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EXTENDED COMPARISON BETWEEN TWO
NEWTON–JARRATT SIXTH ORDER SCHEMES FOR
NONLINEAR MODELS UNDER THE SAME SET OF

CONDITIONS

Abstract. Two sixth order convergence order schemes are compared and
extended to solve Banach space valued models. Earlier studies have used
derivatives and Taylor expansions up to order seven to show the convergence
order in a finite-dimensional Euclidean space setting. We compute the order
by finding computational convergence order or approximate computational
convergence order, and condition only on the derivative that is present in
the schemes. Moreover, a computable convergence radius, upper error bounds
and uniqueness of the solution are provided. Numerical applications illustrate
the theoretical results.

1. Introduction. Let X and Y denote Banach spaces, and D ⊆ X be
convex and open. Further, suppose that L(X,Y ) denotes the bounded linear
operator mappings of X into Y . In applied mathematics many problems can
be expressed in the form

(1.1) H(x) = 0,

where H : D ⊂ X → Y is a differentiable mapping. Numerous schemes to
compute a solution α of (1.1) are iterative, since solutions are rarely obtained
in closed form (see [1–3,6–10,12]).

2020 Mathematics Subject Classification: Primary 65E99; Secondary 65H10, 49M15.
Key words and phrases: Banach space, Fréchet derivative, local convergence.
Received 17 July 2021; revised 31 October 2021.
Published online 27 March 2023.

DOI: 10.4064/am2437-2-2023 [67] © Instytut Matematyczny PAN, 2023



68 J. R. Sharma et al.

Here, we investigate two sixth order schemes given in [4,11] for X = Y =
Rm respectively by

(1.2)

yn = xn − 2
3H

′(xn)
−1H(xn),

zn = xn − 1
2A

−1
n (3H ′(yn) +H ′(xn))H

′(xn)
−1H(xn),

xn+1 = zn − 2A−1
n H(zn),

where An = 3H ′(yn)−H ′(xn) and
(1.3)

yn = xn − 2
3H

′(xn)
−1H(xn),

zn = xn−
(
23
8 I−

(
3I−9

8H
′(xn)

−1H ′(yn)
)
H ′(xn)

−1H ′(yn)
)
H ′(xn)

−1H(xn),

xn+1 = zn − 1
2

(
5I − 3H ′(xn)

−1H ′(yn)
)
H ′(xn)

−1H(zn).

The sixth order convergence of (1.2) and (1.3) was established in [4, 11]
respectively by using Taylor series and conditions on H(i), i = 1, . . . , 7. These
conditions limit the applicability for these schemes. Notice that only the first
derivatives are used in the schemes. Indeed, consider H : D = [−5/2, 2] → R
defined by

H(x) =

{
x3 log(π2x2) + x5 sin 1

x , x ̸= 0,

0, x = 0,

leading to

H ′′′(x) =
1

x

[
(1−36x2) cos

(
1

x

)
+x

(
22+6 log(π2x2)+(60x2−9) sin

(
1

x

))]
.

Hence, H ′′′(x) is not continuous on D, so the results of [4,11] are not appli-
cable.

The goal of this paper is to extend the applicability of methods (1.2)
and (1.3) in cases not covered in earlier studies, which required the use of
derivatives up to order seven not appearing in the methods. The price we
pay by using conditions on the first derivative which actually appears in
the method is that we show only linear convergence. To find the conver-
gence order is not however our intention, since this is already known in the
m-dimensional Euclidean space. Notice also that the order is rediscovered
by using ACOC or COC (see Remark 2.1), which requires only the first
derivative. Moreover, in earlier studies using Taylor series no computable
error distances are available based say on generalized Lipschitz conditions.
So, we do not know for example in advance how many iterates are needed to
achieve a predetermined error tolerance. Furthermore, no uniqueness of the
solution results are available in the aforementioned studies; we also provide
such results. Our technique can be used to extend the applicability of other
methods in an analogous way, since it is fairly general. Finally, notice that
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local results of this type are important, since they demonstrate the difficulty
in choosing initial points.

We summarize the contents of the paper. In Section 2, the local conver-
gence analysis is presented including a convergence radius. Some numerical
applications are developed in Section 3.

2. Analysis. Some parameters and functions will be used in the local
convergence analysis of method (1.2). Consider D = [0,∞). Suppose the
following:

(i) There exists a function v0 : D → D continuous and nondecreasing and
such that the equation

(2.1) v0(t)− 1 = 0

has a minimal zero r0 ∈ D − {0}.
(ii) Set D0 = [0, 2r0). Let v : D0 → D be a continuous nondecreasing

function. Define h1 : D0 → D by

h1(t) =

	1
0 v((1− θ)t) dθ + 1

3

	1
0 v1(θt) dθ

1− v0(t)
.

The equation

(2.2) h1(t)− 1 = 0

has a minimal zero δ1 ∈ D0 − {0}.
(iii) The equation

(2.3) q(t)− 1 = 0, where q(t) = 1
2(3v0(h1(t)t) + v0(t)),

has a minimal zero r1 ∈ D0 − {0}.
(iv) Let r2 = min {r0, r1} and D1 = [0, r2). Let v1 : D1 → D be a continuous

nondecreasing function. Define h2 : D1 → D by

h2(t) =

	1
0 v((1− θ)t) dθ

1− v0(t)
+

3(v0(t) + v0(h1(t)t))
	1
0 v1(θt) dθ

4(1− v0(t))(1− q(t))
.

The equation

(2.4) h2(t)− 1 = 0

has a minimal zero δ2 ∈ D1 − {0}.
(v) The equation

v0(h2(t)t)− 1 = 0

has a minimal zero r3 ∈ D1 − {0}.
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(vi) Let r = min {r2, r3} and D2 = [0, r). Define h3 : D2 → D by

h3(t) =

[	1
0 v((1− θ)h2(t)t) dθ

1− v0(h2(t)t)

+
(v0(t) + 3v0(h1(t)t) + 2v0(h2(t)t))

	1
0 v1(θh2(t)t) dθ

2(1− v0(h2(t)t))(1− q(t))

]
h2(t).

The equation

(2.5) h3(t)− 1 = 0

has a minimal zero δ3 ∈ D2 − {0}.

We shall prove that

(2.6) δ = min {δi : i = 1, 2, 3},

is a convergence radius for method (1.2). Let D3 = [0, δ).
The definition of δ implies that for all t ∈ D3,

0 ≤ v0(t) < 1,(2.7)
0 ≤ v0(h2(t)t) < 1,(2.8)
0 ≤ hi(t) < 1.(2.9)

We denote by B̄(α, δ) the closure of the ball B(α, δ) of radius δ > 0 and
center α. From now on the functions vi are as above.

The local convergence analysis requires the following conditions (called
conditions A). Assume:

(A1) H : D → Y is continuously differentiable with α a simple solution of
equation (1.1).

(A2) ∥H ′(α)−1(H ′(x)−H ′(α))∥ ≤ v0(∥x− α∥) for all x ∈ D.
(A3) Set D0 = D ∩B(α, r0). Then ∥H ′(α)−1(H ′(x)−H ′(y))∥ ≤ v(∥x− y∥)

and ∥H ′(α)−1H ′(x)∥ ≤ v1(∥x− α∥) for all x, y ∈ D0.
(A4) B̄(α,R) ⊂ D for some R > 0 to be determined later.
(A5) There exists x∗ ≥ δ satisfying

1�

0

v0(θx
∗) dθ < 1.

Set D1 = D ∩ B̄(α, x∗).

Next, conditions (A) are used in the local convergence result for method
(1.2).
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Theorem 2.1. Suppose conditions (A) with R = δ hold. Then the fol-
lowing assertions hold for method (1.2) provided that x0 ∈ B(α, δ)− {α}:

{xn} ⊂ B(α, δ), lim
n→∞

xn = α,(2.10)

∥yn − α∥ ≤ h1(dn)dn ≤ dn < δ,(2.11)
∥zn − α∥ ≤ h2(dn)dn ≤ dn,(2.12)
∥xn+1 − α∥ ≤ h3(dn)dn ≤ dn,(2.13)

with dn = ∥xn − α∥. Moreover, the only solution of equation (1.1) in the set
D1 given in (A5) is α.

Proof. Assertions (2.10)–(2.13) will be proved by induction on n. Choose
w ∈ B(α, δ)− {α}. Using (A1), (A2), (2.6) and (2.7), we have
(2.14) ∥H ′(α)−1

(
H ′(w)−H ′(α)

)
∥ ≤ v0∥w − α∥ < v0(δ) < 1.

But then (2.14) and Banach’s lemma [3] on inverses of linear operators imply
H ′(w)−1 ∈ L(Y,X) and

(2.15) ∥H ′(w)−1H ′(α)∥ ≤ 1

1− v0∥w − α∥
.

Moreover y0 and z0 exist by the first and second substep of (1.2) for n = 0
(if w = x0 in (2.15)), from which we can also write
(2.16)
y0 − α = x0 − α−H ′(x0)

−1H(x0) +
1
3H

′(x0)
−1H(x0)

= [H ′(x0)
−1H ′(α)]

[ 1�

0

H ′(α)−1(H ′(α+θ(x0−α))−H ′(x0)) dθ(x0−α)
]

+ 1
3H

′(x0)
−1H(x0)

and
(2.17) z0 − α = x0 − α

−H ′(x0)
−1H(x0)+

3
2A

−1
0 (H ′(y0)−H ′(x0))H

′(x0)
−1H(x0).

Then by (2.6), (2.9) (for i = 1, 2), (A3), (2.15) (for w = x0), (2.16) and
(2.17), we have in turn

(2.18) ∥y0 − α∥ ≤
	1
0 v((1− θ)d0) dθ d0 +

1
3

	1
0 v1(θd0) dθ d0

1− v0(d0)

= h1(d0)d0 ≤ d0 < δ,

and
(2.19)

∥z0 − α∥ ≤
[	1

0 v((1− θ)d0) dθ

1− v0(d0)
+

3(v0(d0) + v0(∥y0 − α∥))
	1
0 v1(θd0) dθ

4(1− v0(d0))(1− q(d0))

]
d0

≤ h2(d0)d0 ≤ d0,
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which proves that y0, z0 ∈ B(α, δ) and (2.10)–(2.12) hold with n = 0, where
we have also used

∥(2H ′(α))−1(A0 −H ′(α))∥ ≤ 1
2(3∥H

′(α)−1(H ′(y0)−H ′(α))∥
+ ∥H ′(α)−1(H ′(x0)−H ′(α))∥)

≤ 1
2(3v0(∥y0 − α∥) + v0(d0))

≤ q(d0) ≤ q(δ) < 1,

so

∥A−1
0 H ′(α)∥ ≤ 1

2(1− q(d0))
.

The iterate x1 is well defined by the third substep of method (1.2), from
which we can also write

(2.20) x1 − α = z0 − α

−H ′(z0)
−1H(z0) +H ′(z0)

−1(A0 − 2H ′(z0))A
−1
0 H(z0).

It follows that in view of (2.6), (2.9) (for i = 3), (2.15) (for w = z0) and
(2.18)–(2.20),
(2.21)

∥x1 − α∥ ≤
[	1

0 v((1− θ)∥z0 − α∥) dθ
1− v0(∥z0 − α∥)

+
(3v0(∥y0−α∥)+v0(d0)+2v0(∥z0−α∥))

	1
0 v1(θ∥z0−α∥) dθ

2(1−q(d0))(1−v0(∥z0−α∥))

]
× ∥z0 − α∥

≤ h3(d0)d0 ≤ d0,

proving x1 ∈ B(α, δ) and (2.13) for n = 0. Replace x0, y0, z0, x1 by xn, yn,
zn, xn+1 in the preceding calculations to terminate the induction. Then, by
the estimation

(2.22) ∥xn+1 − α∥ ≤ βdn < δ,

where β = h3(d0) ∈ [0, 1), we get xn+1 ∈ B(α, δ), and limn→∞ xn = α.
Suppose u ∈ D1 with H(u) = 0, and set T =

	1
0H

′(u+ θ(α− u)) dθ. By
(A2) and (A5), we get

(2.23) ∥H ′(α)−1(T −H ′(α))∥ ≤
1�

0

v0(θ∥α− u∥) dθ

≤
1�

0

v0(θx
∗) dθ < 1,
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so u = α follows, since T−1 ∈ L(Y,X), and

0 = H(α)−H(u) = T (α− u).

Next, we develop the local convergence analysis of method (1.3) in an
analogous manner. Now the h functions are defined by

h̄1(t) =

	1
0 v((1− θ)t) dθ + 1

3

	1
0 v1(θt) dθ

1− v0(t)
= h1(t),

h̄2(t) =

	1
0 v((1− θ)t) dθ

1− v0(t)
+

3

8

(
3

(
v0(t) + v0(h1(t)t)

1− v0(t)

)2

+ 2
v0(t) + v0(h1(t)t)

1− v0(t)

)	1
0 v1(θt) dθ

1− v0(t)
,

h̄3(t) =

[	1
0 v((1− θ)h̄2(t)t) dθ

1− v0(h̄2(t)t)
+

(v0(h̄2(t)t) + v0(t))
	1
0 v1(θh̄2(t)t) dθ

(1− v0(t))(1− v0(h̄2(t)t))

+ 3
(v0(t) + v0(h̄1(t)t))

	1
0 v1(θh̄2(t)t) dθ

(1− v0(t))2

]
h̄2(t),

and

(2.24) δ̄ = min δ̄i,

where δ̄i is the least solution (if any exists) in D0 of the equation

(2.25) h̄i(t)− 1 = 0.

The functions h̄i are motivated by method (1.3), since

y0 − α = x0 − α−H ′(x0)
−1H(x0) +

1
3H

′(x0)
−1H(x0)

implies

∥y0 − α∥ ≤
	1
0 v((1− θ)d0) dθ +

1
3

	1
0 v1(θd0) dθ

1− v0(d0)

≤ h̄1(d0)d0 ≤ d0 < δ̄,

and

z0 − α = x0 − α−H ′(x0)
−1H(x0)− 3

8

(
5I − 8H ′(x0)

−1H ′(y0)

+ 3(H ′(x0)
−1H ′(y0))

2
)
H ′(x0)

−1H(x0)

= x0 − α−H ′(x0)
−1H(x0)− 3

8

(
3(H ′(x0)

−1H ′(y0)− I)2

− 2(H ′(x0)
−1H ′(y0)− I)

)
H ′(x0)

−1H(x0)
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yields

∥z0 − α∥ ≤
[	1

0 v((1− θ)d0) dθ

1− v0(d0)
+

3

8

(
3

(
v0(d0) + v0(∥y0 − α∥)

1− v0(d0)

)2

+ 2
v0(d0) + v0(∥y0 − α∥)

1− v0(d0)

)	1
0 v1(θd0) dθ

1− v0(d0)

]
d0

≤ h̄2(d0)d0 ≤ d0,

and further

x1 − α = z0 − α−H ′(z0)
−1H(z0)

+H ′(z0)
−1(H ′(x0)−H ′(z0))H

′(x0)
−1H(z0)

− 3H ′(x0)(H
′(x0)−H ′(y0))H

′(x0)
−1H(z0)

leads to

∥x1 − α∥ ≤
[	1

0 v((1− θ)∥z0 − α∥) dθ
1− v0(∥z0 − α∥)

+
(v0(d0) + v0(∥z0 − α∥))

	1
0 v1(θ∥z0 − α∥) dθ

(1− v0(∥z0 − α∥))(1− v0(d0))

+ 3
(v0(d0) + v0(∥y0 − α∥))

	1
0 v1(θ∥z0 − α∥) dθ

(1− v0(d0))2

]
∥z0 − α∥

≤ h̄3(d0)d0 ≤ d0.

Hence, we arrive at the corresponding result for method (1.3):

Theorem 2.2. Suppose conditions (A) hold for R = δ̄. Then the con-
clusions of Theorem 2.1 hold for method (1.3) with the hi functions replaced
by h̄i.

Remark 2.1. The computational order of convergence (COC) [13] is
defined as

(2.26) COC = log

∥∥∥∥di+2

di+1

∥∥∥∥/ log ∥∥∥∥di+1

di

∥∥∥∥, i = 1, 2, . . . ,

and the approximate computational order of convergence (ACOC) [4] is

(2.27) ACOC = log

∥∥∥∥ d̄j+2

d̄j+1

∥∥∥∥/ log ∥∥∥∥ d̄j+1

d̄j

∥∥∥∥, j = 1, 2, . . . ,

where d̄j = xj−xj−1. Hence, we provide a practical convergence order which
avoids higher derivatives.

3. Numerical results. Estimates (2.6) and (2.24) are used to find δ
and δ̄, respectively.
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Example 1. We consider the example given in the introduction. Note
that α = 1/π is a zero of the function H. Then we can choose v0(t) = Lt,
v(t) = Lt and v1(t) = L/2, where L = 2

2π+1(80 + 16π + (11 + 12 log 2)π2).
So, we obtain the radii

δ1=1.0355×10−1, δ2=1.5843×10−5, δ3=1.3069×10−5, δ=1.3069×10−5,

δ̄1=1.0355×10−1, δ̄2=1.5850×10−3, δ̄3=2.5376×10−4, δ̄=2.5376×10−4.

Example 2. Consider the function H : D → R3 defined by

H(x) = (10x1+sin(x1+x2)−1, 8x2−cos2(x3−x2)−1, 12x3+sin(x3)−1)T ,

where x = (x1, x2, x3)
T .

The Fréchet derivative of H(x) is given by

H ′(x) =

10 + cos(x1 + x2) cos(x1 + x2) 0

0 8 + sin 2(x2 − x3) − sin 2(x2 − x3)

0 0 12 + cos(x3)

 .

We can choose v0(t) = v(t) = 0.269812t and v1(t) = 1.08139. So, we obtain

δ1 = 1.5802, δ2 = 8.8440× 10−1, δ3 = 8.3063× 10−1, δ = 8.3063× 10−1,

δ̄1 = 1.5802, δ̄2 = 7.7517× 10−1, δ̄3 = 5.7843× 10−1, δ̄ = 5.7843× 10−1.

Example 3. Next, we consider an equation due to Kepler:

H(x) = x− β sin(x)−K = 0,

where 0 ≤ β < 1, 0 ≤ K ≤ π. Different values of β and K are given in [5].
Set K = 0.1 and β = 0.27. Then we have α ≈ 0.13682853547099 . . . . Notice
that

H ′(x) = 1− β cos(x),

so

|H ′(α)−1(H ′(x)−H ′(y))| = |β(cos(x)− cos(y))|
|1− β cos(α)|

=
2β

∣∣sin(x+y
2 ) sin(x−y

2 )
∣∣

|1− β cos(α)|

≤ β

|1− β cos(α)|
|x− y|

and

|H ′(α)−1H ′(x)| = |1− β cos(x)|
|1− β cos(α)|

≤ 1 + β

|1− β cos(α)|
.

Then we can choose v0(t) = v(t) = 0.3685888t and v1(t) = 1.7337327. The
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calculated values of parameters are given by

δ1=7.6343×10−1, δ2=4.6114×10−1, δ3=4.2457×10−1, δ=4.2457×10−1,

δ̄1=7.6343×10−1, δ̄2=5.1284×10−1, δ̄3=3.2891×10−1, δ̄=3.2891×10−1.

Example 4. Consider C[0, 1] = Y = X and D = B̄(0, 1). Define a
function H on D by

H(φ)(x) = φ(x)− 10

1�

0

xθφ(θ)3 dθ.

Then

H ′(φ(ξ))(x) = ξ(x)− 30

1�

0

xθφ(θ)2ξ(θ) dθ for each ξ ∈ D.

Since α = 0, we can choose v0(t) = 15t, v(t) = 30t, v1(t) = 30. Then we
obtain

δ1=3.0000×10−1, δ2=1.9135×10−4, δ3=1.5863×10−4, δ=1.5863×10−4,

δ̄1=3.0000×10−1, δ̄2=7.2968×10−3, δ̄3=1.4109×10−3, δ̄=1.4109×10−3.

Example 5. Consider the Hammerstein equation

(3.1) x(s) =

1�

0

G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt,

G(s, t) =

{
(1− s)t, t ≤ s,

s(1− t), s ≤ t.

Clearly, we have α(s) = 0. Define H : D ⊆ C[0, 1] → C[0, 1] by

H(x)(s) = x(s)−
1�

0

G(s, t)

(
x(t)3/2 +

x(t)2

2

)
dt.

Observe that ∥∥∥ 1�

0

G(s, t)dt
∥∥∥ ≤ 1/8.

Since

H ′(x)y(s) = y(s)−
1�

0

G(s, t)
(
3
2x(t)

1/2 + x(t)
)
dt,

and H ′(α(s)) = 1, we have

(3.2) ∥H ′(α)−1(H ′(x)−H ′(y))∥ ≤ 5
16∥x− y∥.

Replacing y by x0 we have

∥H ′(α)−1(H ′(x)−H ′(x0))∥ ≤ 5
16∥x− x0∥.
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Therefore, we can take

v0(x) = v(x) = L0x, v1(x) = Lx, where L0 = L = 5
16 .

Hence, we obtain

δ1 = 1.7454, δ2 = 1.2208, δ3 = 1.1917, δ = 1.1917,

δ̄1 = 1.7454, δ̄2 = 1.0594, δ̄3 = 9.8115× 10−1, δ̄ = 9.8115× 10−1.

Example 6. Lastly, we intend to show the sixth order convergence of the
methods under study by calculating the approximate computational order of
convergence (ACOC) using formula (2.27). To do that, we apply the methods
(1.2) and (1.3) to solve systems of nonlinear equations in Rm. Computations
are performed in Mathematica using multiple-precision arithmetic. For ev-
ery method, we record the number n of iterations needed for the stopping
criterion

∥H(xn)∥ < 10−350

to be satisfied. This precision is required to compute the approximate com-
putational order of convergence (ACOC) of higher order methods. This is
because higher order methods gain a large number of significant digits of a
solution in just a few iterations. The command used to get such precision
is N [expression,n], which gives the numerical value of the expression with
n-digit precision.

Numerical results are displayed in Table 1, and include:

• The required number n of iterations.
• The value of ∥H(xn)∥ of approximation to the corresponding solution,

where N(−h) denotes N × 10−h.
• The approximate computational order of convergence (ACOC).
• The elapsed CPU-time in seconds recorded by taking the mean of 50 per-

formances of the program.

Let us consider the system of nonlinear equations

(3.3)

{
x2ixi+1 − 1 = 0, 1 ≤ i ≤ m− 1,

x2ix1 − 1 = 0, i = m.

with initial value x0 = {2,m times· · · , 2}T . The required solution of the systems
for m = 8, 25, 50, 100 is α = {1,m times· · · , 1}T .

From the numerical results shown in Table 1 it is clear that methods (1.2)
and (1.3) have stable convergence behavior. Similar numerical tests, carried
out for a number of other problems, confirmed the above conclusions to a
large extent.
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Table 1. Performance of methods

Methods n ∥H(xn)∥ ACOC CPU-time

m = 8

(1.2) 4 1.2961(−304) 6 0.0475
(1.3) 4 1.1849(−168) 6 0.0472

m = 25

(1.2) 4 2.2913(−304) 6 0.1420
(1.3) 4 2.0947(−168) 6 0.0939

m = 50

(1.2) 4 3.2404(−304) 6 0.4521
(1.3) 4 2.9624(−168) 6 0.2187

m = 100

(1.2) 4 4.5826(−304) 6 0.9357
(1.3) 4 4.1894(−168) 6 0.4722
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