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SOME NEW DEVELOPMENTS ON
VARIABLE-POWER COPULAS

Abstract. This article aims to contribute to the theory of variable-power
copulas. In the first part, we discuss and study two unexplored variable-power
copulas based on a modification of the function “x1/yy1/x”. Their originality
in definition offers interesting alternative options to the existing variable-
power copulas. However, these copulas have a strong limitation: they are
free of any parameters, making them rigid in the functional sense. In light
of this, the second part is devoted to some parametric versions of them, still
belonging to the variable-power copulas family. They have the feature of
being original and of recovering the independence copula for some values of
the parameter. Their properties are investigated.

1. Introduction. Copula theory, initially introduced by Sklar [14], has
become a vital tool for analyzing multivariate data and characterizing the
dependence structure between random variables. The main functions, called
copulas, provide a means to separate the marginal distributions from the de-
pendence structure, allowing practitioners to model and estimate the joint
distribution independently. This flexibility has enabled copulas to find ap-
plications in a wide range of fields, including finance (see [9]), insurance
(see [7]), environmental sciences (see [1]), and many others. The main theo-
retical and applied background on copulas can be found in [12, 5], and recent
advancements are described in [15, 16, 3, 4, 2, 11, 13, 6, 18].

Nowadays, the need for new copula constructions arises due to several
reasons. Firstly, existing copula families may lack the flexibility to model de-
pendence structures with asymmetric tail behavior or extreme values, which
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are common in various domains. Secondly, the dependence structure in real-
world data often exhibits non-linear or non-monotonic patterns, which can-
not be effectively captured by traditional copula models. Furthermore, the
growing availability of high-dimensional data requires copula models that
can handle large-scale dependence structures.

Developing new copula families that address these limitations is of para-
mount importance to enhance the accuracy and applicability of copula theory
in practice. Among the recent copula families is the variable-power copula
family. In the two-dimensional case, a variable-power copula is characterized
by the following general form:

Cop(x, y) = xP (x,y)yQ(x,y), (x, y) ∈ [0, 1]2,

where P (x, y) and Q(x, y) are two-dimensional functions satisfying specific
conditions guaranteeing in particular the following values: Cop(0, 0) = 0,
Cop(0, 1) = 0, Cop(1, 0) = 0 and Cop(1, 1) = 1. Clearly, if P (x, y) = Q(x, y)
= 1, the independence copula is obtained, i.e., Cop(x, y) = xy = Π(x, y).
The case where P (x, y) = 1 and Q(x, y) is a function only depending on x is
explored in [4]. A collection of new two-dimensional variable-power copulas
was obtained, providing a perspective on dependence models beyond the
standard scheme. In [3], a more sophisticated direction was studied; it is
proved that the variable-power function F (x, y) = xyyx for (x, y) ∈ (0, 1]2

and F (x, y) = 0 for x = 0 or y = 0 is not a valid copula. However, based on
this function and the construction of the Gumbel–Barnett copula, a variable-
power copula extension is provided and examined. These theoretical studies
are the foundations for new perspectives on dependence modeling.

In this article, we make a contribution to the subject by developing in-
novative constructions of variable-power copulas. In a first part, we prove
that F (x, y) = x1/yy1/x for (x, y) ∈ (0, 1]2 and F (x, y) = 0 for x = 0 or
y = 0 is not a valid copula. Then we offer two different modified versions
of F (x, y) that are valid variable-power copulas. They are novel because of
the originality of these expressions as well as their symmetric and negative
correlation properties. They have, however, a limitation: they are free of
tuning parameters, making them unpractical from the statistical viewpoint.
In light of this, in the second part, some parametric versions of them are
developed. They have the feature of being original and of recovering the
independence copula for some values of the parameters. Their properties are
investigated by means of analytical, graphical, and numerical tools. Overall,
our findings will contribute to the advancement of copula theory and provide
valuable insights for researchers, practitioners, and decision-makers in various
fields.

The article is organized as follows: Section 2 provides a preliminary result
and two new variable-power copulas based on “x1/yy1/x”. Some parametric
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versions of them are examined in Section 3. Finally, Section 4 outlines future
directions for research in this area.

2. New variable-power copulas. Before presenting our new variable-
power copulas, some definition and preliminary results need to be presented.

2.1. Preliminary result. In this article, we consider the notion of cop-
ula in the standard two-dimensional absolutely continuous (TDAC) context.
A precise definition is recalled below (see [12]).

Definition 2.1. In the TDAC context, we define a copula to be a func-
tion that is continuous on [0, 1]2 and twice continuously differentiable on
(0, 1)2, say F (x, y), (x, y) ∈ [0, 1]2, satisfying:

H1: F (x, 1) = x, F (1, y) = y, F (x, 0) = 0 and F (0, y) = 0,

H2: ∂x,yF (x, y) =
∂2

∂x∂y
F (x, y) ≥ 0.

From the mathematical viewpoint, assumption H2 is often less direct to
prove than H1; it can demand tedious differentiations and algebraic calcula-
tions.

In [3], it is proved that the simple variable-power function F (x, y) =
xyyx for (x, y) ∈ (0, 1]2 and F (x, y) = 0 for x = 0 or y = 0 is not a
valid copula. More specifically, a point (x◦, y◦) ∈ [0, 1]2 is found such that
∂x,yF (x, y)|(x,y)=(x◦,y◦)

< 0, thus refuting assumption H2.
In the next proposition, a similar result is established for another simple

variable-power function.

Proposition 2.2. The two-dimensional function defined by

(1) F (x, y) = x1/yy1/x, (x, y) ∈ (0, 1]2,

and F (x, y) = 0 for x = 0 or y = 0, is not a valid copula.

Proof. Let us investigate assumptions H1 and H2 of Definition 2.1. To
begin, we note that assumption H1 is satisfied. Indeed, for any x ∈ (0, 1], we
have

F (x, 1) = x1/1 × 11/x = x

and F (0, 1) = 0. Similarly, for any y ∈ [0, 1], we have F (1, y) = y. For any
x ∈ (0, 1], since limy→0 log(x)/y is −∞ (if x > 0) or 0 (if x = 1), and
limy→0 log(y) = −∞, we have

lim
y→0

F (x, y) = lim
y→0

x1/yy1/x = lim
y→0

exp

[
1

y
log(x) +

1

x
log(y)

]
= 0

(= F (x, 0)).

Using the same arguments, for any y ∈ (0, 1], we have limx→0 F (x, y) = 0.
Finally, F (0, 0) = 0 by definition.
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Let us now investigate assumption H2. Using the standard differentiation
rules and a suitable arearrangement, we get

∂x,yF (x, y)

= x1/y−3y1/x−3{x log(x)[y log(y)− x]− y[x(x+ y − 1) + y log(y)]}.

Hence, by evaluating this function at (x, y) = (1, 1), we obtain

∂x,yF (x, y)|(x,y)=(1,1) = 11/1−311/1−3

×{1× log(1)× [1× log(1)− 1]− 1× [1× (1 + 1− 1) + 1× log(1)]}
= −1 < 0.

As a result, H2 is not satisfied, so F (x, y) is not a valid copula.

Figure 1 illustrates Proposition 2.2; the function ∂x,yF (x, y) is plotted
for (x, y) ∈ [0, 1]2, and the light gray zone clearly indicates the domain in
[0, 1]2 where ∂x,yF (x, y) is negative (including the point (1, 1) considered in
the proof). The refutation of assumption H2 is clear.

Fig. 1. Plot of ∂x,yF (x, y) for (x, y) ∈ [0, 1]2; the light gray zone indicates the values of
(x, y) such that ∂x,yF (x, y) ≤ 0.

To the best of our knowledge, there is no established copula involving the
term x1/yy1/x. This direction is, however, of interest from the mathematical
viewpoint and for the development of new dependence models.

2.2. First variable-power copula. In the next result, we propose a
first variable-power copula based on x1/yy1/x.
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Proposition 2.3. The two-dimensional function defined by

(2) Cop(x, y) = x1/y+log(y)y1/x, (x, y) ∈ (0, 1]2,

and Cop(x, y) = 0 for x = 0 or y = 0, is a valid copula.

Proof. Let us investigate assumptions H1 and H2. For H1, for any x ∈
(0, 1], we have

Cop(x, 1) = x1/1+log(1) × 11/x = x

and Cop(0, 1) = 0. Similarly, for any y ∈ [0, 1], we have Cop(1, y) = y. For any
x ∈ (0, 1], since limy→0 1/y + log(y) = ∞, log(x) ≤ 0 and limy→0 log(y) =
−∞, we have

lim
y→0

Cop(x, y) = lim
y→0

x1/y+log(y)y1/x

= lim
y→0

exp

{[
1

y
+ log(y)

]
log(x) +

1

x
log(y)

}
= 0.

Similarly, for any y ∈ (0, 1], we have limx→0Cop(x, y) = 0. Since Cop(0, 0) = 0
by definition, assumption H1 is satisfied.

Concerning H2, by applying differentiation rules and factoring in a suit-
able manner, we have

∂x,yCop(x, y) = y1/x−3x1/y+log(y)−3

×{(1− x)y[x(1− y) + y log∗(y)] + x(1− y) log∗(x)[(1− x)y log∗(y) + x]},
where log∗(x) = − log(x) and log∗(y) = − log(y). For any (x, y) ∈ (0, 1)2,
it is clear that 1 − x ≥ 0, 1 − y ≥ 0, log∗(x) ≥ 0 and log∗(y) ≥ 0. As a
result, the main terms in ∂x,yCop(x, y) are non-negative, which implies that
∂x,yCop(x, y) ≥ 0, so H2 is satisfied and Cop(x, y) is a valid copula.

Let us call the copula in (2) the variable-power 1 (VP1) copula. To the
best of our knowledge, it provides a new member of the variable-power copu-
las family (see [3, 4]). It is worth noting that the VP1 copula and the function
in (1) are related as follows:

Cop(x, y) = F (x, y)xlog(y).

Furthermore, since xlog(y) = elog(x) log(y) = ylog(x), we can write

(3) Cop(x, y) = x1/yy1/x+log(x),

which corresponds to Cop(y, x). As sketched in the proof of Proposition 2.3,
we can write the VP1 copula in the following exponential-logarithmic form:

Cop(x, y) = exp

{[
1

y
+ log(y)

]
log(x) +

1

x
log(y)

}
.

Despite a resemblance in form, the VP1 copula does not belong to the extreme-
value copulas family due to the presence of the ratio terms 1/x and 1/y.

Let us now study it in a more detailed manner.



40 C. Chesneau

Figure 2 illustrates Proposition 2.3 by plotting the VP1 copula and the
associated VP1 copula density given as

cop(x, y) = ∂x,yCop(x, y) = y1/x−3x1/y+log(y)−3

×{(1− x)y[x(1− y) + y log∗(y)] + x(1− y) log∗(x)[(1− x)y log∗(y) + x]},
(x, y) ∈ (0, 1)2.

Fig. 2. Plots of the VP1 copula (left) and its density (right)

In this figure, the light gray zone indicates small values, sometimes close
to 0, but never negative. We see that the higher values of the VP1 copula
density are concentrated in the neighborhood of the extreme corner points
(0, 1) and (1, 0). This indicates a tail dependence in these regions, as shown
later with appropriate dependence parameters.

Among its main properties, based on (3), the VP1 copula is diagonally
symmetric. This copula is not associative, as demonstrated by

Cop(0.5, Cop(0.6, 0.7)) ≈ 0.02562692 ̸= 0.01558517 ≈ Cop(Cop(0.5, 0.6), 0.7).

In particular, it is not Archimedean.
The VP1 survival copula is given as

Ĉop(x, y) = x+ y − 1 + Cop(1− x, 1− y)

= x+ y− 1+ (1−x)1/(1−y)+log(1−y)(1− y)1/(1−x), (x, y)∈ [0, 1)2,

and Ĉop(x, y) = 1 for x = 1 or y = 1. Based on this expression, it is clear that
the VP1 copula is not radially symmetric: there exists an (x◦, y◦) ∈ [0, 1]2

such that Ĉop(x◦, y◦) ̸= Cop(x◦, y◦).
By the well-known copula theory, the Fréchet–Hoeffding bounds hold

(see [12]). They imply max(x+ y − 1, 0) ≤ Cop(x, y) ≤ min(x, y), i.e.,

max(x+ y − 1, 0) ≤ x1/y+log(y)y1/x ≤ min(x, y).
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The lower left (LL), lower right (LR), upper left (UL), and upper right (UR)
tail dependence parameters can be computed based on the formulas in [12]
and [8]. Using typical limit methods, one finds that

λLL = lim
x→0

Cop(x, x)

x
= lim

x→0
x2/x+log(x)−1 = 0

(the limit is taken for 0+),

λLR = lim
x→0

x− Cop(1− x, x)

x
= lim

x→0

x− (1− x)1/x+log(x)x1/(1−x)

x

=
e− 1

e
≈ 0.632121,

λUL = lim
x→0

x− Cop(x, 1− x)

x
= lim

x→0

x− x1/(1−x)+log(1−x)(1− x)1/x

x

=
e− 1

e
≈ 0.632121,

λUR = lim
x→1

1− 2x+ Cop(x, x)

1− x
= lim

x→1

1− 2x+ x2/x+log(x)

1− x

= −3

4
lim
x→1

(x− 1)3 = 0.

The LL and UR tail independence properties are satisfied by the VP1 copula.
It has, however, the LR and UL tail dependences at the same numerical level,
i.e., (e− 1)/e.

With reference to [12], the medial correlation coefficient of the VP1 cop-
ula is

Med = 4Cop(0.5, 0.5)− 1 = 4× 2−2+log(2)2−2− 1 = 2log(2)−2− 1 ≈ −0.59579.

This negative value is not so far from −1 and highlights the negative depen-
dence feature of the VP1 copula.

Also, based on the theory in [12], Spearman’s rho related to the VP1
copula is

ρSpear = 12
�

[0,1]2

[Cop(x, y)−Π(x, y)] dx dy

= 12
�

[0,1]2

[x1/y+log(y)y1/x − xy] dx dy ≈ −0.8062.

This corresponds to a moderate negative correlation.
One of the main objectives of the VP1 copula is to generate two-dimen-

sional distributions. The basic scheme is as follows: Let F (x) and G(y) be
(one-dimensional) cumulative distribution functions of absolutely continuous
distributions. Then we define a new two-dimensional cumulative distribution
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function by

H(x, y) = Cop(F (x), G(y)) = F (x)1/G(y)+log[G(y)]G(y)1/F (x), (x, y) ∈ R2.

A new two-dimensional distribution defined by this two-dimensional cumu-
lative distribution function is thus created. For the choices of F (x) and G(y)
in a lifetime setting, we may refer to the review of [17].

As a last comment, we can mention that some copula schemes allow
for the construction of diagonally asymmetric copulas based on symmet-
ric copulas. For instance, by using [10], an asymmetric version is given by
Cop(x, y; a, b) = x1−ay1−bCop(x

a, yb), with a ∈ [0, 1] and b ∈ [0, 1], i.e.,

Cop(x, y; a, b) = xa/y
b+ab log(y)+1−ayb/x

a+1−b, (x, y) ∈ (0, 1]2,

and Cop(x, y; a, b) = 0 for x = 0 and y = 0. A one-parameter symmetric
version of the VP1 copula is obtained by taking a = b, i.e.,

Cop(x, y; a) = xa/y
a+a2 log(y)+1−aya/x

a+1−a, (x, y) ∈ (0, 1]2,

and Cop(x, y; a) = 0 for x = 0 and y = 0. Clearly, the VP1 copula is obtained
by taking a = 1, and the independence copula follows by taking a = 0.
However, the parameter a also affects the power terms, and so the tradeoff
between the VP1 copula and the independence copula is a bit artificial.
A more suitable solution will be presented in Subsection 3.1.

2.3. Second variable-power copula. In the next result, we propose
another variable-power copula based on x1/yy1/x.

Proposition 2.4. The two-dimensional function defined by

(4) Cop(x, y) = x(1/2)(1/y+1)y(1/2)(1/x+1), (x, y) ∈ (0, 1]2,

and Cop(x, y) = 0 for x = 0 or y = 0, is a valid copula.

Proof. Let us check assumption H1. For any x ∈ (0, 1], we have

Cop(x, 1) = x(1/2)(1/1+1) × 1(1/2)(1/x+1) = x2/2 × 1 = x

and Cop(0, 1) = 0. Similarly, for any y ∈ [0, 1], we have Cop(1, y) = y. For
any x ∈ (0, 1], since limy→0 log(x)/y is −∞ (for x > 0) or 0 (for x = 1), and
limy→0 log(y) = −∞ and limy→0 log(xy) = −∞, we have

lim
y→0

Cop(x, y) = lim
y→0

x(1/2)(1/y+1)y(1/2)(1/x+1)

= lim
y→0

exp

{
1

2

[
1

y
log(x) +

1

x
log(y) + log(xy)

]}
= 0.

In addition, for any y ∈ (0, 1], we have limx→0Cop(x, y) = 0. Since Cop(0, 0)
= 0 by definition, assumption H1 is satisfied.
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Let us now examine H2. Upon differentiation and algebraic manipula-
tions, we get

∂x,yCop(x, y) =
1
4x

(1/2)(1/y−5)y(1/2)(1/x−5)

×{y[x(1− x)(1− y) + (x+ 1)y log∗(y)] + x log∗(x)(xy + x+ y log∗(y))}
(we recall that log∗(x) = − log(x) and log∗(y) = − log(y)). For any (x, y) ∈
(0, 1)2, it is clear that (1 − x)(1 − y) ≥ 0, log∗(x) ≥ 0 and log∗(y) ≥ 0.
As a result, the main terms in ∂x,yCop(x, y) being non-negative, we have
∂x,yCop(x, y) ≥ 0, so H2 is satisfied and Cop(x, y) is a valid copula.

Let us call the copula in (4) the variable-power 2 (VP2) copula. To the
best of our knowledge, it is also a new member of the variable-power copulas
family. The VP2 copula and the function in (1) are related as follows:

Cop(x, y) = [xyF (x, y)]1/2.

Alternatively, from a geometric power viewpoint, we can write

Cop(x, y) = Π(x, y)aF (x, y)1−a,

where a = 1/2. As sketched in the proof of Proposition 2.4, we can write the
VP2 copula in the following exponential-logarithmic form:

Cop(x, y) = exp

{
1

2

[
1

y
log(x) +

1

x
log(y) + log(xy)

]}
.

However, like the VP1 copula, it does not belong to the extreme-value cop-
ulas family due to the presence of the ratio terms 1/x and 1/y.

Another remark is that we can write

Cop(x, y) = ϕ(x, y)ϕ(y, x),

where ϕ(x, y) = x(1/2)(1/y+1) is a non-symmetric function. Such separable
copulas do not seem to be common in the literature.

The above expressions underline the original definition of the VP2 copula.
Let us study it in a more detailed manner.

In Figure 3 we illustrate Proposition 2.4 by plotting the VP2 copula and
the associated VP2 copula density given as

cop(x, y) = ∂x,yCop(x, y) =
1

4
x(1/2)(1/y−5)y(1/2)(1/x−5)

×{y[x(1− x)(1− y) + (x+ 1)y log∗(y)] + x log∗(x)[xy + x+ y log∗(y)]},
(x, y) ∈ (0, 1)2.

In this figure, the light gray zone indicates small values, sometimes close
to 0, but never negative. We see that the higher values of the VP2 copula
density are concentrated in the neighborhood of the points (0, 1) and (1, 0).
In comparison to the VP1 copula, we see a kind of contraction phenomenon
for the values in the neighborhood of the diagonal line x = y.



44 C. Chesneau

Fig. 3. Plots of the VP2 copula (left) and its density (right)

Among its main properties, the VP2 copula is diagonally symmetric since
Cop(x, y) = Cop(y, x) for any (x, y) ∈ [0, 1]2. We can calculate that

Cop(0.4, Cop(0.5, 0.6)) ≈ 0.002738362

̸= 0.0008240825 ≈ Cop(Cop(0.4, 0.5), 0.6),

demonstrating that the VP2 copula is not associative. As a result, it is not
Archimedean.

The VP2 survival copula is given as

Ĉop(x, y) = x+ y − 1 + Cop(1− x, 1− y)

= x+ y − 1 + (1− x)(1/2)[1/(1−y)+1](1− y)(1/2)[1/(1−x)+1],

(x, y) ∈ [0, 1)2,

and Ĉop(x, y) = 1 for x = 1 or y = 1. From this expression, it is clear that
the VP2 copula is not radially symmetric: there exists an (x◦, y◦) ∈ [0, 1]2

such that Ĉop(x◦, y◦) ̸= Cop(x◦, y◦). The Fréchet–Hoeffding bounds imply
that max(x+ y − 1, 0) ≤ Cop(x, y) ≤ min(x, y), i.e.,

max(x+ y − 1, 0) ≤ x(1/2)(1/y+1)y(1/2)(1/x+1) ≤ min(x, y).

The tail dependence parameters are computed using typical limit methods
as follows:

λLL = lim
x→0

Cop(x, x)

x
= lim

x→0
x1/x = 0,
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λLR = lim
x→0

x− Cop(1− x, x)

x
= lim

x→0

x− (1− x)(1/2)(1/x+1)x(1/2)[1/(1−x)+1]

x

=

√
e− 1√
e

≈ 0.393469,

λUL = lim
x→0

x− Cop(x, 1− x)

x
= lim

x→0

x− x(1/2)[1/(1−x)+1](1− x)(1/2)(1/x+1)

x

=

√
e− 1√
e

≈ 0.393469,

λUR = lim
x→1

1− 2x+ Cop(x, x)

1− x
= lim

x→1

1− 2x+ x1/x+1

1− x
=

1

2
lim
x→1

(x− 1)2 = 0.

The LL and UR tail independence properties are satisfied by the VP2 copula.
It has, however, the LR and UL tail dependences at the same numerical level,
i.e., (

√
e− 1)/

√
e.

The medial correlation coefficient of the VP2 copula is

Med = 4Cop(0.5, 0.5)− 1 = 4× 2−(1/2)(2+1) × 2−(1/2)(2+1) − 1 = −0.5.

This negative value highlights the negative dependence feature of the VP2
copula.

Spearman’s rho related to the VP2 copula is

ρSpear = 12
�

[0,1]2

[Cop(x, y)−Π(x, y)] dx dy

= 12
�

[0,1]2

[x(1/2)(1/y+1)y(1/2)(1/x+1) − xy] dx dy ≈ −0.6932.

This corresponds to a moderate negative correlation. We can see that it is
greater than the one of the VP1 copula.

The VP2 copula can also be used to generate two-dimensional distribu-
tions: if F (x) and G(y) are (one-dimensional) cumulative distribution func-
tions of absolutely continuous distributions, then we define a two-dimensional
cumulative distribution function by

H(x, y) = Cop(F (x), G(y)) = F (x)(1/2)[1/G(y)+1]G(y)(1/2)[1/F (x)+1],

(x, y) ∈ R2.

For an asymmetric parametric version of the VP2 copula, we can again
use [10] by considering Cop(x, y; a, b) = x1−ay1−bCop(x

a, yb) with a ∈ [0, 1]
and b ∈ [0, 1], i.e.,

Cop(x, y; a, b) = x(a/2)(1/y
b+1)+1−ay(b/2)(1/x

a+1)+1−b, (x, y) ∈ (0, 1]2,

and Cop(x, y; a, b) = 0 for x = 0 or y = 0. A one-parameter symmetric
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version of the VP2 copula is obtained by taking a = b, i.e.,

Cop(x, y; a) = x(a/2)(1/y
a+1)+1−ay(a/2)(1/x

a+1)+1−a, (x, y) ∈ (0, 1]2,

and Cop(x, y; a) = 0 for x = 0 and y = 0. The VP2 copula is obtained by
taking a = 1, and the independence copula is obtained by taking a = 0.
Here again, the parameter a also affects the power terms, and so the tradeoff
between the VP2 copula and the independence copula is somewhat artificial.
In Section 3.2, a better approach will be offered.

3. Parametric extensions. As sketched above, one of the main draw-
backs of the VP1 and VP2 copulas is their rigidity in the functional sense (no
tuning parameters are involved, the independence copula case is not covered,
etc.). Some possible solutions have been presented, but they can be unsat-
isfying from the statistical viewpoint, with the tuning parameters affecting
both exponents and constants.

In this section, we fill this gap by proposing parametric generalizations
based on geometric power transformations.

3.1. Parametric extension of the VP1 copula. A parametric gen-
eralization of the VP1 copula is presented in the result below.

Proposition 3.1. Let a ∈ R. The two-dimensional function defined by

(5) Cop(x, y; a) = xa[1/y+log(y)]+1−aya/x+1−a, (x, y) ∈ (0, 1]2,

and Cop(x, y; a) = 0 for x = 0 or y = 0, is a valid copula for a ∈ [0, 1].

Proof. To check assumption H1, for any x ∈ (0, 1], we have

Cop(x, 1; a) = xa[1/1+log(1)]+1−a1a/x+1−a = xa+1−a = x

and Cop(0, 1; a) = 0. Similarly, for any y ∈ [0, 1], we have Cop(1, y; a) = y. For
any x ∈ (0, 1], we have limy→0[1/y+log(y)] = ∞, log(x) ≤ 0, limy→0 log(y) =
−∞ and limy→0 log(xy) = −∞. Furthermore, since a ∈ [0, 1] we obviously
have a ≥ 0 and 1− a ≥ 0. We thus obtain

lim
y→0

Cop(x, y; a) = lim
y→0

xa[1/y+log(y)]+1−aya/x+1−a

= lim
y→0

exp

{
a

[
1

y
+ log(y)

]
log(x) +

a

x
log(y) + (1− a) log(xy)

}
= 0.

Similarly, for any y∈(0, 1], we have limx→0Cop(x, y; a) = 0. Since Cop(0, 0; a)
= 0, assumption H1 is fulfilled.

Concerning H2, with appropriate differentiation and factoring we obtain

∂x,yCop(x, y; a) = ya(1/x−1)−2xa(1/y−1)+a log(y)−2

×
[
ax(1− y) log∗(x){x[a(1− y) + y] + a(1− x)y log∗(y)}

+ y{x[a2(1− x)(1− y) + (1− a)xy] + a(1− x)y[a(1− x) + x] log∗(y)}
]
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(we recall that log∗(x) = − log(x) and log∗(y) = − log(y)). For any (x, y) ∈
(0, 1)2, it is clear that (1 − x)(1 − y) ≥ 0, log∗(x) ≥ 0 and log∗(y) ≥ 0.
Since a ∈ [0, 1], we have a ≥ 0 and 1 − a ≥ 0. Hence, the main terms in
∂x,yCop(x, y; a) are non-negative. Therefore, ∂x,yCop(x, y; a) ≥ 0, so H2 is
satisfied and Cop(x, y; a) is a valid copula.

Let us call the copula in (5) the parametric VP1 (PVP1) copula. The pa-
rameter a adds a new degree of flexibility since it realizes a tradeoff between
the VP1 copula obtained for a = 1 and the independence copula for a = 0.
Furthermore, we can show that the condition a ∈ [0, 1] is optimal. Globally,
the PVP1 copula has the same properties as the VP1 copula, except for the
versatility in the shape and the correlation properties, which are significantly
nuanced by the parameter a.

We emphasize these aspects in what follows. The PVP1 copula density
is given by

cop(x, y; a) = ∂x,yCop(x, y; a) = ya(1/x−1)−2xa(1/y−1)+a log(y)−2

×
[
ax(1− y) log∗(x){x[a(1− y) + y] + a(1− x)y log∗(y)}

+ y{x[a2(1− x)(1− y) + (1− a)xy] + a(1− x)y[a(1− x) + x] log∗(y)}
]
,

(x, y) ∈ (0, 1)2.

Figures 4, 5 and 6 display the PVP1 copula and its density for a = 0.2,
a = 0.5 and a = 0.8, respectively.

Fig. 4. Plots of the PVP1 copula (left) and its density (right) for a = 0.2

From these figures, the effect of the parameter a on the shapes of the
PVP1 copula and its density is clear; it modulates the skewness of the shapes
in a complex manner, and the highest values are concentrated in the neigh-
borhood of (0, 1) and (1, 0). The main changes are observed in the triangle
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Fig. 5. Plots of the PVP1 copula (left) and its density (right) for a = 0.5

Fig. 6. Plots of the PVP1 copula (left) and its density (right) for a = 0.8

∆ = {(x, y) ∈ [0, 1]2; x + y ≤ 1}. These are attractive properties for some
extreme dependence modeling.

The medial correlation coefficient of the PVP1 copula is

Med = 4Cop(0.5, 0.5; a)− 1 = 2−a[2−log(2)] − 1.

Since 2− log(2) < 0, this coefficient is non-positive, highlighting the negative
dependence feature of the PVP1 copula.

Spearman’s rho related to the PVP1 copula is

ρSpear = 12
�

[0,1]2

[Cop(x, y; a)−Π(x, y)] dx dy

= 12
�

[0,1]2

[xa[1/y+log(y)]+1−aya/x+1−a − xy] dx dy.
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Due to the complexity of the integrand, there is no simple expression for this
measure. In order to have a numerical assessment, Table 1 presents some of
its values for selected values of a ∈ [0, 1].

Table 1. Some values of ρSpear for a = 0, 0.1, . . . , 1

a 0.0 0.1 0.2 0.3 0.4 0.5

ρSpear 0 −0.1669 −0.2866 −0.3836 −0.4661 −0.5382

a 0.6 0.7 0.8 0.9 1.0

ρSpear −0.6023 −0.6602 −0.7129 −0.7614 −0.8062

From this table, it is clear that the PVP1 copula can reach different levels
of negative dependence in the range [−0.8062, 0]. This range is close to the
optimal negative one for Spearman’s rho, i.e., [−1, 0].

To end this subsection, let us mention that several techniques can be ap-
plied to introduce asymmetry into the PVP1 copula. Among them, the tech-
nique in [10] suggests considering Cop(x, y; a, b, c) = x1−by1−cCop(x

b, yc; a),
with b ∈ [0, 1] and c ∈ [0, 1], i.e.,

Cop(x, y; a, b, c) = xab[1/y
c+c log(y)]+1−abyca/x

b+1−ac, (x, y) ∈ (0, 1]2,

and Cop(x, y; a, b, c) = 0 for x = 0 or y = 0. Other techniques, like the
flipping technique, are possible (see [12]).

3.2. Parametric extension of the VP2 copula. A parametric gen-
eralization of the VP2 copula is presented in the result below.

Proposition 3.2. Let a ∈ R. The two-dimensional function defined by
(6) Cop(x, y; a) = xa/y+1−aya/x+1−a, (x, y) ∈ (0, 1]2,

and Cop(x, y; a) = 0 for x = 0 and y = 0, is a valid copula for a ∈ [0, 1/2].
Proof. Let us check assumption H1. For any x ∈ (0, 1], we have

Cop(x, 1; a) = x(a/1+1−a) × 1(a/x+1−a) = xa+1−a × 1 = x

and Cop(0, 1; a) = 0. Similarly, for any y ∈ [0, 1], we have Cop(1, y; a) = y.
For any x ∈ (0, 1], we have limy→0 log(x)/y = −∞ (if x > 0) or 0 if x = 1,
and limy→0 log(y) = −∞ and limy→0 log(xy) = −∞. Furthermore, since
a ∈ [0, 1/2] we obviously have a ≥ 0 and 1− 2a ≥ 0. We thus obtain

lim
y→0

Cop(x, y; a) = lim
y→0

xa/y+1−aya/x+1−a

= lim
y→0

exp

[
a

y
log(x) +

a

x
log(y) + (1− a) log(xy)

]
= 0.

By using the same arguments, for any y ∈ (0, 1], we have limx→0Cop(x, y; a)
= 0. Since Cop(0, 0; a) = 0 by definition, H1 is satisfied.
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For H2, standard differentiation techniques and rearrangements give

∂x,yCop(x, y; a) = xa(1/y−1)−2ya(1/x−1)−2

×
(
y{x[a2(1− x)(1− y) + xy(1− 2a)] + ay[a(1− x) + x] log∗(y)}

+ ax log∗(x)[ax(1− y) + ay log∗(y) + xy]
)

(we recall that log∗(x) = − log(x) and log∗(y) = − log(y)). For any (x, y) ∈
(0, 1)2, it is clear that (1 − x)(1 − y) ≥ 0, log∗(x) ≥ 0 and log∗(y) ≥ 0.
Since a ∈ [0, 1/2], we have a ≥ 0 and 1− 2a ≥ 0. Hence, the main terms in
∂x,yCop(x, y; a) are non-negative. Therefore, ∂x,yCop(x, y; a) ≥ 0, so assump-
tion H2 is satisfied and Cop(x, y; a) is a valid copula.

Analogously to the previous subsection, let us call the copula in (6) the
parametric VP2 (PVP2) copula. The parameter a adds a new degree of
flexibility since it realizes a tradeoff between the VP2 copula defined with
a = 1/2 and the independence copula defined with a = 0. Furthermore,
since the condition a ≥ 0 is necessary for assumption H1 to hold, and
∂x,yCop(1, 1; a) = 1 − 2a must be non-negative, the condition a ∈ [0, 1/2] is
optimal.

Globally, the PVP2 copula has the same properties as the VP2 copula,
except for the versatility in the shape and the correlation properties, which
are significantly nuanced by the parameter a.

We emphasize these aspects in what follows. The PVP2 copula density
is given by

cop(x, y; a) = ∂x,yCop(x, y; a) = xa(1/y−1)−2ya(1/x−1)−2

×
(
y{x[a2(1− x)(1− y) + xy(1− 2a)] + ay[a(1− x) + x] log∗(y)}

+ ax log∗(x)[ax(1− y) + ay log∗(y) + xy]
)
, (x, y) ∈ (0, 1)2.

Fig. 7. Plots of the PVP2 copula (left) and its density (right) for a = 0.1
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Figures 7, 8 and 9 show the PVP2 copula and its density for a = 0.1,
a = 0.25 and a = 0.4, respectively.

Fig. 8. Plots of the PVP2 copula (left) and its density (right) for a = 0.25

Fig. 9. Plots of the PVP2 copula (left) and its density (right) for a = 0.4

From these figures, the effect of the parameter a on the shapes of the
PVP2 copula and its density is clear; it modulates the skewness of the shapes
in a complex manner. This is particularly the case in the triangle ∆.

The medial correlation coefficient of the PVP2 copula is

Med = 4Cop(0.5, 0.5; a)− 1 = 2−2a − 1.

This coefficient is obviously non-positive, highlighting the negative depen-
dence feature of the PVP2 copula.
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Spearman’s rho related to the PVP2 copula is

ρSpear = 12
�

[0,1]2

[Cop(x, y; a)−Π(x, y)] dx dy

= 12
�

[0,1]2

[xa/y+1−aya/x+1−a − xy] dx dy.

There is no simple form for this measure due to the complexity of the inte-
grand. In order to have a numerical assessment, Table 2 presents some of its
values for selected values of a ∈ [0, 1/2].

Table 2. Some values of ρSpear for a = 0, 0.05, 0.1, 0.15, . . . , 0.5

a 0.00 0.05 0.10 0.15 0.20 0.25
ρSpear 0 −0.1242 −0.2219 −0.3048 −0.3775 −0.4423

a 0.30 0.35 0.40 0.45 0.50
ρSpear −0.501 −0.5548 −0.6043 −0.6503 −0.6932

From this table, it is clear that the PVP2 copula can reach different
levels of negative dependence, with the range [−0.7, 0], which is close to the
optimal negative one for Spearman’s rho, i.e., [−1, 0].

Just as for the PVP1 copula, we can use the technique in [10] to propose
an asymmetric version, i.e., Cop(x, y; a, b, c) = x1−by1−cCop(x

b, yc; a) with
b ∈ [0, 1] and c ∈ [0, 1]. It can be expressed as

Cop(x, y; a, b, c) = xba/y
c+1−abyca/x

b+1−ac, (x, y) ∈ (0, 1]2,

and Cop(x, y; a, b, c) = 0 for x = 0 or y = 0.

4. Conclusion. In conclusion, this article introduces and studies new
variable-power copulas that offer valuable dependence modeling capabilities.
As a summary, they are presented in Table 3.

Table 3. The main variable-power copulas of the article.

Name Definition Interval of values for a

VP1 x1/y+log(y)y1/x ✗

VP2 x(1/2)(1/y+1)y(1/2)(1/x+1) ✗

PVP1 xa[1/y+log(y)]+1−aya/x+1−a [0, 1]

PVP2 xa/y+1−aya/x+1−a [0, 1/2]

In comparison to the standard schemes, the utilization of variable powers
enables an alternative representation of dependence structures, accommodat-
ing a wider range of real-world scenarios. By incorporating these copulas into
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statistical analyses, researchers and practitioners can improve the accuracy
and effectiveness of various risk management, financial modeling, and actu-
arial applications. These novel copulas pave the way for more robust and
accurate modeling techniques in the future.

Some possible perspectives of research include two-dimensional data anal-
yses, the development of three-dimensional variable-power copulas, and the
construction of copula regression models.
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