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Summary. We give a new sufficient condition for the Julia set of a real analytic function
which is a periodic point of renormalization to have Hausdorff dimension less than 2.
This condition can be verified numerically. We present results of computer experiments
suggesting that this condition is satisfied for real periodic points of renormalization with
low periods. Our results support the conjecture that all real Feigenbaum maps have Julia
sets of Hausdorff dimension less than 2.

Informally speaking, the Julia set of a rational map on a complex plane
is the set of points near which the dynamics induced by this map is chaotic,
i.e. has unpredictable long-time behavior. A natural question is how large
this set can be. The size of a subset of a complex plane can be measured
using Lebesgue area or Hausdorff dimension. For a long time it was con-
jectured that for any rational map the Julia set either coincides with the
whole plane or has zero area. Recently, Buff and Cheritat [4] found first ex-
amples of quadratic maps having Julia sets of positive measure. Later, Avila
and Lyubich [2] constructed such examples in the class of maps whose Julia
sets have stronger self-similar properties, called Feigenbaum maps. However,
the constructions of those examples are quite involved and the search for
simpler examples continues. For instance, an open question is whether there
exist quadratic Feigenbaum maps with real coefficients having Julia sets of
positive area, or at least Hausdorff dimension 2. Jointly with Sutherland, the
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author of the present paper showed in [§] that the Julia set of the original
quadratic Feigenbaum map (corresponding to the period-doubling renormal-
ization) has Hausdorff dimension less than 2, and thus has zero area.

Here we generalize the approach of [§] to an arbitrary real periodic point
of renormalization. Given such a map f, the main result of this paper (Theo-
rem 4)) provides a sufficient condition for the Julia set of f to be of Hausdorff
dimension less than 2. This condition can be checked effectively using a com-
puter. Approximate estimates suggest that it is satisfied by periodic points
of renormalization with low periods. These estimates support the following:

CONJECTURE 1. Every real Feigenbaum quadratic map has Julia set of
Hausdorff dimension less than 2 (and thus of zero Lebesgue area).

The paper is organized as follows. In Section [I] we recall first the notion
of renormalization. In Subsection [I.I] we briefly explain the Avila-Lyubich
approach to study measure-theoretic properties of Feigenbaum Julia sets. In
Subsection [1.2] we recall some basic properties of real periodic points of renor-
malization and present the main result of the present paper. In Section [2] we
discuss structural properties of real periodic points of renormalization. In
particular, we introduce a certain tiling structure of the plane and study its
properties. In Section [3] we prove the main result. First, in Subsection [3.1] we
introduce copies of tiles under certain iterates of the Feigenbaum map. Then
in Subsection [3.2] we study the distortion of these iterates on the correspond-
ing copies. Finally, in Subsection [3:3] we prove analogues of Avila-Lyubich
recursive inequalities and complete the proof of the main result. In Section
we present numerical results and discuss briefly some of the algorithms used
to obtain these results.

1. Preliminaries. Let us briefly recall some notions from complex dy-
namics which we use. For details we refer the reader to [7], [17], or [20]. By
definition, a quadratic-like map is a ramified covering f : U — V of degree 2,
where U € V are topological disks in C. Given a quadratic-like map f, its
filled Julia set Ky and Julia set Jy are defined as follows:

Ki;={2z€U: f"(2)eUforallneN}, Jr=0Ky.

Let f : U — V be a quadratic-like map. Then f is called renormalizable of
period n with n > 1 if there exists U’ C U for which f: U — V' = f*(U’)
is a quadratic-like map with connected Julia set J’. The map f™|y is called
a pre-renormalization of f; the map Rf := Ao g o A™1, where A is an
appropriate rescaling of U’ is called the renormalization of f.

An infinitely renormalizable quadratic-like map f is called a Feigenbaum
map if it has bounded combinatorics (i.e. there is a uniform bound on the
periods n of renormalization) and a priori bounds (the moduli of V' \ U
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are uniformly bounded). The first and one of the most studied Feigen-
baum maps is the Feigenbaum polynomial freig(z) = 22 + CFeig, Where
CReig ~ —1.4011551890 is the limit of the sequence of real period doubling
parameters. The discovery of freis and related Universality Phenomenon by
Coullet, Tresser and Feigenbaum [0} 13] [14] led to the development of renor-
malization theory in dynamics.

The results of Sullivan imply that the sequence of successive period-
doubling renormalizations R"( freig) converge to a renormalization fixed
point Fy (see e.g. [19]). In a series of works by Lanford [16], Epstein [11]
and [12], Sullivan [21], McMullen [20], and others it was shown that the
renormalization operator R is hyperbolic near Fj. In fact, [20] and [21] gen-
eralized some of the properties of F} to other infinitely renormalizable maps.
Lyubich [I8] obtained a proof of hyperbolicity of R near infinitely renor-
malizable maps with bounded combinatorics (which includes periodic points
of renormalization). We refer the reader to [I8, §1.5|, for a more detailed
overview of the topic.

In [8] we showed with Sutherland that the Julia set of Fy has Hausdorff
dimension less than 2. The present paper concerns the measure and Hausdorff
dimension of the Julia sets of the real periodic points of renormalization, i.e.
Feigenbaum maps f such that f(z) = >, <, ax2” near zero with aj, € R and
R™f = f for some n.

1.1. The Avila—Lyubich trichotomy. Consider a Feigenbaum map f.
Let f,, denote the nth pre-renormalization of f, let J, be its Julia set, and
let O be the forward orbit of the critical orbit. For two sequences {ay}, {bn}
of positive reals we will write a,, < b, if there exists C' > 0 such that
C~,, < a, < Cb,, for all n. To study the measure and Hausdorff dimension
of the Julia sets of Feigenbaum maps Avila and Lyubich introduced so called
nice domains (see [I] and [2]). These are domains U™ C V"™ satisfying a
series of conditions:

fu(UT) =V

ur o> J,NnO(f),

vl c um,

fEEV™Y NV =0 for all n, k;

A" =V \ U" is “far” from O(f);

area(A") < area(U") x diam(U™)? < diam(V™)2.

Avila and Lyubich showed that such domains exist for every Feigenbaum
map. Notice that the construction of U™ and V" involves cutting neigh-
borhoods of the critical point by equipotentials and external rays of pre-
renormalizations f, of f and taking preimages under long iterates of f,,, and
it is computationally complex.
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For n € N denote by X,, the set of points in UY that land in V" under
some iterate of f, and by Y,, the set of points in A" that never return to V"
under iterates of f:

X, ={zecU%: ff(z) € V" for some k € Z, },
Y, ={z€ A": f*(2) ¢ V" for all k € N}.
Introduce the quantities

_area(X,) ~area(Yy,)
" area(U9)’ Sn = area(A")’
An important tool in the Avila—Lyubich approach to study the measure and
Hausdorff dimension of Feigenbaum Julia sets is the following (see [1]):

THEOREM 2 (Avila-Lyubich). Let f be a periodic point of renormaliza-
tion, i.e. there is a p such that RPf = f. Then exactly one of the following
18 true:

LEAN CASE: 7, converges to 0 exponentially fast, inf &, > 0, and dimg(Jy)
< 2;

BALANCED CASE: 7, < &, < 1/n and dimy(Jy) = 2 with area(Jy) = 0;

BrLAck HOLE CASE: infn, > 0, &, converges to 0 exponentially fast, and
area(Jg) > 0.

Specific bounds determining the behavior of n, and &, depend on the geometry
of A" and O(f).

The proof of Theorem [2| relies on recursive estimates involving n,, &,,
and the Poincaré series for f,,. In the Lean case (relevant for this paper),
Avila and Lyubich showed existence of a constant C' > 0 which only de-
pends on geometric bounds for U" C V™ and O(f), such that if there exists
m with 7, < &,/C, then 1, — 0 exponentially fast. However, their proof
is non-constructive and does not provide any way of estimating C' numeri-
cally. In this paper, we develop a recursive scheme for real periodic points of
renormalization similar to Avila—Lyubich’s but such that all objects can be
effectively estimated using a computer.

1.2. Real periodic points of renormalization and main results.
Fix a real periodic point F' of the quadratic-like renormalization: R*(F) = F.
In this paper we do not require the period of renormalization to be minimal
possible. This allows us to view F' as a fixed point of a renormalization with
a longer period. We normalize F' so that F'(0) = 1. The map F is a solution
of the following equation:

F(z) = (1/\FP(\2),
(1.1) F(0) = 1,
F(z) = H(z?%), with H(z) univalent near 0,
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where —1 < A < 1 is the renormalization scaling ratio and p is the period of
renormalization.

As a consequence of (1.1)) we obtain
(1.2) FP"(2) = XM F(z/\™)

whenever both sides of the equation are defined. Recall that F" has a maximal
analytic extension F:W —C toan open simply connected domain W DR
such that W is dense in C (see |20, Theorem 7.11]). Moreover, WoR
and all critical values of F are real. There exists a domain W containing
zero such that F|y is a quadratic-like map with range equal to a slit plane
C\ ((—o0,a] U [B,00)) D W for some o < 0, > 0. In particular, (o, 3) D
WNR contains the segment [—1, 1]. From now on we denote the quadratic-like
restriction F lw by F. So we assume that F' is not defined outside W.
For a set A C C and n € Z; we denote

"= AI"A.
The nth pre-renormalization F, of F' is the restriction of FP" onto W™ =
AW and
Fo(z) = \"F(z/\").
Based on sets W(”) we define analogues of Avila—Lyubich sets X, and Y,,.

For each n € N, let X,, denote the set of points z € W) with Fk(2) e W(")
for some k > 0. Set

B area()?n)

~area(WM)’
Thus, 7, is the probability that the orbit of a point randomly chosen from
I/l/(l) with respect to Lebesgue measure will intersect W) By construction,

Xp+1 C X, for any n. Therefore, 7, is non-increasing in n. Similarly to [§]
we have:

LEMMA 3. If 7, converges to 0 exponentially fast then so does ny,.

Proof. Using properties of nice domains we find that there exists ng such
that Vo ¢ W™ for every n. Then X, 1,, C )\_an+n0+1 for every n,
which proves the lemma. =

Denote by Y the set of pomts mSlde wn) Which never return to W
under iterates of F: Y, = {z € W : F¥(z) ¢ W for all k € N}. Set

~ area(Y;,)

~area(Wm)’

One of the main results of the present paper is the following:
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THEOREM 4. Let F be a real periodic point of renormalization. There
exists a constructive constant C such that for every n,m € N one has

ntm < Coinfim1/En-
The constant C'is defined implicitly in Corollary [16] In Subsection [4.4 we

provide a method for estimating C. Using Theorems [2] and 4] and Lemma
we obtain:

COROLLARY 5. If for some n € N one has CQﬁn/gn < 1 then Jr has
Hausdorff dimension less than 2.

In Section [4] we present numerical results for several periodic points of
renormalization with periods 3,4, 5 and 6 suggesting that the corresponding
Julia sets have Hausdorff dimension less than 2.

In the proof of Theorem |4 we closely follow the approach of [8]. However,
we have to make several modifications compared to the case p = 2 studied
in [§]. For instance, to prove Theorem [ for any period p we cannot use the
details of the combinatorial structure of the map F' as in |8, Proposition 3.1,
Lemma 3.2, Proposition 3.2, and Lemma 3.3|, since this structure depends
significantly on the combinatorics of the critical orbit and varies substan-
tially for different periodic points F' of renormalization. Instead, we give
new proofs of analogous statements (e.g. Proposition a generalization of
[8, Proposition 4.1]) using some general properties of real periodic points of
renormalization (e.g. Lemmas |10| and [11{ and Proposition [12)).

2. Structure of real periodic points of renormalization. Recall
that W is symmetric with respect to the axes such that F' = Fly is
quadratic-like with image equal to a slit plane. Let g > 0, yg = itg with
to > 0 be such that W) AR = [—zg,20], W NiR = [—yo,y0]. Let
H; = {2 : Imz > 0} be the upper half-plane, and H_ = {z : Im z < 0} the
lower half-plane.

The following statement for any period p can be proven in the same way
as in the period-doubling case (see [12] or [3]):

THEOREM 6. All critical points ofF are simple. The critical values ofF
are contained in the real axis. Moreover, for any z € W such that F( ) ¢ R,
there exists a bounded open set U(z) 3 z such that F is one-to-one on U(2)
and F(U(2)) coincides with H. or H_.

Similarly to 3] and [8], we introduce a combinatorial partition of w.

DEFINITION 7. Let P be the set of all connected components of
“I(C\R). For each n € Z, set

P = (\"P: P e P}.
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From (1.1)) it follows that for any m € Z, each Q € P is mapped by
FP™ bijectively onto H, or H_.

DEFINITION 8. For k € Z, the connected components of F—*(C\R) will
be called tiles.

Fig. 1. Some tiles for the real period 3 fixed point of renormalization (k =1 and k = 2)

Notice that any element of P is a tile for any n € Z, = {m € Z :
m > 0}, as are the half-planes H; and H_. For any tile P, there exists
k € Zy such that the map F* sends P bijectively onto H; or H_. From
Theorem [6] we derive the following:

LEMMA 9 (Nesting Property). For any pair of tiles P and @Q one has
PNnQ=0,PCQ, orQcCP.

Further, for a quadrant K € {I,II,II[,IV} denote by Py the unique
connected component of F~*(C \ R) inside the quadrant K such that 0 €
OPk. Notice that the sets P are tiles belonging to P = P©). The set W
is equal to the interior of P; U P U Piyp U Pry. Let Jg be the Julia set of F'.
Then J}n) = A" Jr is the Julia set of the pre-renormalization F;, for every n.

Recall that o > 0, yg = itg with ¢ty > 0 are such that WONAR =
[—z0,20], WO NiR = [—yo,y0] and for a set A we denote A = \"A,
n e ;.

LEMMA 10. One has z¢g < 1 (and so xo € Jr) and Ay € Jp.

Proof. Assume that xop > 1. Then 1 = F(0) € [0, z¢]. Using the Nesting

Property one can show that F(Pl(l)) C Pk for K =1 or K = IV. Since
F'(0) =0, F”(0) < 0 and F is one-to-one on [0, zg], the map F sends [0, x¢]
onto a segment [a, 1] with 1 > a > 0. This implies that F' has an attracting
fixed point on [a, 1], which contradicts the renormalizability of F. Thus,
T < 1.
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Fig. 2. Central tiles and the points xo, yo for the real period 3 fixed point of renormaliza-
tion

Further, one has FP*~?(P?) = AFP=1(PY). The tile FP~1(PV) be-
longs to P (i.e. is mapped by F' one-to-one on H or H_) and intersects Jp,
therefore is equal to P for some K. Thus, FP°~P (PI(Q)) = :l:PI((1 ). In partic-
ular, [0, |A|yo] C 3P1(2) is mapped by FP’~P into [—x0, o] C Jp. This implies
that [A|yo € Jr, and so A\yo € Jp. =

Let us prove an auxiliary statement. Denote by J[(;,ni) =F Z'(t]]gﬂn)), 0<
i < p”, the small Julia sets of the pre-renormalization F,, n € Z.

LEMMA 11. Let P be a tile such that PN R # () and P N Jg-) # 0 for
some i,n. Then
PmRmJ ) 4.

Proof. Assume that there exists a tlle P such that
PAR#0, PnJy)#0, PnRNJY =0.

Since J 1(;;) NR ## () it is not possible that J I(;,lz) C P. It follows that Jl(pt? NoP

# (). Therefore, F*(PN J}Z))HR # () for some k € N. Fix the smallest such k.
Let @ = F*'(P) and Q NR = [a, b]. Taking into account that
QNFY I nR=0, F@QNFII)NRAD
we find that F(0Q \ R) "R # (). This implies that either a or b is a critical

point and so is zero (the unique critical point of F'). Moreover, we obtain

Fhk= I(PDJ( ))DZR # (). The latter set is a subset of Jt l) where l =i+ k—1
mod p™. Since it intersects the imaginary line we have [ = 0. We conclude

that o (n)
0e F*Y(PnJy))NR.

This contradicts the choice of k, finishing the proof. m
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Using the Nesting Property and properties of renormalization of uni-
modal maps one can show:

PROPOSITION 12.

(1) If |[F*(0)| < |A\|™ for some k,n then k is divisible by p™.
(2) Foralln € N and 1 <k < p™ ' one has FF(W™)n Jl(:,nfl) =0.

Proof. (1) Let k,n € N and [ be the remainder of k£ modulo p"™. We have
FP'(0) = \" ¢ Jl(r,n) and F*¥(0) € Jgfl). If I # 0 then Jl(wn) may intersect
J g’ll) only in one point, which is a periodic point of F. This implies that
FR(0)] > A",

(2) Assume that FE(W ™) N J(nfl) # () for some 1 < k < p" L
Since F is real and even we have F¥(P (n)) N Jn 2 # (). By the Nest-
ing Property, Fk(PI( )) c W=D In particular, Fk(O) e W1 and so
|F*(0)] < [A""2|zp < |A""2. By (1), k is divisible by p"~2. Taking into
account (|1.1]), without loss of generality we may assume that n=2.

Further, if p = 2 then £k = 1. We have F(P(Z)) NW® = ¢ by [9, Propo-
sition 19]. It follows that F'(P; pP )) NnJg (1) — § and we obtain a contradiction.

Assume that p > 2. Consider the small Julia sets J( ) F’(J( )) 0<
i < p. We have F¥(P, P )) N J(l) # (. Therefore, FP(P; P )) N JFp x 7 0. By
Lemma

PE) I AR #£0.

On the other hand, FP(P{?) = AF(PM) c AW = WO, Since F(0) =1 ¢
Jp it follows that A € FP(F?) 0 JY AR,

Assume for sunphmty that FP(P; P )) lies in {# € C : Rez > 0}. The
opposite case Fp(PI( ) C {z € C: Rez < 0} can be treated similarly. Let
~ be the minimal point of FP(E(Q)) N Jz(«%;—k N R. Since Jg;_k and J}l)
may intersect at most in one point we have v > |A| > |A|zg. It follows that
v ¢ ?1(2). Since FP(z) = AF(z/\) is one-to-one on H(l) and v has a preimage
in E(z) under FP we infer that FP(y) # .

Observe that ~ is the left end-point of the segment I = J g;_ N R. Since
FP preserves J, (1 ) _, we find that FP(vy) is the right end-point of I. On the
other hand, Fp( ) € FQP(PI( )) = \F%(P 1(1)) C AW = W(l), since p > 2.
This implies that I C W(l) . However, F? has a critical point in the interior

of I. We conclude that F has a non-zero critical point inside W, which is
not possible. This contradiction finishes the proof. m
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3. Proof of Theorem [4. In this section we prove Theorem [] following
the approach of [§].

3.1. Copies of tiles. Similarly to [8, Definition 4.1|, to study the quan-
tities 7, n € N, we introduce copies of tiles.

DEFINITION 13. For k € Z, we will call a tile Q a copy of the tile P
under F* if F¥(Q) = P.

For n € Z; and a quadrant K € {I,II,III,IV} we will call a copy P
of PI((") under F* primitive if F7(P)N W™ ={ for all 0 < j < k.

We will call a copy P of PI((n ) separated if there exists 0 < j < k such
that F7(P) c W™ and FJI(P)n J}n_l) = () for the maximal such j.
Let P be a separated copy of Pl((n) under F* and j < k be the maximal

number such that F7(P) c W), Then by definition for each 0 < i < j the
set F'(P) is again a separated copy of Pl({n ),

LEMMA 14. For any separated copy T of P(n), K e {LLILIIL,IV},n €
Zy, one has TN Jl(pn_1> = 0.

Proof. Assume that there exists a separated copy T of P}n) under F*
such that T'N Jl(,ﬂnfl) # (). Since Jl(pnfl) is invariant under F?"~" we deduce
that F®" " (T) N J"Y £ § for all I for which it is defined. Let j < k be
the maximal number such that F7(T) C W), Since T is separated we have
FI(T)N J}"_l) = (). Therefore, j is not divisible by p"~1. Set | = [j/p"~!]
and r = (I+1)p" ' —j. Then 0 < r < p"~ ! and

Frwmyn o=t s prpir))n e = pG Ty n i 2,
This contradicts the conclusion of Proposition [I2] and finishes the proof. m

3.2. Koebe space. In this subsection we will show that iterates of F
corresponding to primitive and separated copies have bounded distortion.

Set cq = min{|F'(0)] : 1 <1 < p}/|\|. Observe that cq < |F(0)|/|\| =
1/|A|. By Proposition ¢ > 1. The following is a generalization of [8]
Proposition 4.1].

PROPOSITION 15. Let T be a primitive or separated copy of Pf((n) under
Fk k € Z,. Then the inverse branch ¢ : P[(g) — T of F* analytically
continues to a univalent map on A\"Cgy, where
(3.1) Ceut = C\ ((—00, ca] U [ce1, 00)).

Proof. Assume that the statement is false. Let T' be primitive or sepa-

rated copy of PI(? ) such that the inverse branch F~* : P[(? ) 5 T does not

have a univalent continuation to A"C.y. Assume that k is minimal possible
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/\C( ut

g % I

Fig. 3. An illustration to Proposition [I5} Here F' is a period 3 real periodic point of
renormalization and T is a primitive copy of PI(&) under F* (ieep=3,n=1 k=3,
K =1V).

PACerd)

with the above condition. Due to real analyticity of F' without loss of gen-
erality we may assume that Px C Hy, i.e. K =1 or K = IL. Theorem [f]
implies that the inverse branch F~* : P[((n ) 5 T admits an analytic contin-
uation ¢ on H extending to a continuous function on H,. Moreover, the
only possible reason for ¢ not to be extendable to an analytic function on
A"Cey is that F* has a critical point on ¢((—|A|"ca, |A|"cq)). By minimality
of k, 0 € ¢((—|A|"¢e1y |A|™cc1)). Thus, we obtain 0 € ¢(H.) and

(32 F0) € (-] M) € (HAPTL NP € Wi,

By Proposition k is divisible by p™~ L.
Further, assume that k > p™. Taking into account that 0 € ¢(H. ), using
the Nesting Property we obtain 7' C ¢(H ) C W) Tt follows that T is not

primitive, so it must be separated. By Lemma |14 we have T'N J}nil) = (. On

the other hand, since k is divisible by p»~!, F* preserves J l(pn_l). Moreover,

on Jf(pn_l) the map F* coincides with F!_;, where [ = k/p"~!. Taking into

account that F* is one-to-one on ¢(H, ) we obtain

Fr@y)nJ™ )y =H, nJ™ Y and FHT)nJI Y = 0.
This contradicts the definition of 7. It follows that k < p™. Using (1.2]) we

obtain
[F*(0)] = A" FN0)] > |A"ca-

This contradicts (3.2)) and finishes the proof. m

Notice that [8, Proposition 4.1] concerns the situation of Proposition
in the case p = 2, i.e. when F is the fixed point of period-doubling
renormalization. The statement obtained in [§] is slightly stronger than the
result of Proposition for p = 2. Namely, for p = 2 the set C.yt from
(3-1) can be replaced by a larger set C\ ((—oo, —1/|\|) U (F(N\)/A%,00)).
However, the proof of Proposition [15|is substantially simpler. The statement
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of Proposition [15] can be strengthened for p > 2 as well, but at the cost of
increased technicality. For our purposes the present statement is sufficient.

Combined with the Koebe Distortion Theorem (see e.g. [10]), Proposition
implies the following:

COROLLARY 16. There exists a constant C > 0 such that the following
s true. Let T be a primitive or separated copy of PI(?) under F* for some
k>0 and K € {I,ILIIL,IV}. Let ¢ : PI(?) — T be the corresponding branch
of F~%. Then for any z,y € P}n) one has
Y@ _ o
&' ()|

In particular, for any two measurable subsets A, B of Py of positive Lebesgue
measure one has

area(F~*(BM)NT) < area(B)
area(F~k(AM)NT) = = area(A)

3.3. Recursive estimates. Fix n,m € N. Recall that X,, denotes the
set of points z € W) with forward orbit intersecting W():

X, ={zeWW: FFz) e W™ for some k € Z, }.
And )7” is the set of points inside W) which never return to W under
iterates of F:
Yo ={ze W™ FFz) ¢ W for all k e N}.
Also, we will be interested in the set of points in W™ whose forward orbits

under iterates of F},_; intersect W ("*+™) Taking into account that F,,_;(z) =
N LE(2/AP71) we deduce that this set coincides with A" ~1X,, 1 1:

{zeWm™ . FF (2) e W™ for some k € Zy} = N X a1

To study the sets )Z'n and }an we introduce some additional notations. For
a copy Q of P("), K € {I,LIL,II,IV}, under F* introduce the sets:

Yo=QnF*Y,), Xo=QnF*O\"'X,..1).
Denote by SP = SP(n) the set of all primitive or separated copies of sets

PI(?), K € {LLILIIL,IV}. Let SP, be the set of all copies @ € SP such that
Fi(Q) ¢ A=1X, 1 for all 0 < j < k, where k is such that FFQ) = Pl((n).

LEMMA 17. The sets from the collection {Yg}oesp, U {X1}resp, are
pairwise disjoint.

Proof. Fix a copy @ of Pén) under F7 and a copy T of PI(? ) under F* such
that Q,T € SP,. Assume first that ) # T and Yo NY7 # (. Without loss of
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generality, let k > j. We have F/(Yy) C Y,,. Therefore, F¥=9(Y,) O F*(Yp)
has a non-empty intersection with F¥(Y7) ¢ W), This contradicts the
definition of 17”, and so Y cannot intersect Yr.

Assume now that Yo N Xp # 0. If j < k then F¥(Yy) C FF=i(Y,,)
cannot intersect F*(Xrp) C A”_l)N(mH c W™ by definition of }7n Thus,
j > k. Then F¥(Q) has a non-empty intersection with F¥(T) ¢ X" 1 X, ;.
This contradicts the definition of SP,. Thus, Yy cannot intersect Xr.

Finally, assume that X¢o N X7 # 0. It is not hard to see that j # k.
Without loss of generality, let j < k. Then F J (Xq) C A”_l)?mﬂ has a
non-trivial intersection with F7(Xr). It follows that

FI(T)N A" Xyt # 0.
Let z be a point in the last intersection. Then F?_,(z) € P$+m) for some

§ € Z+ and for some quadrant M. Let R be the copy of P](\; ™) under Fort
containing z. Since R and F7(T) are tiles, by the Nesting Property, one of
them contains the other.

CASE 1: Fi(T) C R. Since F?_,(z) is well defined, we have F™?" "' (2) C
W™D for 0 < r < s. The Nesting Property implies that F™?" " (R) C
Ww@=1) for 0 < r < s. It follows that R is a connected component of
Fn__sl(Pjgjf”m))). In particular, R C A" 'X,,.1. This contradicts the fact
that T' € SP,.

CASE 2: R C F/(T). Since Jl(pnfl) is completely invariant under Fj,_;

and J}n_l) ﬂP](\;[Hm)) # () we have RN Jl(jn_l) # (). Using Lemma , we find

that T is not a separated copy. However, T' is not a primitive copy either,

since F7(T) ¢ W™, This contradicts T € SP, and finishes the proof.
LEMMA 18. The set

Xorm\ |J Xq
QESP.

consists of a countable collection of analytic curves.
Proof. Let z € )~(n+m. Observe that Wtm) < )\”_l)zmﬂ. Therefore,

there exists k € Z, such F¥(z) € A»1X,, ;1. Let k be the minimal such
number. Assume that F¥(z) ¢ RU4R. Let K be the quadrant containing

F*(z) and let @ be the copy of PI((") under F* containing z. Let us show
that Q € SP,.
Assume that @ is not primitive. Then there exists 0 < j < k such that

FI(Q) € W™, Let j be the maximal such number. Let F7(Q) N Jl(pn_l) # 0.
Taking into account that F*(Q) N Jl(mnfl) # () and any two distinct small

Julia sets ng_l), 0 < i < p" !, may intersect only in a real point, we infer
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that k — j is divisible by p"~!. Let | = (k — j)/p"~!. Since Fk_j|Jn—1 =
F
F! | s using the Nesting Property we can conclude that F!_; is well de-

fined on F7(Q), and in particular at F7(z). We find that FJ(z) € A" 1 X4,
which contradicts k& > j > 0. Thus, F7(Q) N JI(;n_l) = () and Q is separated.

We have shown that ) € SP. By minimality of k, we have FV(z) ¢
AnlX, ) for all 0 < j < k. It follows that Q € SP,, which finishes the
proof. =

Recall that 7, = area(X,)/area(WM), €, = area(Y,,)/area(W ™).

Proof of Theorem [j Let C be the constant from Corollary Let
n,m € N. We need to show that

Mnam < C2nfimi1/En.

By Lemma modulo a countable set of analytic curves, the set )N(ner is the
union of all sets of the form Xq, @ € SP,. Using Corollary [16| and the fact

that the sets Xk,f/k, k € N, are symmetric with respect to the coordinate
axes, we obtain

< CQarea(/\”_leH) :CQﬁmH

B area(Yy,) n

area(Xq)

area(Yp)
Using Lemma [I7] we arrive at

area(Xnpm) = Z areau(XQ)SCQT}TLJrl Z area(Yp).
QESPa n QeSP,

Since the union of the sets Xg and Yg over @ € SP, is a subset of )Z'n, we
obtain

area(Xp4m) < C? Marea()?n).

n

This finishes the proof. =

4. Numerical results and algorithms. In this section we present nu-
merical results for several real periodic points of Feigenbaum renormalization
of periods 3,4,5 and 6. We compute bounds on ﬁn,én forn =2o0orn =3
and on the constant C from Corollary [I6] Also, we sketch some algorithms
we have used to compute the above quantities.

Notice that a real periodic point F' of renormalization of period p (in
the sense of ) is uniquely determined by a permutation s of the set
{0,1,...,p—1} decoding how the first p elements 0, F(0), ..., FP=1(0) of the
critical orbit are permuted by ordering them increasingly, i.e. F7(0) < F¥(0)
for 0 < j,k < p—1if and only if s(j) < s(k). Since the kneading sequence
of F' can be reconstructed from s, for any permutation s of {0,1,...,p— 1}
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there exists at most one real periodic point Fy of Feigenbaum renormal-
ization corresponding to s. We encode a permutation s by the sequence
[s71(0),s71(1),...,s71(p — 1)] in which each number i is on position s(i).
We obtain the following empirical results:

o For Fj; g9 713 < 0.0105, &3 > 0.69, C? < 52.

For Fiy 032 713 < 0.01, & > 0.3, C? < 26.

o For Fjy g439: iz < 0.014, & > 0.42, C? < 10.23.
o For Fg o431 fiz < 0.014, & > 0.43, C? < 22.2.
o For Fjy o549 iz < 0.08, & > 0.6, C2 < 3.1.

In each case we find (modulo numerical errors and errors coming from using
an approximation of F') that C’Qﬁn/én < 1. By Corollary , this suggests that
the corresponding Julia sets have Hausdorff dimension less than 2. Below we
briefly describe some algorithms we have used in the computations. Notice
that approximations of the sets P, Xn, and Yn, as well as an approximation
of the constant C, can be obtained similarly to the case of the fixed point of
period-doubling renormalization [§].

4.1. Computing real periodic points of Feigenbaum renormal-
ization. Notice that there exist effective algorithms for computing certain
fixed points of renormalization (see e.g. [5], [15], and [16]). Here we have
used a more straightforward algorithm, which is less technical, easier to im-
plement in a programming language, and easier to adjust to any real periodic
point of renormalization.

Given a period p we start by computing all real superattracting param-
eters ¢ of period p, i.e. ¢ € R such that P?(0) = 0 and P?(0) # 0 for all
1 < j <p-—1, where P.(z) = 2% 4 ¢. For each such parameter ¢ there is
a bifurcation cascade starting at the hyperbolic component of the Mandel-
brot set containing c. The limit of this cascade is a Feigenbaum parameter
(denoted by I(c)) with a stationary combinatorics. An approximation of this
parameter can be found as follows.

Given a unimodal map f(z) with critical point at 0, the kneading se-
quence is the sequence K (f) = {k1,ko,...} C {—1,0,1}", where k; = —1 if
f40) <0, k; = 1if f4(0) > 0 and k; = 0 if f2(0) = 0. Let s be the permuta-
tion of {0,...,p— 1} induced by P. as described above. Taking into account
that Pl( ) is conjugate to Py, on a domain containing the postcritical set we
can compute the kneading sequence K (Fy)) = [i1,12,...] of Py). Further,
we start computing an approximation of I(c) with a segment Iy = [-2, —1]
containing [(c). At step n, given a segment I,, containing /(c) we subdivide
it into two subsegments by the midpoint m,, of I,,. Comparing the kneading
sequences K (P,) and K(Py)) we find to which subsegment I(c) belongs



166 A. Dudko

and denote this subsegment by I, 1. Since the length of I, is 27" this allows
us to obtain an arbitrarily good approximation of I(c).

Recall that the iterates of the renormalization Rk(Pl(c)) converge to a
periodic point F' of renormalization. Given a sufficiently good approxima-
tion [ of I(¢) we approximate F' as RF (P;) with appropriately chosen k. In
more detail, we introduce the norms on the space of convergent power series

at zero:
oo oo
H g akzkH = E \ak|rk, r > 0.
k=0 " k=0

We choose r smaller than the radius of convergence of F'. Then we find the
smallest k such that

IRMY () = RMP) | > IRF(B) = REH(P)»

and set R¥(P;)) to be the approximation F of F.
To improve the approximation we consider the family

Fr(z) = F(2) + (1 — 1F"(0))2*

of maps having the same Taylor coefficients at zero as F except the coeffi-
cient at_ 22 equal to 7. This family is complete. Therefore, there exists 7 for
which F; belongs to the stable manifold of F' under the map R. We find a
sufficiently good approximation 7 of 7 using the same approach as for find-
ing the approximation { of [ (¢). Then we compute R*(F:) for appropriately
chosen k. We repeat the above two steps until we get an approximation F
of F' with sufficiently small |RF — F||,.

4.2. Estimating the central tiles. Given a real periodic point F' of
renormalization we approximate the central tile P; as follows. Take a suffi-
ciently large rectangle of the form {z € C: 0 < Rez < a, 0 < Imz < b}.
Take a sufficiently dense finite subset C of this rectangle. By the Koebe
Quarter Theorem, for any point z € C the disk U, of radius

[Re(F(2))
A[F'(2)]

u:U@

zeC

belongs to F~1(C \ R). Set

The connected component of U closest to the origin is an approximation
of P from below.

4.3. Estimating the sets )A(:n Since )Z'n is symmetric with respect to
the coordinate axes we can restrict our attention to the first quadrant. Take
a sufficiently dense finite subset C in PI(I). Fix a sufficiently large N € N.
Given a point z € C approximate the iterates z; = F/(z) and the derivatives
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DFJ(2),0 < j < N.If z; ¢ W for 0 < j < N, set U, = (). Assuming
zj € W™ for some 0 < 7 < N let j be minimal possible with this property,
and let R be the radius of the largest disk centered at z; which is contained
in W™ Then, by the Koebe Quarter Theorem, the disk U, of radius W

centered at z belongs to )?n We approximate )?n N Pl(l) by U.ee U--
An approximation of Y;, can be obtained in a similar way.

4.4. Estimating the distortion constant C. To estimate C from
Corollary [16| following [8] consider a univalent function ¢ : Ce¢yy — C. Let
w € Ceyt. There is a unique conformal isomorphism H,, : C.yt — D such
that Hy,(w) = 0 and H/ (w) > 0. The function ¢ = ¢ o H, ! is univalent on
the unit disk . Using the Koebe Distortion Theorem we obtain, for every
z € Ceut,

¢/ (2)] 1+ [Hy(2)|  [H,(2)]

¢/ (w)] (1= [Hy(2)])* [H],(w)|
We estimate C := sup{C(z,w) : z,w € P} by taking the maximum of
C(z,w) over a finite grid of points sufficiently dense in P;. Notice that these
estimates can be made rigorous (see [§] for details).

< C(z,w) :=
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