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Maximal Haagerup subgroups in Zn+1 ⋊ρn GL2(Z)

by

Alain Valette (Neuchâtel)

Abstract. For n ≥ 1, let ρn denote the standard action of GL2(Z) on the space
Pn(Z) ≃ Zn+1 of homogeneous polynomials of degree n in two variables with inte-
ger coefficients. For G a non-amenable subgroup of GL2(Z), we describe the maximal
Haagerup subgroups of the semidirect product Zn+1 ⋊ρn G, extending the classification
of Jiang–Skalski (2021) of the maximal Haagerup subgroups in Z2 ⋊ SL2(Z). We prove
that, for n odd, the group Pn(Z) ⋊ SL2(Z) has infinitely many pairwise non-conjugate
maximal Haagerup subgroups which are free groups; and, for n even, Pn(Z)⋊GL2(Z) has
infinitely many pairwise non-conjugate maximal Haagerup subgroups which are isomor-
phic to SL2(Z).

1. Introduction. For discrete countable groups, the Haagerup property
is a weak form of amenability that proved to be useful in many questions
in analytical group theory, ranging from K-theory to dynamical systems
(see [CC+01]). It is not difficult to see that, in a countable group, every
Haagerup subgroup is contained in a maximal one (see [JS21, Proposition 1.3]
or Lemma 2.1 below). This raises the question, given a group G, of describing
the maximal Haagerup subgroups of G.

The study of maximal Haagerup subgroups was initiated by Y. Jiang and
A. Skalski [JS21], and we refer to this paper for many interesting and intrigu-
ing examples. We mention here Theorem 2.12 in [JS21], where the authors
classify maximal Haagerup subgroups of the semidirect product Z2⋊SL2(Z).
This example is especially interesting in view of a result of Burger [Bu91, Ex-
ample 2 following Proposition 7]: if G is a non-amenable subgroup of SL2(Z),
then the pair (Z2⋊G,Z2) has the relative property (T); in particular, Z2⋊G
is not Haagerup, in spite of the fact that Z2 and G are both Haagerup.
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Theorem 1.1 ([JS21, Theorem 2.12]). Let H be a maximal Haagerup
subgroup of Z2 ⋊ SL2(Z). Then there is a dichotomy: either

(1) H = Z2 ⋊ C, where C is a maximal amenable (1) subgroup of SL2(Z);
or

(2) H ∩ Z2 is trivial; then H is not amenable. If K denotes the image of H
under the quotient map Z2⋊SL2(Z) → SL2(Z) (so that K is isomorphic
to H), then H = {(b(g), g) : g ∈ K} where b : K → Z2 is a 1-cocycle
that cannot be extended to a larger subgroup of SL2(Z).

Remark 1.2. Denote by L(G) the group von Neumann algebra of the
group G. In [JS21, Theorem 3.1], Jiang and Skalski prove the stronger result
that, if C is a maximal amenable subgroup of SL2(Z) such that Z2 ⋊ C has
infinite conjugacy classes, then L(Z2 ⋊C) is a maximal Haagerup von Neu-
mann subalgebra of L(Z2⋊SL2(Z)), where the Haagerup property for finite
von Neumann algebras was defined in [Jo02]. Subsequently Y. Jiang [Ji21,
Corollary 4.3] showed that L(SL2(Z)) is a maximal Haagerup subalgebra in
L(Z2⋊SL2(Z)). It was pointed out to us by A. Skalski that there is no known
example of a maximal Haagerup subgroup H in a group G such that L(H)
is not maximal Haagerup in L(G).

We now turn to the results of the present paper. Fix n ≥ 1 and, for
A = Z,R,C, denote by Pn(A) the set of polynomials in two variables X,Y ,
with coefficients in A, which are homogeneous of degree n, so that Pn(A) ≃
An+1. It is a classical fact that GL2(R) admits an irreducible representation
ρn on Pn(R) given as follows: for P ∈ Pn(R) and A =

(
a11 a12
a21 a22

)
∈ GL2(R),

set

(ρn(A)(P ))(X,Y ) = P ((X,Y ) ·A) = P (a11X + a21Y, a12X + a22Y ).

Since ρn(GL2(Z)) leaves Pn(Z) invariant, we may form the semidirect prod-
uct

Gn := Pn(Z)⋊ρn GL2(Z)

(observe that G1 = Z2 ⋊GL2(Z) contains Z2 ⋊ SL2(Z) as a subgroup of in-
dex 2). Let G be a non-amenable subgroup of GL2(Z). Our goal is to classify
the maximal Haagerup subgroups of Pn(Z) ⋊ρn G ⊂ Gn. Here is our first
main result, extending Theorem 1.1:

Theorem 1.3. Fix n ≥ 1 and a non-amenable subgroup G of GL2(Z).
Let H be a maximal Haagerup subgroup of Pn(Z)⋊ρn G. Then either

(1) H is amenable, in which case H = Pn(Z) ⋊ρn C, with C maximal
amenable in G; or

(1) We classify those subgroups in Proposition 2.7.
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(2) H is non-amenable and there exists a subgroup K ⊂ G isomorphic to H,
and a 1-cocycle b ∈ Z1(K,Pn(Z)) such that

H = {(b(k), k) : k ∈ K}
and b cannot be extended to a larger subgroup of G. (In particular, if b
is a 1-coboundary, then K = G.)

Conversely, any subgroup of Pn(Z) ⋊ρn G of one of the above two forms
defines a maximal Haagerup subgroup in Pn(Z)⋊ρn G.

Even if the conclusion looks very similar to Theorem 1.1, we emphasize
that we had to come up with a totally different argument to show that the
intersection H ∩ Pn(Z) is either Pn(Z) or trivial.

Theorems 1.1 and 1.3 raise an interesting – and somewhat unusual –
question in cohomology of groups: to describe maximal Haagerup subgroups
that are non-amenable, we need to describe 1-cocycles that cannot be ex-
tended to a larger subgroup. In the case of ρ1, this question is extensively
studied in [JS21, Section 2] (from Lemma 2.14 to Proposition 2.18). We at-
tack the question by observing that, for K a subgroup in SL2(Z) or GL2(Z),
a cocycle b on K cannot be extended to a larger subgroup if and only if, for
any overgroup L of K, the 1-cohomology class of b is not in the image of
the restriction map H1(L,Pn(Z)) → H1(K,Pn(Z)). This suggests looking
for subgroups K which are maximal, or close to being maximal, in SL2(Z)
or GL2(Z). Using this approach we prove the following result, which seems
to be new even for n = 1:

Theorem 1.4. Assume that n ≥ 1 is odd. Then there exists a free
subgroup K in SL2(Z) such that Pn(Z) ⋊ SL2(Z) contains infinitely many
maximal Haagerup subgroups of the form H = {(b(k), k) : k ∈ K}, with
b ∈ Z1(K,Pn(Z)), which are pairwise non-conjugate under Pn(Z). Moreover,
the subgroup K may be chosen either with infinite index or with arbitrarily
large finite index.

In the even case we get:

Theorem 1.5. Assume that n ≥ 2 is even. Then the semidirect product
Gn contains infinitely many maximal Haagerup subgroups H of the form
H = {(b(g), g) : g ∈ SL2(Z)}, where b ∈ Z1(SL2(Z), Pn(Z)), which moreover
are pairwise non-conjugate under Pn(Z).

It turns out that the cases of odd and even n’s are very different: the
reason is that the GL2(Z)-action on Pn(Z) factors through PGL2(Z) for n
even, while for n odd it does not.

The paper is organized as follows. Section 2 is devoted to prerequi-
sites, with the exception of Proposition 2.7, describing precisely the max-
imal amenable subgroups in SL2(Z). In Section 3 we prove the analogue of
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Burger’s aforementioned result, namely that the pair (Gn, Pn(Z)) has the
relative property (T) for n ≥ 1. Theorem 1.3 is proved in Section 4, while
cohomological questions are treated in Sections 5 (n odd) and 6 (n even);
in particular, Theorem 1.4 is proved in Section 5, and Theorem 1.5 in Sec-
tion 6. Theorem 1.5 is actually proved by establishing explicit formulae for
the ranks (2) of H1(SL2(Z), Pn(Z)) and H1(GL2(Z), Pn(Z)); those formulae
may have their own interest. A combinatorial application of the methods
ends the paper.

2. Generalities

2.1. Haagerup property. The following results on countable groups
will be used freely:

• The group GL2(Z) is Haagerup (see [CC+01, Sections 1.2.2 or 1.2.3]).
• An extension of a Haagerup group by an amenable group is Haagerup; in

particular, every amenable group is Haagerup (see [CC+01, Proposition
6.1.5]).

Lemma 2.1. Let G be a countable group. Any Haagerup subgroup of G is
contained in a maximal Haagerup subgroup.

Proof. (compare with [JS21, Proposition 1.3]) To apply Zorn’s lemma,
we must show that being Haagerup is stable by arbitrary increasing unions
of subgroups. This follows from the fact that, for countable groups, being
Haagerup is a local property, i.e a countable group is Haagerup if and only
if every finitely generated subgroup is Haagerup (see [CC+01, Proposition
6.1.1]).

2.2. 1-cohomology of groups. We recall the following facts from the
cohomology of groups. For G a group and A a G-module, define the group
of 1-cocycles:

Z1(G,A) = {b : G → A : b(gh) = gb(h) + b(g) for all g, h ∈ G};

the group of 1-coboundaries:

B1(G,A) = {b ∈ Z1(G,A) : there exists a ∈ A such that
b(g) = ga− a for all g ∈ G};

and the first cohomology group:

H1(G,A) = Z1(G,A)/B1(G,A).

The following is proved e.g. in [Br82, Proposition 2.3].

(2) By the rank of a finitely generated abelian group, we mean the torsion-free rank.
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Proposition 2.2. Let G be a group and let A be a G-module. Splittings
of the split extension

0 → A → A⋊G → G → 1

are given by ib : G → A ⋊ G : g 7→ (b(g), g) with b ∈ Z1(G,A) and are
classified up to A-conjugacy by the first cohomology group H1(G,A).

The first part of the following lemma is a variation on [Gu80, Corol-
laire 7.2, p. 39].

Lemma 2.3. Let G be a group and A be a G-module with cancellation
by 2 (i.e. 2x = 0 ⇒ x = 0).

(1) Assume G contains a central element z that acts on A by −1. Then
H1(G,A) is a vector space over the field with two elements. Moreover,
b ∈ B1(G,A) if b(z) belongs to 2A.

(2) Assume that G contains a central element c of order 2 such that the mod-
ule action on A factors through G/⟨c⟩. Then the map H1(G/⟨c⟩, A) →
H1(G,A) (induced by the quotient map G → G/⟨c⟩) is an isomorphism.

Proof. (1) We have to prove that, for every b ∈ Z1(G,A), we have 2b ∈
B1(G,A). But for g ∈ G we have, using zg = gz in the third equality,

b(z)− b(g) = b(z) + zb(g) = b(zg) = b(gz) = gb(z) + b(g).

Rearranging gives
2b(g) = (1− g)b(z).

Hence 2b ∈ B1(G,A). If we may write b(z) = 2a for some a ∈ A, by can-
celling 2 on both sides we get b(g) = (1− g)a, so b ∈ B1(G,A).

(2) The map H1(G/⟨c⟩, A) → H1(G,A) is clearly injective. For surjec-
tivity, fix b ∈ Z1(G,A) and consider b(c2) = b(1) = 0: using the cocycle
relation yields

0 = (1 + c)b(c) = 2b(c),

hence b(c) = 0 and b factors through G/⟨c⟩.

2.3. About SL2(Z) and GL2(Z). We denote by Cn the cyclic group of
order n, and by Dn the dihedral group of order 2n. Set

s =

(
0 −1

1 0

)
, t =

(
0 −1

1 1

)
, ε =

(
−1 0

0 −1

)
, w =

(
0 1

1 0

)
.

It is well-known (see [Se77, Example 1.5.3]) that SL2(Z) admits a decompo-
sition as an amalgamated product:

SL2(Z) ≃ C4 ∗C2 C6.
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with C4 = ⟨s⟩, C6 = ⟨t⟩ and C2 = {1, ε}. It extends to an amalgamated
product decomposition of GL2(Z) (see [BT16, Section 6]):

(1) GL2(Z) ≃ D4 ∗D2 D6,

with D4 = ⟨s, w⟩, D6 = ⟨t, w⟩ and D2 = ⟨ε, w⟩.

Lemma 2.4. The amenable radical of GL2(Z) is the subgroup C2.

Proof. This is a very particular case of a result of Cornulier [Co09, Propo-
sition 7]: Let G = A ∗C B be an amalgamated product such that [A : C] ≥ 2
and [B : C] ≥ 3. Then the amenable radical of G is the largest normal
subgroup of C which is amenable and normalized by both A and B.

Our aim now is to describe the maximal amenable subgroups of PSL2(Z).
Recall that an element A ∈ SL2(R), A ̸= ±Id, is elliptic if |Tr(A)| < 2,
parabolic if |Tr(A)| = 2, and hyperbolic if |Tr(A)| > 2. These concepts clearly
descend to PSL2(R). For A =

(
a b
c d

)
∈ SL2(R), we denote by

[
a b
c d

]
the image

of A in PSL2(R).

Lemma 2.5.

(1) The maximal amenable subgroups of PSL2(Z) are isomorphic to C3, Z,
or D∞ (the infinite dihedral group).

(2) If A ∈ PSL2(Z) is parabolic, then A is contained in a unique maximal
amenable subgroup, isomorphic to Z.

(3) If A =
[
a b
c d

]
∈ PSL2(Z) is hyperbolic, then A is contained in a unique

maximal amenable subgroup, isomorphic to Z or D∞. The second case
happens if A is conjugate to a symmetric matrix. If the second case
happens, then the integer binary quadratic form

QA(x, y) := bx2 + (d− a)xy − cy2

represents −b over Z.

Proof. (1) Since PSL2(Z) is the free product C2 ∗ C3, by the Kurosh
theorem any subgroup of PSL2(Z) is a free product of a free group with
conjugates of the free factors. So a subgroup does not contain a free group if
and only if it is isomorphic to one of the following: C2, C3,Z, C2 ∗C2 = D∞;
note that these four groups are amenable. It remains to show that any copy
of C2 is contained in at least one copy of D∞; but any element of order 2
in PSL2(Z) is conjugate to the image of s, and the images of s and tst−1

together generate a copy of D∞.
(2) If A is parabolic then, up to conjugacy in PSL2(Z), we may assume

that A =
[
1 k
0 1

]
for some k ∈ Z, k ̸= 0. Let H be a maximal amenable

subgroup of PSL2(Z) containing A; by (1), H is isomorphic either to Z
or to D∞. In both cases H normalizes the subgroup ⟨A⟩. But by direct
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computation the normalizer of ⟨A⟩ is
〈
[ 1 1
0 1 ]

〉
, which is therefore the unique

maximal amenable subgroup contaning A.
(3) Let H be a maximal amenable subgroup of PSL2(Z) containing A.

Again, H normalizes ⟨A⟩. But A is conjugate in PSL2(R) to
[
λ 0
0 1/λ

]
(with

λ > 1) whose normalizer in PSL2(R) is

R⋊ C2 =

{[
et 0

0 e−t

]
: t ∈ R

}
⋊
〈[

0 −1

1 0

]〉
.

So H is the intersection of PSL2(Z) with a given conjugate of R⋊C2, which
proves uniqueness of H (and re-proves that H is isomorphic either to Z or
to D∞).

For the second statement, we may assume that A is symmetric. Then, as
the eigenspaces of A are orthogonal in R2, we see without computation that[
0 −1
1 0

]
conjugates A to A−1, so that A and

[
0 −1
1 0

]
together generate a copy

of D∞ (then contained in a maximal one).
For the final statement, observe that the maximal amenable subgroup

containing A is isomorphic to D∞ if and only if there exists an involution
B ∈ PSL2(Z) that conjugates A to A−1. Assume such a B exists. Then,
denoting by A,B lifts of A,B in SL2(Z), we will have BAB

−1
= ±A

−1.
Taking the trace of both sides, we see that the minus sign leads to Tr(A) = 0,
in contradiction with |Tr(A)| > 2. So BAB

−1
= A

−1 or BA = A
−1

B.
Now B has order 4 in SL2(Z), and therefore Tr(B) = 0. So we may write
B =

( x y
z −x

)
and we get(

x y

z −x

)
·
(
a b

c d

)
=

(
d −b

−c a

)
·
(
x y

z −x

)
.

Equating the (1, 1)-coefficients on both sides yields

ax+ cy = dx− bz ⇐⇒ z =
(d− a)x− cy

b
.

Taking into account the condition det(B) = 1, i.e. −1 = x2 + yz, and
inserting the previous value of z, gives

−1 = x2 + y
(d− a)x− cy

b
⇐⇒ QA(x, y) = −b,

which concludes the proof. Note that if A is symmetric, i.e. b = c, then
QA(0, 1) = −b.

Example 2.6. We claim that the maximal amenable subgroup ofPSL2(Z)
containing A = [ 3 1

2 1 ] is infinite cyclic. To see this, we check that the quadratic
form QA(x, y) = x2 − 2xy − 2y2 does not represent −1. But the equation
x2 − 2xy − 2y2 = −1 is equivalent to (x − y)2 − 3y2 = −1, which leads to
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Pell’s equation X2 − 3Y 2 = −1; as the fundamental unit 2 +
√
3 in Z[

√
3]

has norm 1, this equation has no solution.

We now lift the results of Lemma 2.5 to SL2(Z). Since a maximal amenable
subgroup of SL2(Z) must clearly contain the center, we see that the maximal
amenable subgroups of SL2(Z) are exactly the pullbacks of maximal amenable
subgroups of PSL2(Z) by the quotient map SL2(Z) → PSL2(Z). Observe
that the inverse image of an involution in PSL2(Z) has order 4 in SL2(Z);
consequently, the inverse image in SL2(Z) of a copy of D∞ in PSL2(Z) will
be isomorphic to the semidirect product Z⋊C4 where a generator of C4 acts
on Z by n 7→ −n. So we immediately get the following, which improves on
[JS21, Proposition 2.13]:

Proposition 2.7.

(1) The maximal amenable subgroups of SL2(Z) are isomorphic to C6, Z×C2,
or Z ⋊ C4.

(2) For parabolic (resp. hyperbolic) matrices in SL2(Z), item (2) (resp.
item (3)) of Lemma 2.5 applies with the obvious changes.

3. Relative property (T)

Proposition 3.1. Let G be a non-amenable subgroup of GL2(Z).

(1) The restriction of the representation ρn to G is irreducible.
(2) The pair (Pn(Z) ⋊ρn G,Pn(Z)) has the relative property (T). In partic-

ular, Pn(Z)⋊ρn G is not Haagerup.

Proof. (1) Since G ∩ SL2(Z) has index at most 2 in G, replacing G by
G ∩ SL2(Z) we may assume that G ⊂ SL2(Z). Let L be the Zariski closure
of G in SL2(R), so that L is a Lie subgroup of SL2(R), hence of dimension
0, 1, 2 or 3. As Lie subgroups of dimension 0, 1, 2 are virtually solvable,
hence amenable, L has dimension 3, i.e. G is Zariski dense in SL2(R). Since
the representation ρn is algebraic, irreducibility is preserved by passing to a
Zariski dense subgroup (3).

(2) Set Vn = Pn(R). By [Bu91, Proposition 7] (see especially [Bu91,
Example (2), p. 62]), if G does not fix any probability measure on the pro-
jective space P (V ∗

n ), then the pair (Pn(Z) ⋊ρn G,Pn(Z)) has the relative
property (T). Since the representation ρn of SL2(R) is equivalent to its con-
tragredient ρ∗n, it is enough to check that there is no G-fixed probability

(3) We recall the argument: if W is a ρn(G)-invariant subspace, and (fi)i∈I is a set
of linear forms such that W =

⋂
i∈I ker(fi), then ρn(G)-invariance of W is equivalent to

fi(ρn(g)w) = 0 for all g ∈ G, w ∈ W and i ∈ I. View this as a system of polynomial
equations in the matrix coefficients of g; it vanishes on G, hence also vanishes on SL2(R)
by Zariski density.
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measure on the projective space P (Vn). So assume that there is such a mea-
sure µ. Then, by [Zi84, Corollary 3.2.2], there are exactly two cases:

• The measure µ is not supported on a finite union of proper projective
subspaces. Then the stabilizer PGL(Vn)µ is compact, which contradicts
the fact that the image of G in PGL(Vn) is infinite discrete.

• There exists a proper linear subspace W in Vn such that µ([W ]) > 0
(where [W ] denotes the image of W in P (Vn)), and moreover the orbit of
[W ] under the stabilizer PGL(Vn)µ is finite. In particular, there is a finite
index subgroup of PGL(Vn)µ that leaves [W ] invariant. So there is a finite
index subgroup G0 of G that leaves the linear subspace W invariant, a
contradiction.

4. Maximal Haagerup subgroups. An interesting question raised in
[JS21] is whether every countable group admits a Haagerup radical, i.e. a
unique maximal normal subgroup with the Haagerup property. We first show
that Gn admits such a Haagerup radical.

Proposition 4.1. For every n ≥ 1, the Haagerup radical of Gn is
Pn(Z)⋊ρn C2.

Proof. Set U := Pn(Z) ⋊ρn C2. Let N ◁ Gn be a normal Haagerup
subgroup; we want to prove that N is contained in U . We proceed as in
[JS21, proof of Proposition 2.10]: The subgroup UN is normal and since
UN/N ≃ U/(U ∩ N) is amenable, UN is an amenable extension of a
Haagerup group, hence UN is Haagerup. Since UN contains U we have
in particular Pn(Z) ⊂ UN , so UN = Zn+1⋊ρn K for some normal subgroup
K ◁GL2(Z). By Proposition 3.1(2), the subgroup K must be amenable, i.e.
K ⊂ C2 by Lemma 2.4. So UN ⊂ U and therefore N ⊂ U .

Since Pn(Z)⋊ρn C2 is actually amenable, we immediately have:

Corollary 4.2. The amenable radical of Gn is Pn(Z)⋊ρn C2.

We now come to the proof of our first main result.

Proof of Theorem 1.3. Let

qn : Pn(Z)⋊GL2(Z) → GL2(Z) : (v, S) 7→ S

be the quotient map. Observe that, as ker(qn|H) = H ∩ Pn(Z) is abelian, H
is amenable if and only if qn(H) is amenable. We separate the two cases.

(1) If H is amenable, set C = qn(H), so that H is contained in the
amenable subgroup Pn(Z)⋊ρn C. By maximality, we have H = Pn(Z)⋊ρn C,
and C is maximal amenable in G.

(2) Assume now that H is not amenable, and set K = qn(H).

Claim 1. The subgroup H ∩ Pn(Z) is invariant by ρn(K).
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Indeed, fix h ∈ H and write h = (vh, qn(h)) as an element of the semidi-
rect product Gn. For (w, 1) ∈ H ∩Pn(Z), we have, because Pn(Z) is abelian,

(ρn(qn(h
−1))w, 1) = (0, qn(h))

−1(w, 1)(0, qn(h))

= (0, qn(h))
−1(−vh, 1)(w, 1)(vh, 1)(0, qn(h))

=
(
(vh, 1)(0, qn(h))

)−1
(w, 1)

(
(vh, 1)(0, qn(h))

)
= (vh, qn(h))

−1(w, 1)(vh, qn(h)) = h−1(w, 1)h,

which belongs to H ∩ Pn(Z) because the latter is normal in H. This proves
Claim 1.

Claim 2. We have H ∩ Pn(Z) = {0}.
To see this, let k be the rank of the free abelian group H ∩Pn(Z), so that

0 ≤ k ≤ n+ 1; we must show that k = 0.
If k = n + 1, then H ∩ Pn(Z) has finite index in Pn(Z), so that H has

finite index in H · Pn(Z). By maximality, we must have H · Pn(Z) = H, i.e.
Pn(Z) ⊂ H and H = Pn(Z) ⋊ρn K; as K is not amenable, this contradicts
Proposition 3.1(2).

If 1 ≤ k ≤ n, we denote by W the linear subspace of Pn(R) generated by
H ∩Zn+1. By Claim 1, the subspace W is invariant by ρn(K), contradicting
Proposition 3.1(1). This proves Claim 2.

At this point we know that qn|H induces an isomorphism from H onto K,
so that by Proposition 2.2 there exists a 1-cocycle b ∈ Z1(K,Pn(Z)) such
that H = {(b(k), k) : k ∈ K}. By maximality of H, the 1-cocycle cannot be
extended to a larger subgroup of G. This proves the direct implication of the
theorem.

For the converse, if C is a maximal amenable subgroup of G, then Pn(Z)⋊
C is Haagerup, and maximality follows immediately from Proposition 3.1(2).
If K is a non-amenable subgroup of G and b ∈ Z1(K,Pn(Z)) is a 1-cocycle
that cannot be extended to a larger subgroup, then H = {(b(k), k) : k ∈ K}
is a Haagerup subgroup of Pn(Z) ⋊ρn G, and maximality follows from the
dichotomy in the direct implication of the theorem.

5. Cohomological matters: n odd

5.1. Maximal subgroups in PSL2(Z). Recall that a subgroup H in
a group G is said to be maximal if H is maximal among proper subgroups
of G.

Proposition 5.1. The group PSL2(Z) admits free maximal subgroups of
arbitrarily large finite index, and also of infinite index.

Proof. Since PSL2(Z) is isomorphic to the free product C2 ∗ C3, a sub-
group H of PSL2(Z) is free if and only it is torsion-free, if and only if it has
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no element of order 2 or 3, if and only if it does not meet the conjugacy
classes of (the images of) s and t in PSL2(Z).

(1) Finite index. Let p be a prime with p ≡ 11 mod 12. Consider the
congruence subgroup

Γ 0(p) =

{(
a b

c d

)
∈ PSL2(Z) : c ≡ 0 mod p

}
.

So Γ 0(p) is the inverse image, under reduction modulo p, of the upper trian-
gular subgroup in PSL2(p). Hence Γ 0(p) is a maximal subgroup of index p+1
in PSL2(Z). For g =

(
a b
c d

)
∈ PSL2(Z), by direct computation we find that

the (2, 1)-entry of gsg−1 is c2+d2, which is not divisible by p as p ≡ 3 mod 4;
so Γ 0(p) has no element of order 2. Similarly, the (2, 1)-entry of gtg−1 is
c2 − cd + d2. Assume towards a contradiction that p divides c2 − cd + d2.
Then it also divides 4(c2 − cd+ d2) = (2c− d)2 + 3d2, from which it follows
that the Legendre symbol

(−3
p

)
equals 1, as one sees by inverting d modulo p.

Using quadratic reciprocity, this contradicts p ≡ 2 mod 3. So Γ 0(p) has no
element of order 3, and therefore is a free group.

(2) Infinite index. We will appeal to [FL+22, Theorem E] together with
its proof. Consider the following two permutations of N = {1, 2, . . .}:

a = (12)(34)(56)(78) . . . , b = (123)(456)(789) . . . .

View the symmetric group Sym(N) as a Polish group with the topology of
pointwise convergence. Let T ⊂ Sym(N) consist of those ϑ ∈ Sym(N) such
that the action of PSL2(Z) on N defined by mapping s to a and t to ϑbϑ−1

is transitive on N. By [FL+22, Lemma 6.2], the set T is a non-empty Gδ

in Sym(N), hence T is itself Polish. Now Theorem E in [FL+22, Section
6.2], together with its proof, shows that for a generic choice of ϑ ∈ T , the
corresponding action of PSL2(Z) will be 2-transitive (in fact highly transi-
tive, i.e. n-transitive for every n ≥ 1). By 2-transitivity, the stabilizer of any
point in N will be a maximal subgroup of infinite index in PSL2(Z). Since a
and ϑbϑ−1 are permutations without fixed points, that stabilizer avoids the
conjugacy classes of s and t, and therefore it is free.

5.2. The case n = 1. The next result is specific to n = 1; it applies in
particular to G = SL2(Z) and G = GL2(Z). For SL2(Z), a different proof
appears in [JS21, Lemma 2.14].

Proposition 5.2. Let G be a subgroup of GL2(Z) containing an element
t0 of order 6. Let ρ : G → GLN (Z) be a homomorphism such that ρ(t30) = −1,
and ρ(t0) does not admit −1 as an eigenvalue. Then H1(G,ZN ) = 0. This
applies in particular to ρ = ρ1|G.
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Proof. In an amalgamated product of groups, any element of finite order
is conjugate to a finite order element in one of the factors (see e.g. [Se77,
Section 3, Cor. 1]). So in GL2(Z) = D4 ∗D2 D6, conjugating G if necessary,
we may assume that t0 = t, so that ε := t30 belongs to G.

Fix b ∈ Z1(G,ZN ). We want to prove that b is a 1-coboundary. By
Lemma 2.3 (applied with z = ε) it is enough to prove that b(ε) ∈ 2ZN .

Set T := ρ(t0). Then

0 = T 3 + 1 = (T + 1)(T 2 − T + 1).

Since by assumption T + 1 is invertible in MN (C), we have 0 = T 2 − T + 1,
i.e. 2T = T 2+T +1. Now expanding t30 = ε by the 1-cocycle relation we get

b(ε) = (T 2 + T + 1)b(t0) = 2Tb(t0),

i.e. b(ε) ∈ 2ZN . For the final statement about ρ1, it is enough to observe
that −1 is not an eigenvalue of t =

(
0 −1
1 1

)
.

We now revisit an example from Jiang–Skalski [JS21, Proposition 2.16].
For N ≥ 2, define

Γ1(N) =

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N, a ≡ d ≡ 1 mod N

}
.

Define also the vector vN =
(
1/N
0

)
in Q2. Then Jiang–Skalski prove that

Γ1(N) is exactly the set of elements of SL2(Z) such that bN (g) = gvN − vN
belongs to Z2, so that bN is a 1-cocycle in Z1(Γ1(N),Z2) that does not
extend to an overgroup, and HN = {(bN (k), k) : k ∈ Γ1(N)} is maximal
Haagerup in Z2 ⋊ SL2(Z). We make the result more precise by observing
that HN is actually a free group for infinitely many values of N .

Proposition 5.3. If N is divisible by some prime p with p ≡ 11 mod 12,
then HN is a free group.

Proof. We will use the fact that any subgroup of a free group is free. It
is enough to show that Γ1(N) is free. Since Γ1(N) ⊂ Γ1(p), we reduce to the
case of Γ1(p). Clearly ε /∈ Γ1(p), so Γ1(p) maps injectively to its image in
PSL2(Z). Clearly the latter is contained in Γ 0(p), which is free by the proof
of Proposition 5.1.

5.3. n odd, general case. For general odd n, we have the following:

Proposition 5.4. Let G be a finitely generated subgroup of GL2(Z). As-
sume that G is generated by k elements g1, . . . , gk and contains ε =

(−1 0
0 −1

)
.

Then, for n odd, H1(G,Pn(Z)) is a vector space over the field F2 of two
elements, with dimension at most (k − 1)(n+ 1).
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Proof. By Lemma 2.3(1), we know that H1(G,Pn(Z)) is a vector space
over F2. Now any cocycle b ∈ Z1(G,Pn(Z)) is completely determined by
the vectors b(g1), . . . , b(gk). On the other hand, the boundary map ∂ :
Pn(Z) → Z1(G,Pn(Z)) : P 7→ ∂P , with (∂P )(g) = ρn(g)P − P , is injec-
tive. So H1(G,Pn(Z)) appears as a subquotient of (Pn(Z))k−1, which gives
the desired bound on the dimension.

Proof of Theorem 1.4. Let M be a maximal free subgroup of PSL2(Z)
as in Proposition 5.1. Lifting arbitrarily a free basis of M to SL2(Z), we get
a free subgroup K in SL2(Z), say of rank k (possibly k = ∞). In particu-
lar, the rank of H1(K,Pn(Z)) as an abelian group is (k − 1)(n + 1). Now
by maximality of M in PSL2(Z), together with the fact that the central
extension

1 → ⟨ε⟩ → SL2(Z) → PSL2(Z) → 1

does not split, we see that the only overgroups of K in SL2(Z) are K × ⟨ε⟩
and SL2(Z). For both, H1 is a torsion group (by Proposition 5.4), so any
1-cocycle b of infinite order in H1(K,Pn(Z)) will not extend to an overgroup
of K, and the subgroup H = {(b(k), k) : k ∈ K} is maximal Haagerup in
Pn(Z)⋊ SL2(Z).

6. Cohomological matters: n even. We will see that for n even the
groups H1(SL2(Z), Pn(Z)) and H1(GL2(Z), Pn(Z)) are infinite, so that the
situation is completely different from the case of n odd.

Since ρn(ε) = 1 as n is even, by the second part of Lemma 2.3
we may replace H1(SL2(Z), Pn(Z)) by H1(PSL2(Z), Pn(Z)), and similarly
H1(GL2(Z), Pn(Z)) by H1(PGL2(Z), Pn(Z)).

6.1. The case of SL2(Z). Set S = ρn(s) and T = ρn(t), and recall that
S, T generate ρn(SL2(Z)) ≃ PSL2(Z).

Lemma 6.1. An assignment S 7→ b(S), T 7→ b(T ) of two vectors in
Pn(Z) extends to b ∈ Z1(PSL2(Z), Pn(Z)) if and only if (1+S)b(S) = 0 and
(1 + T + T 2)b(T ) = 0.

Proof. View PSL2(Z) as the free product ⟨S⟩ ∗ ⟨T ⟩ = ⟨S, T | S2 = 1,
T 3 = 1⟩. So the assignment S 7→ b(S), T 7→ b(T ) extends to a 1-cocycle if
and only if it satisfies (S + 1)b(S) = 0 (obtained by expanding S2 = 1 by
the 1-cocycle relation) and (1 + T + T 2)b(T ) = 0 (obtained by expanding
T 3 = 1 by the cocycle relation).

Define, for n even,

η(n) =


0 if n ≡ 2 mod 3,

1 if n ≡ 0 mod 3,

−1 if n ≡ 1 mod 3.
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Theorem 6.2. For n even:

rk(H1(PSL2(Z), Pn(Z))) =
n+ 1 + 3(−1)n/2+1 − 4η(n)

6
> 0.

In particular, rk(H1(PSL2(Z), Pn(Z))) ≥ n−6
6 .

Proof. Since we are only interested in the torsion-free part of the group
H1(PSL2(Z), Pn(Z)), we may work rationally and compute the Q-dimension
of H1(PSL2(Z), Pn(Q)).

We define a subgroup of Z1(PSL2(Z), Pn(Q)) by

Z1
0 := {b ∈ Z1(PSL2(Z), Pn(Q)) : b(T ) = 0}.

We first observe that every cocycle b ∈ H1(PSL2(Z), Pn(Q)) is cohomologous
to a cocycle in Z1

0 . This is clear in terms of affine actions: if α(g)v = gv +
b(g) (with v ∈ Pn(Q)) is the affine action associated with b, then for any
w ∈ Pn(Q) the vector w0 := 1

3(w + α(T )w + α(T 2)w) is α(T )-fixed, so the
coboundary b′(g) = b(g) + gw0 − w0 vanishes on T .

Consequently, setting

m0 := dimZ1
0 and n0 := dim(Z1

0 ∩B1(PSL2(Z), Pn(Q))),

we have

dim(H1(PSL2(Z), Pn(Q))) = dim(Z1
0/(Z

1
0 ∩B1(PSL2(Z), Pn(Q))))

= m0 − n0,

and it is enough to compute m0 and n0 separately. This will be done in
three steps. Note that, by Lemma 6.1, the space Z1

0 can be identified with
ker(S + 1).

1. Computation of m0 = dim(ker(S + 1)). Observe that (SP )(X,Y ) =
P (Y,−X) for P ∈ Pn(Z). Expanding P as a sum of monomials P (X,Y ) =∑n

k=0 akX
n−kY k, we get

(SP )(X,Y ) =

n∑
k=0

(−1)kakY
n−kXk =

n∑
k=0

(−1)kan−kX
n−kY k,

so that SP = −P if and only if

(2) ak = (−1)k+1an−k for every k = 0, 1, . . . , n.

So we may choose a0, a1, . . . , an/2−1 arbitrarily, while an/2 = 0 if n≡ 0 mod 4,
and an/2 can be chosen arbitrarily if n≡ 2 mod 4. So

(3) m0 =
n+ 1 + (−1)n/2+1

2
.

2. We claim that Z1
0 ∩ B1(PSL2(Z), Pn(Q)) can be identified with

ker(T − 1). Indeed, b ∈ Z1
0 is a 1-coboundary if and only if there ex-

ists P ∈ Pn(Q) such that b(S) = (S − 1)(P ) and 0 = (T − 1)(P ). This
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is still equivalent to b(S) ∈ (S − 1)(ker(T − 1)). This already identifies
Z1
0 ∩B1(PSL2(Z), Pn(Q)) with (S − 1)(ker(T − 1)).

To prove the claim it remains to show that (S − 1)|ker(T−1) is injective,
i.e. ker(S − 1)∩ ker(T − 1) = {0}. But, as S, T generate PSL2(Z), the space
ker(S − 1) ∩ ker(T − 1) is exactly the space of ρn(SL2(Z))-fixed vectors in
Pn(Q), which is 0 by Proposition 3.1(1).

3. Computation of n0 = dim(ker(T − 1)). Since T 3 = 1, the operator T
defines a representation σ of the cyclic group C3, and n0 = dim(ker(T − 1))
is the multiplicity of the trivial representation in this representation. Recall
that C3 has three irreducible representations, all of dimension 1: the trivial
representation χ0 and the characters χ± defined by χ±(T ) = e±2πi/3. Now
σ is equivalent to the direct sum of n0 copies of χ0 with n+ copies of χ+

and n− copies of χ−. Note that n+ = n− because σ is a real representation.
Computing the character of σ we get

n+ 1 = Tr(1) = n0χ0(1) + n+χ+(1) + n−χ−(1) = n0 + 2n+,

Tr(T ) = n0χ0(T ) + n+χ+(T ) + n−χ−(T ) = n0 − n+.

Solving this system for n0 we get

(4) rk(ker(T − 1)) = n0 =
n+ 1 + 2Tr(T )

3
.

It remains to compute Tr(T ) to get the exact value of n0. We observe that
ρn extends to a representation of SL2(C) on the space Pn(C). Restricting
to the compact torus T = {aϑ =

(
eiϑ 0
0 e−iϑ

)
: ϑ ∈ R} we have the classical

formula (see e.g. [Ha03, (7.26)])

Tr(ρn(aϑ)) =
sin((n+ 1)ϑ)

sin(ϑ)
.

Since t has order 6 in SL2(Z), it is conjugate to aπ/3 in SL2(C), and therefore

(5) Tr(T ) = Tr(ρn(aπ/3)) =
sin((n+ 1)π/3)

sin(π/3)
= η(n).

Using (3)–(5), we get the desired result. Note that for n = 2, 4, 6 we get
m0 > n0 from the following table:

(6)

n n0 m0

2 1 2

4 1 2

6 3 4

Corollary 6.3. For n ≥ 2 even, let M be a free maximal subgroup of
PSL2(Z) as in Proposition 5.1; let K ≃ M ×⟨ε⟩ denote the inverse image of
M in SL2(Z). Then the semidirect product Pn(Z)⋊SL2(Z) contains infinitely
many maximal Haagerup subgroups H of the form H = {(b(g), g) : g ∈ K},
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where b ∈ Z1(SL2(Z), Pn(Z)), which moreover are pairwise non-conjugate
under Pn(Z).

Proof. Say that the rank of M is k (possibly k = ∞). By Lemma 2.3, we
have rk(H1(K,Pn(Z))) = rk(H1(M,Pn(Z))) = (k − 1)(n + 1) as M is free,
So by Theorem 6.2,

rk(H1(K,Pn(Z))) ≥ n+ 1 >
n+ 1 + 3(−1)n/2+1 − 4η(n)

6
= rk(H1(SL2(Z), Pn(Z))).

So taking for b cocycles on K whose classes have infinite order in the co-
kernel of the restriction map H1(SL2(Z), Pn(Z)) → H1(K,Pn(Z)), we may
construct maximal Haagerup subgroups of the desired form.

6.2. The case of GL2(Z). We recall the notations S = ρn(s), T =
ρn(t), to which we add W := ρn(w). Note that, for P ∈ Pn(Z), we have
(WP )(X,Y ) = P (Y,X); in particular, WP = P (resp. WP = −P ) means
that P is symmetric (resp. antisymmetric).

To estimate the rank of H1(GL2(Z), Pn(Z)), we will need the following
representation-theoretic lemma.

Lemma 6.4. The Q-dimension of the space

P 0
n := {P ∈ Pn(Q) : P symmetric, TP = P}

is n+4+2η(n)
6 .

Proof. We observe that P 0
n is invariant under ρn|D3 , which suggests using

representation theory of the dihedral group D3 = ⟨T,W ⟩. This group has
three irreducible representations defined over Q: the trivial character χ0,
the non-trivial character χ1 defined by χ1(T ) = 1 and χ1(W ) = −1, and
the 2-dimensional irreducible representation on vectors in R3 whose three
coordinates sum to 0. The character table of D3 is

e T W

χ0 1 1 1

χ1 1 1 −1

π 2 −1 0

Write ρn|D3 = n0χ0 ⊕ n1χ1 ⊕ nππ. From the character table, it follows
that the dimension of P 0

n is exactly the multiplicity n0 of χ0 in ρn|D3 . To
compute n0, we will compute the character of ρn|D3 . Denote by P s

n (resp.
P a
n ) the subspace of symmetric (resp. antisymmetric) polynomials in Pn(Q).

Then
Tr(W ) = dim(P s

n)− dim(P a
n ) = (n/2 + 1)− n/2 = 1,
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so that the character of ρn|D3 is given by

n+ 1 = Tr(1) = n0 + n1 + 2nπ,

Tr(T ) = n0 + n1 − nπ,

1 = Tr(W ) = n0 − n1.

Solving for n0, and using (5), gives the desired result.

Theorem 6.5. For even n, we have

rk(H1(GL2(Z), Pn(Z))) =
n− 5 + 3(−1)n/2+1 − 4η(n)

12
.

In particular, rk(H1(GL2(Z), Pn(Z))) ≥ n−12
12 .

Proof. As with SL2(Z), we will work rationally. We will appeal to a part
of the Hochschild-Serre long exact sequence in group cohomology: if G is
a group, N ◁ G a normal subgroup, and V is a G-module with V G = 0,
then the restriction map H1(G,V ) → H1(N,V )G/N is an isomorphism (see
[Gu80, Section 8.1]).

We apply this to V = Pn(Q), G = GL2(Z) and N = SL2(Z),
so that G/N = ⟨W ⟩ has order 2. We must therefore work out the
W -invariants on H1(PSL2(Z), Pn(Q)). This amounts to finding the W -
invariants in Z1(PSL2(Z), Pn(Q)) and dividing by the W -invariants in
B1(PSL2(Z), Pn(Q)). Of course we will make use of the fact that the W -
invariants in a subspace of Pn(Q) are just the symmetric polynomials in
that subspace.

By the beginning of the proof of Theorem 6.2, every cocycle in
Z1(SL2(Z), Pn(Q)) is cohomologous to a cocycle in Z1

0 , which identifies with
ker(S+1). By (2), a polynomial P (X,Y ) =

∑n
k=0 akX

n−kY k is in ker(S+1)
if and only if ak = (−1)k+1an−k for every k = 0, 1, . . . , n. So this polynomial
P (X,Y ) is symmetric if and only if ak = 0 for even k, and ak = an−k for
odd k. Hence we get

(7) dim (Z1
0 )

W =
n+ 1 + (−1)n/2+1

4
.

Now we compute the dimension of (Z1
0 ∩B1(PGL2(Z), Pn(Q)))W . As in

the second step of the proof of Theorem 6.2, using SW = WS we identify
this space first with (S−1)(ker(T−1)∩ker(W−1)) and then with ker(T−1)
∩ ker(W − 1), which is the subgroup P 0

n from Lemma 6.4; its dimension is
(n+ 4 + 2η(n))/6.
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Summarizing, by (7) we have

dim(H1(GL2(Z), Pn(Z)))
= dim((Z1

0 )
W )− dim((Z1

0 ∩B1(PGL2(Z), Pn(Q)))W )

=
n+ 1 + (−1)n/2+1

4
− n+ 4 + 2η(n)

6

=
n− 5 + 3(−1)n/2+1 − 4η(n)

12
.

It is clear that this quantity is bounded below by n−12
12 .

With this we can prove Theorem 1.5.

Proof of Theorem 1.5. It is enough to show that the cokernel of the
restriction map H1(GL2(Z), Pn(Z)) → H1(SL2(Z), Pn(Z)) has rank > 0.
This follows by comparing the formulae in Theorems 6.2 and 6.5. Indeed, we
have

n+ 1 + 3(−1)n/2+1 − 4η(n)

6
− n− 5 + 3(−1)n/2+1 − 4η(n)

12

=
n+ 7 + 3(−1)n/2+1 − 4η(n)

12
> 0,

where the inequality follows from 7 + 3(−1)n/2+1 − 4η(n) ≥ 0.

Example 6.6. For n = 2, 4, we can give explicit cocycles witnessing
the fact that the image of the restriction map Rest : H1(GL2(Z), Pn(Z)) →
H1(SL2(Z), Pn(Z)) has infinite index.

Recall from the proof of Theorem 6.2 that we defined Z1
0 := {b ∈

Z1(PSL2(Z), Pn(Z)) : b(T ) = 0} and identified it naturally with ker(1 + S).
For a ∈ Z, define ba ∈ Z1(SL2(Z), Pn(Z)) by prescribing

(ba(S))(X,Y ) = a(Xn − Y n), ba(T ) = 0;

it follows from (2) that ba(S) ∈ ker(1 + S), hence ba ∈ Z1
0 . We first show

that, for a ̸= 0, the cocycle ba is non-zero in H1.
Assume that ba is a coboundary. By the third step of the proof of

Theorem 6.2, the space Z1
0 ∩ B1(SL2(Z), Pn(Z)) identifies naturally with

(S − 1)(ker(T − 1)). For n = 2, 4, we have rk(ker(T − 1)) = 1 by ta-
ble (6). For n = 2, the space ker(T − 1) is generated by X2 − XY + Y 2

(a t-invariant quadratic form on Z2), and by direct computation one gets
(S − 1)(X2 − XY + Y 2) = 2XY , forcing a = 0. For n = 4, we replace
X2 −XY + Y 2 by (X2 −XY + Y 2)2 and proceed analogously.

Finally, as ba is antisymmetric, for a ̸= 0 its class in H1 is certainly not
in H1(SL2(Z), Pn(Z))W , which is the image of the restriction map

H1(GL2(Z), Pn(Z)) → H1(SL2(Z), Pn(Z)).
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Coming back to Theorem 6.5, we observe that rk(H1(GL2(Z), Pn(Z)))
= 0 for n = 2, 4, 6, 8, 12. This means that H1(GL2(Z), Pn(Z)) is a finite
group for these values. We will show that it is not zero.

Corollary 6.7. Fix n ≥ 2 even. Define

m =

{
n/4 if n ≡ 0 mod 4,
(n+ 2)/4 if n ≡ 2 mod 4.

Then H1(GL2(Z), Pn(Z)) has order at least 2m.

Proof. We start with two observations.
1. A 1-cocycle b ∈ Z1

0 such that b(S) is symmetric extends from PSL2(Z)
to PGL2(Z) by the prescription b(W ) = 0. Indeed, PGL2(Z) ≃ D2 ∗C2 D3

with C2 = ⟨W ⟩, D2 = ⟨S,W ⟩, D3 = ⟨T,W ⟩. So by the cocycle relation,
b extends to D3 by b|D3 = 0, and to D2 by defining b(SW ) = b(S), which is
indeed equal to b(WS) = Wb(S) as b(S) is symmetric. So b extends to the
amalgamated product.

2. If a cocycle b ∈ Z1(PGL2(Z), Pn(Z)) with b(W ) = 0 is a coboundary,
then there exists P ∈ Pn(Z) such that (W−1)P = 0 (i.e. P is symmetric) and
b(S) = (1− S)P . But SP (X,Y ) = P (Y,−X) = P (−X,Y ) (by symmetry),
so writing P (X,Y ) =

∑n/2−1
k=0 ak(X

n−kY k + XkY n−k) + an/2X
n/2Y n/2 we

get

((1− S)P )(X,Y ) =

n/2−1∑
k=0

ak(1− (−1)k)(Xn−kY k +XkY n−k)

+ an/2(1− (−1)n/2)Xn/2Y n/2,

so that (1− S)P has even coefficients.

We now turn to the proof proper. For ε ∈ {0, 1}m, define bε(T ) = 0 and

bε(S)(X,Y )

=


∑m

k=1 εk(X
n−2k+1Y 2k−1 +X2k−1Y n−2k+1) if n ≡ 0 mod 4,∑m−1

k=1 εk(X
n−2k+1Y 2k−1 +X2k−1Y n−2k+1)

+ εmXn/2Y n/2 if n ≡ 2 mod 4.

Observe that (S+1)bε(S) = 0 by (2), so that by Lemma 6.1 we get a cocycle
bε ∈ Z1

0 with bε(S) symmetric, so by the first observation in the proof we
may extend it to PGL2(Z) by bε(W ) = 0.

On the other hand, if ε1, ε2 are distinct elements in {0, 1}m, then
(bε1 − bε2)(S) has at least one odd coefficient, so bε1 − bε2 cannot be a
coboundary by the second observation above.
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6.3. A combinatorial application. We end the paper with an amusing
combinatorial consequence of our proof of Theorem 6.2. For n even, the sum

n/2∑
k=0

(−1)k
(
n− k

k

)
,

which is an alternating sum on a diagonal in Pascal’s triangle, can be com-
puted by combinatorial means (see [BQ08]). We give a representation-theo-
retic derivation.

Corollary 6.8. For even n,
n/2∑
k=0

(−1)k
(
n− k

k

)
= η(n).

Proof. In view of (5), it is enough to prove that the LHS is equal to
Tr(T ) = Tr(T−1). For this we observe that T−1(P )(X,Y ) = P (X − Y,X)
for P ∈ Pn(R). So in the canonical basis Xn, Xn−1Y, . . . ,XY n−1, Y n we
have, for k = 0, 1, . . . , n,

(T−1)(Xn−kY k) = Xk(X − Y )n−k =

n−k∑
ℓ=0

(−1)ℓ
(
n− k

ℓ

)
Xn−ℓY ℓ.

In the last sum, the term Xn−kY k does not appear if k > n/2, and it appears
with coefficient (−1)k

(
n−k
k

)
if 0 ≤ k ≤ n/2. In other words, the kth diagonal

coefficient of the matrix of T−1 in the canonical basis is{
0 if k > n/2,
(−1)k

(
n−k
k

)
if k ≤ n/2.

This yields the trace of T−1:

Tr(T−1) =

n/2∑
k=0

(−1)k
(
n− k

k

)
.
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