of Fox p-colorings Colp(L) (p > 2) mod-
ulo trivial colorings (the first homology with Zp coefficients of the double
branched cover of S3 branched along a link [Pr-1]).

Definition 4.1 ([A-P-R]). Consider an n-tangle which is a part of the
link diagram placed in the regular n-gon with 2n boundary points (n inputs
and n outputs). We say that such an n-tangle is an n-rotor if it has rotational
symmetry, that is, the tangle is invariant with respect to rotation about the
z-axis by 2π/n (see Figure 7).

Definition 4.2 ([A-P-R]; rotation operation on a link diagram). Con-
sider a link L1 whose diagram is divided into two n-tangles: the rotor part,
as described in Definition 4.1, and its complement called a stator. A rotant
of a link L1 is the link L2 (Figure 7) obtained from L1 by a dihedral flype of
the rotor part. Note that L2 does not depend on the choice of the dihedral
flype. We say that L2 is obtained from L1 by a rotation.

As noted before, there is a Z2n-action on the set T2n induced by the
rotation r of n-tangles counterclockwise about the z-axis by the angle π/n.
Moreover, on the space Z2n

p of p-colorings of 2n boundary points, r yields
an isomorphism defined by r(ei) = ei+1 (where indices are modulo 2n) and,
when restricted toW2n−1, the map r is a ϕ-isometry which maps basis vectors
as follows:

r(fi) = fi+1,

r(f2n−1) = f2n =
n−1∑
i=1

(f2i−1 − f2i) + f2n−1,

r(f2n) = f1.

We analyze invariant subspaces of r2 and, in particular, we look for invariant

m  (L)
y

S S

L

Fig. 7. A link L and its rotant my(L)
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Lagrangians of the 2π/n-rotation about the z-axis. We use our analysis to
partially answer the question whether an operation of rotation (in the sense
of Definition 4.2) preserves the first homology of the double branched cover
of S3 along a link.

In particular, we prove the following result.

Theorem 4.3. Let L be a link diagram with an n-rotor part R. Let the
rotant my(L) be obtained from L by rotating R around the y-axis by the angle
π and keeping the stator, L−R, unchanged. Assume that either n = p, where
p is a prime number, or n is co-prime to p and such that there exists s with
ps ≡ −1 mod n. Then the space Colp(L) is preserved by any n-rotation.

In the proof of Theorem 4.3 we analyze eigenspaces of the symplectic
space Z2n−2

p with respect to rotation. This will allow us to obtain conditions
under which a rotation invariant Lagrangian subspace of Z2n−2

p is also invari-
ant under the dihedral flype s. Figure 7 illustrates a pair of 4-rotants which
have different spaces of Fox 5-colorings, Z2

5 and Z3
5, respectively. One can

also check for the tangle R in Figure 7 that ker(ψ) = Z5. Therefore, there
exists a nontrivial 5-coloring of R which is 0 on the boundary of R (16).
Analogous examples can be constructed whenever gcd(p− 1, n) > 2.

Most of this section is devoted to the proof of Theorem 4.3. Let µn be
the group of nth roots of 1, and let k be a finite algebraic extension of Zp
containing µn. To understand r2-invariant Lagrangians of W = W2n−2 we
first consider the action of r2 on two invariant subspaces

W+ = 〈f0, f2, . . . , f2n−2〉 and W− = 〈f1, f3, . . . , f2n−1〉.
After extending scalars to k we can diagonalize this action. For each α ∈
µn − {1} the vector

Dα =

n−1∑
j=0

αjf2j

(respectively Cα =
∑n−1

j=0 α
jf2j+1) is an eigenvector of r2 with eigenvalue α.

The vectors Dα (resp. Cα) form a basis of W+ (resp. W−). One shows

Formula 4.4.

(1)
ϕ̂(Cα, Dβ) =

{
n(α− 1) if αβ = 1,

0 otherwise,

ϕ̂(Cα, Cβ) = ϕ̂(Dα, Dβ) = 0 (W+ and W− are Lagrangians)

where ϕ̂ is also used for the extension k of Zp.

(16) This follows from the fact that any rotation preserves the determinant of L which
is equal to the order of the first homology, H1(M

(2)
L ,Z), whereM (2)

L is the 2-fold branched
cover of S3 along L [Pr-2, Tra, DIPY]. Thus, if a rotation changes the space of 5-colorings
then always ker(ψ) 6= {0}.
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The action of my on our eigenvectors is given by

(2) my(Cα) = −α−1Cα−1 , my(Dα) = Dα−1 .

Let
Wα±1 = 〈Cα, Cα−1 , Dα, Dα−1〉.

It follows from (1) that the subspacesWα±1 are symplectic and ϕ̂-orthogonal
to each other. Moreover, they are all 4-dimensional except the 2-dimensional
W−1 = 〈C−1, D−1〉 which appears when n is even.

Using the above description we see that r2-invariant Lagrangian sub-
spaces of W ⊗ k are direct sums L−1 ⊕

⊕
Lα±1 , where

L−1 ⊂W−1, Lα±1 ⊂Wα±1 and dimL−1 = 1, dimLα±1 = 2.

Moreover, while L−1 can be an arbitrary 1-dimensional subspace of W−1,
Lα±1 has to be r2-invariant and isotropic in Wα±1 . There are three possibil-
ities for the latter to hold:

(a) Lα±1 = 〈Cα, Dα〉,
(b) Lα±1 = 〈Cα−1 , Dα−1〉,
(c) Lα±1 = 〈v, w〉, where v is a vector in 〈Cα, Dα〉 and w is the unique (up

to scaling) vector in 〈Cα−1 , Dα−1〉 such that ϕ̂(v, w) = 0.

Lemma 4.5. The vectors w in (c) and my(v) are proportional.

Proof. One checks using (1) and (2) that ϕ̂(v,my(v)) = 0.

Proposition 4.6.An r2-invariant subspace ofW⊗k is alsomy-invariant
unless it contains a subspace of the form 〈Cα, Dα〉.

The next step is to analyze which r2-invariant Lagrangian subspaces of
W ⊗ k arise as r2-invariant Lagrangian subspaces of W by extension of
scalars.

As r2 has no multiple eigenvalues inW+ andW−, both of these split into
direct sums of r2-irreducible subspaces:

W± =
⊕
φ

W φ
±,

where φ runs through the factors of xn−1
x−1 over Zp. Put W φ = W φ

+ ⊕W
φ
−.

Every r2-invariant Lagrangian subspace L of W decomposes as

L =
⊕
φ

(L ∩W φ).

Furthermore, each L∩W φ is either {0},W φ, or the graph of an r2-equivariant
linear map W φ

− → W φ
+ (including the degenerate case of W φ

+). Clearly, only
when for some φ, L ∩W φ = W φ, does the space L⊗ k contain a 〈Cα, Dα〉.
Now W φ is isotropic if and only if for each pair α, α−1 ∈ µn at most one of
α, α−1 is a root of φ.
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Lemma 4.7. Consider the following condition:

(3) There exists s such that ps ≡ −1 mod n.

(i) If (3) holds, then for each α and some φ,

φ(α) = 0 if and only if φ(α−1) = 0

(ii) If (3) does not hold, then there exist α and φ such that φ(α) = 0 while
φ(α−1) 6= 0.

Proof. The Galois group Gal(k/Zp) is generated by the Frobenius auto-
morphism x 7→ xp. If φ(α) = 0, then the roots of φ are exactly the conjugates
of α, i.e.

α, αp, αp
2
, αp

3
, . . . .

If (3) holds, this sequence contains α−1. If α is a primitive nth root
of 1, (3) is also necessary for this sequence to contain α−1. This proves the
lemma.

Theorem 4.8.

(i) If (3) holds, then all r2-invariant Lagrangians in W are my-invariant.
(ii) If (3) does not hold, then there are r2-invariant Lagrangians in W which

are not my-invariant.

Proof. For (i) we observe that (3) implies that noW φ is isotropic. That is,
L∩W φ has to be the graph of a mapW φ

− →W φ
+ (orW φ

+). Then (L∩W φ)⊗k
is the graph of W φ

− ⊗ k → W φ
+ ⊗ k (or W φ

+ ⊗ k), and does not contain the
subspace 〈Cα, Dα〉.

For (ii), we pick φ as in Lemma 4.7(ii). Among all the other irreducible
factors of xn−1

x−1 exactly one, call it φ′, has as its roots the inverses of the
roots of φ. Put

L =W φ ⊕
⊕
ψ 6=φ,φ′

Wψ
+ .

We see that L is isotropic and

my(L) =W φ′ ⊕
⊕
ψ 6=φ,φ′

Wψ
+ .

For n ≤ 17 we list of all pairs (n, p mod n) that satisfy (3):

• (3, 2), (4, 3), (5, 2), (5, 3), (5, 4), (6, 5), (7, 3), (7, 5), (7, 6), (8, 7), (9, 2),
(9, 5), (9, 8), (10, 3), (10, 7), (10, 9), (11, 2), (11, 6), (11, 7), (11, 8), (11, 10),
(12, 11), (13, 2), (13, 4), (13, 5), (13, 6), (13, 7), (13, 8), (13, 10), (13, 11),
(13, 12), (14, 3), (14, 5), (14, 13), (15, 14), (16, 15), (17, 2), (17, 3), (17, 4),
(17, 5), (17, 6), (17, 7), (17, 8), (17, 9), (17, 10), (17, 11), (17, 12), (17, 13),
(17, 14), (17, 15), (17, 16).
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Corollary 4.9. If (n, p) satisfies (3) (e.g. for the pairs above), then the
number of p-colorings is the same for a link and its rotant.

For instance, when gcd(p − 1, n) > 2 condition (3) does not hold, i.e.
xn − 1 has a root α in Zp different from 1 and −1. We will show that in
such a case there exist rotors whose Lagrangians are not my-invariant. In
particular, the number of p-colorings can be different for a link and its rotant.
Consider a rotor R with fundamental domain shown in Figure 8.

BB

Fig. 8. Rotor R with 3-tangle B

We find a 3-tangle B such that

ψ̂(Colp(R))⊗ k ⊇ 〈Cα, Dα〉,

i.e. each k-coloring v of 2n boundary points of R satisfying r2(v) = αv is
induced by the Fox p-coloring ofR. The following condition onB ensures that
R has the above property (as one can see using r2-equivariant colorings): For
all a, b ∈ Zp, there are c, d ∈ k such that the k-coloring of the six boundary
points shown in Figure 9 is induced by a Fox p-coloring of B.

aa

cc

dd αα dd

αα cc

bb

Fig. 9. Condition for boundary coloring

We observe that it is sufficient to verify the above condition for two k-
linearly independent pairs (a, b). Thus, for instance, we take (1, 1) and (α, 1).
For each such pair, we find (c, d) and then check that the resulting boundary
k-colorings are ϕ̂-orthogonal (in W4). For (1, 1) we take c = d = 1

α+1 and
for (α, 1) let c = 0 and d = 1. The resulting colorings are represented in W4
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by the following vectors:

v1 =
1

α+ 1
f1 + f3 +

α

α+ 1
f5,

v2 = αf3 + (1− α)f4 + (α− 1)f5 + f6.

It is straightforward to check that these are ϕ̂-orthogonal. It follows from
Theorem 2.5 that the subspace of W4 spanned by v1, v2 is induced by some
3-tangle B.

Remark 4.10. All rotors constructed above have non-trivial p-colorings
(corresponding to v1) equal to 1 on the boundary and non-constant in the
interior. After subtracting from this coloring the constant coloring of B (with
value 1), one gets a non-trivial Fox p-coloring of B which can be extended
r2-equivariantly to a p-coloring of R with zero values on the boundary.

Two such cases are discussed in the next example.

Example 4.11. As one can verify, for n = 4, p = 5, we can take the
braid B = σ−22 σ1σ

−1
2 and α = 2 (24 − 1 = 15 ≡ 0 mod 5). For n = 3, p = 7

we take the braid B = σ−12 σ31σ
2
2σ
−1
1 and α = 2 (23 − 1 = 7 ≡ 0 mod 7).

Remark 4.12. In Example 4.11, ψ̂(Col5(R)) and ψ̂(Col5(my(R))) inter-
sect along their L−1-part, so that if we use R as both the rotor and the stator
then

log5 |Col5(R ∪R)| = 2 + log5 |Col5(R ∪my(R))|.

Let us now consider the case n = p > 2. As before, we split W =W2n−2
into a direct sum W =W+ ⊕W−, where

W+ = 〈f0, f2, . . . , f2n−2〉 and W− = 〈f1, f3, . . . , f2n−1〉.

For j = 1, . . . , p− 1 put
(4)

wp−j =

j−1∑
k=0

(−1)j+k−1
(
j − 1

k

)
f2k, vp−j =

j−1∑
k=0

(−1)j+k−1
(
j − 1

k

)
f2k+1.

The vectors wp−j [vp−j ] form a basis of W+ [W−]. In these bases, the action
of r2 is

(5)
r2wi = wi + wi−1, r2vi = vi + vi−1,

r2w1 = 0, r2v1 = 0.

One checks directly that

(6) ϕ̂(wp−i, vp−j) = (−1)i+j
(
i+ j − 1

j

)
,



188 J. Dymara et al.

i.e.

(7) ϕ̂(wi, vj) = (−1)i+j
(
2p− i− j − 1

p− j

)
,

where the binomial coefficient should be readmodulo p. In particular ϕ̂(wi, vj)
= 0 when 2p− i− j − 1 ≥ p, i.e. when i+ j ≤ p− 1.

Corollary 4.13. Let Λs = 〈w1, v1, . . . , ws, vs〉. Then Λs is an isotropic
subspace of W if and only if s ≤ (p− 1)/2.

We want to describe the r2-invariant Lagrangian subspaces L of W . Let
s be the largest number such that Λs ⊂ L (it may well be 0) and put
t = p− s− 1.

Lemma 4.14. L ⊂ Λt.

Proof. Suppose L * Λt. Then we can find in L a vector

u = akwk + ak−1wk−1 + · · ·+ a1w1 + bp−1vp−1 + bp−2vp−2 + · · ·+ b1v1

with k > t, ak 6= 0 (or a vector of this form with w and v switched) that is
not in Λt. Then ϕ((r2 − 1)k−t−1u, vs) 6= 0.

Lemma 4.15. L contains a unique vector of the form

ut = wt +
t∑

i=s+1

aivi

(or one with w and v switched), and then it has the following basis: w1, . . . , ws,
v1, . . . , vs, us+1, . . . , ut where

(8) uk = wk +
k∑

i=s+1

ai+t−kvi.

Proof. If u ∈ L ∩ Λk is non-zero in Λk/Λk−1, then so is (r2 − 1)lu in
Λk−l/Λk−l−1. Therefore, (L∩Λk)/Λk−1 is 1-dimensional for s+1 ≤ k ≤ t (it
is 0-dimensional for k > t, 2-dimensional for k ≤ s, while L has dimension
t+ s and does not contain Λs+1).

Pick a vector u ∈ L that spans L/Λt−1. We may assume that wt (or vt)
appears in u with coefficient 1. If ct−lwt−l appears in u, it can be canceled
by subtracting ct−l(r2 − 1)lu. We can also remove wi and vi with i ≤ s, as
these are in Λs ⊂ L. After these operations, we get the vector ut as in (8).
Now uk equals (r2− 1)t−kut (modulo Λs), thus it belongs to L. Thus all the
vectors w1, . . . , ws, v1, . . . , vs, us+1, . . . , ut are in L, and are clearly linearly
independent. Since dimL = t+ s, these vectors form a basis of L.

Lemma 4.16. at = 0.
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Proof. We see that

0 = ϕ(ut, us+1) = ϕ(wt, atvs+1) + ϕ(atvt, ws+1)

= −at
((

p− 1

t

)
−
(
p− 1

p− t

))
= 2(−1)t+1at.

Every r2-invariant Lagrangian subspace L of W is therefore determined
by choosing s, as+1, . . . , at−1, where t = p− s− 1. However, not every choice
of these parameters gives rise to an isotropic subspace ofW—there are extra
conditions ϕ(uu, uk) = 0, which can be written as

(9)u,k
t−1∑

i=p+t−u−k
ai(−1)u+k+i−t

×
((

2p− u− k + t− i− 1

p− k − i+ t

)
−
(
2p− u− k + t− i− 1

p− k − 1

))
= 0.

The above has to hold for each pair u, k such that t ≥ u > k ≥ s + 2,
u+ k > p.

Lemma 4.17. (−1)k
(
n
k

)
=
(
p−1+k−n

k

)
mod p.

Proof. We have (
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
,(

p− 1 + k − n
k

)
=

(p− n+ k − 1) . . . (p− n+ 1)(p− n)
k!

.

Now p− n ≡ −n mod p, p− n+ 1 ≡ −(n− 1) mod p, etc.

Let us now turn to the invariance of L under my. First, using (4), (3)
and Lemma 4.17 one gets

my(wj) = (−1)j
j∑
i=0

(
j + 1

i+ 1

)
wi, my(vj) = (−1)j+1

j∑
i=0

(
j

i

)
vi.

Therefore (calculating modulo my-invariant Λs)

my(uu) = my

(
wu +

u−1∑
i=s+1

at+i−uvi

)

= (−1)u
u∑
j=0

(
u+ 1

j + 1

)
wj +

u−1∑
i=s+1

at+i−u(−1)i+1
i∑

l=s+1

(
i

l

)
vl

= (−1)u
u∑
j=0

(
u+ 1

j + 1

)
wj +

u−1∑
l=s+1

(u−1∑
i=l

at+i−u(−1)i+1

(
i

l

))
vl.
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Note thatmy(uu) ∈ L ifmy(uu) is a linear combination of uj with coefficients
matching those of wj in the above sum. Comparing the vl terms (in the above
sum) gives

(10)u,l
t−1∑

i=t+l−u
ai(−1)u

((
u+ 1

t+ l + 1− i

)
+ (−1)i−t

(
i+ u− t

l

))
= 0.

To ensure my-invariance of L, this formula should hold for all pairs u, l such
that t ≥ u > l ≥ s+ 1.

Theorem 4.18. If n = p > 2 then each r2-invariant Lagrangian subspace
of W is also my-invariant.

Proof. We will prove that equations (9) imply (10).
Applying Lemma 4.17 to (10) we find that (10)u,l is equivalent to (11)u+1,l,

where
(11)u,l

t−1∑
i=t+l−u+1

ai(−1)t+l−u+i
((

p+ t+ l − u− i
l + t+ 1− i

)
−
(
p+ t+ l − u− i

l

))
= 0.

So, we want to prove (11)u+1,l for all u, l such that t ≥ u > l ≥ s + 1.
In other words, we want (11)v,l for all v, l such that t + 1 ≥ v ≥ s + 3,
v − 2 ≥ l ≥ s+ 1.

On the other hand, (9)u,k is equivalent to (11)u,l with l = p − k − 1, so
(11)x,p−y−1 for x, y such that t ≥ x > y ≥ s+ 2, x+ y > p, in other words,
(11)x,z for x, z such that t ≥ x ≥ s+ 3, x− 2 ≥ z ≥ p− x− 2. This directly
covers part of the equations that we want to have. There are two cases left:

(a) p− v − 2 > l ≥ s+ 1,
(b) v = t+ 1.

If (a) holds, we notice that (11)v,l⇔(11)p−l−1,p−v−1, and the latter is on
our list of assumptions.

If (b) is true, we first notice that (11)t+1,s+1 is a linear combination of
(11)t,s+1 and (11)t,s. But (11)t,s has zero coefficients since

(
n
k

)
=
(
n

n−k
)
. If

l > s+ 1, then (11)t+1,l is a linear combination of (11)t,l−1 and (11)t,l.

5. Symplectic form on t-colorings of tangles. In this section, we
consider a generalization of the symplectic structure on Fox p-colorings that
we studied in previous sections to Alexander–Burau–Fox t-colorings (briefly
ABF-colorings) and a related t-invariant symplectic structure. Here we only
sketch an idea which we plan to develop in the future. Consider a 2-dimen-
sional disk with 2n boundary points p1, . . . , p2n (n inputs and n outputs, see
Figure 1). For a fixed commutative ring R with identity we consider the free
R[t±1]-module (R[t±1])2n with a basis e1, . . . , e2n and we view elements of
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this module as colorings of boundary points by elements of R[t±1]. Consider
the submodule W2n−1 of R[t±1]2n generated by all elements of the form
ei − uei+1, where u equals −1, t, or t−1 depending on whether pi, pi+1 are
inputs or outputs. On the R[t±1]-module W2n−1 regarded as an R-module,
we define a t-invariant alternating form. The quotient of W2n−1 by trivial
(constant) colorings is a symplectic R-module. We show that R[t±1]-colorings
of an oriented n-tangle T which satisfy the Alexander–Burau relation at each
crossing yield a Lagrangian in our symplecticR-module. We discuss a relation
between t-colorings and homologies of the universal cyclic coverings and even-
fold cyclic branched coverings.We note that our considerations in the previous
sections correspond to the casewhen t = −1 and the double branched covering.

Let R be a commutative ring with identity and assume that the ring
Z[t±1] acts on R. Thus R is also a Z[t±1]-module. An ABF-coloring of an
oriented tangle T is an assignment of elements of R to arcs of T, such that
at each crossing the ABF relation:

(1− t)a+ tb− c = 0

(or equivalently, (1−t−1)a+t−1c−b = 0); see Figure 10. We are mostly inter-
ested in the cases when R is Z[t±1], Z[t±1]/

(
t2k−1
t−1

)
or Zp[t±1]/(q(t)), where p

is a prime number and q(t) an irreducible polynomial. For a boundary point
we put εi = 1 if the point is an output and εi = −1 for an input. Define the
t-alternating condition for an element

∑2n
i=1 aiei ∈ R2n to be

∑2n
i=1 ciai = 0,

where ci+1 = εiεi+1t
(εi+εi+1)/2ci.

a c=(1-t)a+tb

(1-t    )a+t    c=b-1 -1

Fig. 10. ABF -coloring relation

Let ColR,t(T ) be the R-module of ABF -colorings of a tangle T . There is
a map

ψ : ColR,t(T )→ R2n

which assigns to an ABF -coloring of T a coloring of its 2n boundary points.

Lemma 5.1.Elements of ψ(ColR,t(T )) satisfy the t-alternating condition.

Proof. The proof proceeds in the same manner as in the case t = −1.
The most important observation is that the t-alternating condition holds
locally. In fact for a crossing we can write the ABF -relation in the form
a+ tb− ta− c = 0.

As in the case t = −1 we can find a basis for the subspace satisfying
the t-alternating condition. Let W2n−1 = W2n−1(ε1, . . . , ε2n) denote this
R-module.
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Lemma 5.2. W2n−1 is a free R-module of rank 2n − 1 with a basis
{f1, . . . , f2n−1}, where fi = ei + uiei+1 and ui satisfies ci+1 = −u−1i ci, i.e.

ui = −εiεi+1t
−(εi+εi+1)/2.

Our plan is to define a t-invariant alternating form of nullity one on
W2n−1 that, as before, satisfies the condition

ϕ(fi, fj) =

{
0 if |j − i| 6= 1,

j − i otherwise,

and additionally
ϕ(−tfi, fj) = ϕ(fi, fj).

Of course, we did this before for t = −1, but to achieve it in a more
general setting (17), we need to regard R as a ring with a subring R0. Let
j : R0 → R be a homomorphism of rings and ϕ be defined over R0. We show
how it works in one important case:

Example 5.3. Let I be an ideal of R0[t
±1] such that (t + 1) ∈ I and

R = R0[t
±1]/I. Then the t-invariant alternating form ϕ with nullity one

described above is well defined.

Theorem 5.4. If T is a rational tangle then ψ(ColR,t(T )) is a La-
grangian of nullity one in W2n−1.

Proof. We proceed as in the proof of Theorem 2.1. We observe that the
homomorphism corresponding to a crossing is (t + 1) approximation to a
transvection, so ϕ is an isometry.

6. History of the paper. In May of 2000 while J. H. Przytycki vis-
ited Banach Center in Warsaw he attended T. Januszkiewicz’s talk on Cox-
eter groups and buildings. After the talk Przytycki asked a question con-
cerning his student M. Dąbkowski’s calculations of the number of Fox 3-
colorings induced on the boundary by 2-, 3- and 4-tangles. As Przytycki told
Januszkiewicz, his student got the numbers 4, 40 and 1120. Januszkiewicz im-
mediately noticed that these numbers suggested the number of Lagrangians
in symplectic spaces over Z3. Soon after, J. Dymara and Przytycki found
the appropriate symplectic form on the space of p-colorings of 2n boundary
points on a circle. It was the beginning of our collaboration. The first version
of this paper was ready in 2001, but its publication was delayed (18). Przyty-
cki gave several talks related to this paper, starting from [Pr-6]. Meanwhile

(17) The general setting is a future project.
(18) There was also a mathematical reason for this. In early winter of 2002 Dąbkowski

and Przytycki solved the Montesinos–Nakanishi conjecture using the nonabelian version
of Fox n-colorings called Burnside groups of links [DP-1, DP-2].
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some parts of this work were cited in [Pr-3, Pr-4, Pr-5] and the approach de-
scribed in Section 5 was developed by Cimasoni and Turaev [C-T-1, C-T-2].
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