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THE OPTIMAL SAMPLE SIZE
IN THE CROSSWISE MODEL FOR SENSITIVE QUESTIONS

Abstract. For interval estimation of the fraction of the population with
a stigmatizing characteristic, the nonrandomized response model proposed
by Tian, Yu, and Geng (2007) is considered. The most common method for
constructing a confidence interval (c.i.) is through the application of the Cen-
tral Limit Theorem. Unfortunately, such c.i.’s do not maintain the prescribed
confidence level, in contradiction to Neyman’s (1934) definition of c.i. In the
present paper, the exact c.i. for this fraction is constructed, i.e., the c.i. which
keeps the given confidence level. The length of the proposed c.i. depends on
the given probability of a positive answer to the neutral question, and on
the sample size. For such c.i.’s, the probability of a positive answer to the
neutral question is established with respect to the given limit on privacy
protection of the interviewee, and the optimal sample size for obtaining the
c.i. of a given length is derived.

1. Introduction. We consider the estimation of the percentage of the
population who have committed socially stigmatizing misdeeds such as cor-
ruption, tax frauds, illegal work (black market), drug uses, violence against
children and others. The proposed c.i.’s for the percentage are asymptotic
(Yu et al., 2008). These confidence intervals are not c.i. in the Neyman sense
(Neyman, 1934, p. 562); they do not maintain prescribed confidence level. In
what follows, the finite sample size c.i. is proposed. Its construction is based
on the distribution of the Maximum Likelihood Estimator of the percentage.
We consider only the crosswise model proposed by Yu et al. (2008).
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An important practical problem is to determine the sample size that guar-
antees both a certain precision of estimation and protection of respondent
privacy. To solve this issue, we impose conditions on the level of privacy
protection (so that respondents can feel safe answering the questionnaire)
and set a minimum sample size that meets the given precision of estimation.
In this paper, we propose two criteria for the given precision of estimation
based on the length of the c.i. Importantly, we do not use approximate c.i.’s,
but exact ones, since we take the view that the estimation error should be
completely controlled. We also take advantage of the fact that usually sen-
sitive questions involve rare phenomena. The solution given is a natural one
for the researcher who determines the confidence level, the precision of the
estimate and the level of protection for the respondent.

Mathematically, let Y be a random variable such that

P{Y = 1} = π = 1− P{Y = 0}.

The r.v. takes on the value 1 when the answer to the sensitive question is
YES , and the value 0 otherwise. The number π ∈ (0, 1) is the probability of
the positive answer to the sensitive question, i.e., π · 100% is the percentage
of interest. We want to estimate the probability π, i.e., we are going to
construct a confidence interval for π.

Let Y1, . . . , Yn be a sample. The statistical model for the sample is

({0, 1, . . . , n}, {Bin(n, π), π ∈ (0, 1)}),

where Bin(·, ·) denotes the binomial distribution.
The difficulty which arises is that the random variables Y1, . . . , Yn are

not observable. Answers to the sensitive question are “hidden” by asking
a “neutral” question, which is answered YES or NO. It is assumed that the
“neutral” question is independent of the sensitive question. In a questionnaire
two questions are asked: a sensitive and a neutral one. But only one answer
is registered and the interviewer does not know which of the two questions
the interviewee answered.

The first method of obscuring the answer to a sensitive question was
proposed by Warner in 1965. His method consists in randomization of an-
swers. This randomization is done by the respondent, and the interviewer
does not know what the answer to the sensitive question is. This model has
been extended in different ways (Horvitz et al., 1967; Greenberg et al., 1969;
Raghavarao, 1978; Franklin, 1989; Arnab et al., 2019; Arnab, 1990, 1996;
Kuk, 1990; Rueda et al., 2015).

Tian et al. 2007 proposed a nonrandomized response model (NRR). Their
idea was to ask two questions simultaneously: one sensitive and one neu-
tral. This model was extended to other, similar approaches (Yu et al., 2008;
Tan et al., 2009; Tian, 2014).
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In Section 2, we give the method of construction of a new confidence in-
terval for π. In Section 3, we recall the construction of asymptotic confidence
intervals. We also discuss the probability of the coverage of the confidence
intervals presented. In Section 4, we present the method of sample size se-
lection, which plays the main role in our paper. In Section 5, concluding
remarks are given.

2. Confidence interval in the crosswise model. In the crosswise
model (CM), respondents are presented with two questions simultaneously,
one neutral and one sensitive. They are instructed to report “1” only if the
answers to both questions are the same, i.e., the observable variable in this
model is Z, where

Z =

{
1 if both answers are YES or both NO,

0 otherwise.

The answers of n respondents may be treated as realizations of the binomial
distribution with parameters (n, ϱ), where ϱ is the probability of receiving
an outcome 1 of the Z variable. Assume that the questions asked are inde-
pendent and the probability of the YES answer to the sensitive question is
π (and q for the neutral question). It is assumed that q is known. Hence, in
the CM model,

ϱ = qπ + (1− q)(1− π) = (2q − 1)π + (1− q),

so

π =
ϱ− (1− q)

2q − 1
.

Without loss of generality we can assume that q < 0.5.
Let Z1, . . . , Zn be a sample. The MLE of ϱ is ϱ̂ = 1

n

∑n
i=1 Zi. The distri-

bution of nϱ̂ is Bin(n; ϱ).
The MLE of π has the form

π̂CM = max

{
min

{
ϱ̂− (1− q)

2q − 1
, 1

}
, 0

}
.

Let Bin(·, n; ϱ) denote the CDF of the binomial distribution with proba-
bility of success equal to ϱ, and let B(a, b; ·) denote the CDF of the Beta
distribution with parameters (a, b).

In the derivation of the pdf of π̂CM, the following known relationship will
be applied: if ξ is a binomial random variable with parameters (n, ρ) then

Pρ{ξ ≤ x} =

x∑
i=0

(
n

i

)
ρi(1− ρ)n−i = B(n− x, x+ 1; 1− ρ).
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Let Xq be the sample space of the estimator π̂CM:

Xq =

{
x : x = max

{
min

{
i/n− (1− q)

2q − 1
, 1

}
, 0

}
, i = 0, 1, . . . , n

}
.

The pdf of the distribution of π̂CM is

(1) Pπ{π̂CM = x}

=


Pπ{nϱ̂ ≥ ⌈(1− q)n⌉} for x = 0,(

n
⌈u⌉

)
((2q−1)π+(1−q))⌈u⌉(1−(2q−1)π−(1−q))n−⌈u⌉ for 0 < x < 1,

Pπ{nϱ̂ ≤ ⌊qn⌋} for x = 1,

=


B (⌈n(1−q)⌉, n−⌈n(1−q)⌉+1; (2q−1)π+(1−q)) for x = 0,(

n
⌈u⌉

)
((2q−1)π+(1−q))⌈u⌉(1−(2q−1)π−(1−q))n−⌈u⌉ for 0 < x < 1,

1−B (⌊nq⌋+1, n−⌊nq⌋; (2q−1)π+(1−q)) for x = 1,

where x ∈ Xq and u = n(x(2q − 1) + (1 − q)). Here ⌈·⌉ and ⌊·⌋ denote the
standard ceiling and floor functions.

The CDF of π̂CM is

Fπ(x) = Pπ{π̂CM ≤ x}

=

{
B(⌈u⌉, n− ⌈u⌉+ 1; (2q − 1)π + (1− q)) for 0 ≤ x < 1,

1 for x = 1.

Since the distribution of π̂CM is discrete, we have

Pπ{π̂CM < x} =

{
0 for x = 0,

B(⌊u⌋+ 1, n− ⌊u⌋; (2q − 1)π + (1− q)) for 0 < x ≤ 1.

Note that the family {Fπ : π ∈ [0, 1]} is stochastically ordered, i.e.,

Fπ1(·) ≥ Fπ2(·) for π1 < π2.

Let δ be a given confidence level and let x be the observed value of the
estimator π̂CM. The equitailed confidence interval (πL(x; δ);πR(x; δ)) for π
is defined as {

πL(x; δ) = arg infπ Pπ{π̂CM ≤ x} ≥ 1+δ
2 ,

πR(x; δ) = arg supπ Pπ{π̂CM < x} ≤ 1−δ
2 .

The function π 7→ Fπ(x) for a given x has two jumps, at π = 0 and at π = 1.
The jump at π = 0 equals 1−B(u, n− u+ 1; 1− q), and the jump at π = 1
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is B(u, n− u+ 1; q). Hence the confidence interval for π has the form

πL(x; δ) =


0 if B(⌈u⌉+ 1, n− ⌈u⌉; 1− q) < 1+δ

2 ,
B−1

(
⌈u⌉+ 1, n− ⌈u⌉; 1+δ

2

)
− (1− q)

2q − 1
otherwise,

πR(x; δ) =


1 if B(⌊u⌋, n− ⌊u⌋+ 1; q) > 1−δ

2 ,
B−1

(
⌊u⌋, n− ⌊u⌋+ 1; 1−δ

2

)
− (1− q)

2q − 1
otherwise.

(CP)

The coverage probability of the above confidence interval is, by definition,
greater than or equal to the given confidence level. In Figures 3.1 and 3.2,
the coverage probability is presented for n = 100 and n = 1000, respec-
tively (solid line). The confidence level is assumed to be 0.95. This coverage
probability is calculated, not simulated.

3. Asymptotic c.i. The most common method of constructing a c.i. is
the application of the Central Limit Theorem. This method was applied by
Yu et al. (2008) and Tian (2014).

If ξ is a binomial random variable with parameters n and ϱ, then, by
CLT, the distribution of ξ tends in distribution as n → to a normal variate
with mean value nϱ and variance nϱ(1− ϱ). So

ϱ̂ ∼ AN

(
ϱ,

ϱ(1− ϱ)

n

)
.

Tian (2014) considered the following estimator of π:

π̃C =
ϱ̂− (1− q)

2q − 1
.

Its properties are as follows:

Eππ̃C = π,

Varπ(π̃C) =
ϱ(1− ϱ)

n(2q − 1)2
=

π(1− π)

n
+

q(1− q)

n(2q − 1)2
.

The unbiased estimator of the variance of π̃C is given by the formula

V̂ar π̃C =
ϱ̂(1− ϱ̂)

(n− 1)(2q − 1)2
=

π̃C(1− π̃C)

n− 1
+

q(1− q)

(n− 1)(2q − 1)2
.

By CLT we have

π̃C ∼ AN

(
π,

π(1− π)

n
+

(1− q)q

n(2q − 1)2

)
.

Hence
π̃C − π√
Var π̃C

∼ N(0, 1).
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There are two ways of constructing a c.i. on the basis of the above ap-
proximation. The first one is based on solving the inequality∣∣∣∣ π̃C − π√

Var π̃C

∣∣∣∣ < u(1+δ)/2

or equivalently (
π̃C − π√
Var π̃C

)2

< u2(1+δ)/2.

Solving the inequality with respect to π we obtain the following c.i.:

2nπ̃C + u2(1+δ)/2 ± u(1+δ)/2

√
4nπ̃C(1− π̃C) +

4n(1−q)q+u2
(1+δ)/2

(1−2q)2

2(n+ u2(1+δ)/2)
. (WP)

In the second approach the variance of π̃C in CLT is substituted by its
unbiased estimator

π̃C − π√
V̂ar π̃C

∼ N(0, 1).

Solving the inequality ∣∣∣∣∣∣ π̃C − π√
V̂ar π̃C

∣∣∣∣∣∣ < u(1+δ)/2

with respect to π yields the following c.i.:(
π̃C − u(1+δ)/2

√
V̂ar π̃C ; π̃C + u(1+δ)/2

√
V̂ar π̃C

)
. (AP)
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Fig. 3.1. Probability of coverage for n = 100 and δ = 0.95
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The coverage probabilities of the (WP) and (AP) confidence intervals
are shown in Figures 3.1 and 3.2 for n = 100 and n = 1000 (dotted and
dashed lines, respectively). The confidence level is assumed to be 0.95. These
coverage probabilities are calculated, not simulated.

The proposed (CP) c.i. maintains the nominal confidence level, and the
risk of error in the statement is not greater than 1−γ. Unfortunately, asymp-
totic “confidence intervals” do not satisfy the Neyman (1934) definition. The
probability of coverage is less than the nominal confidence level, i.e., the risk
of an erroneous statement is greater than 1−γ and remains unknown. Hence
in what follows we consider only (CP) confidence intervals.
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Fig. 3.2. Probability of coverage for n = 1000 and δ = 0.95

4. The length of the exact confidence interval. Let us consider the
length of the CP confidence interval. For x an observed value of the estimator
π̂CM we have

l(x, q, n)

=



B−1
(
⌊u⌋, n−⌊u⌋+1; 1−δ

2

)
−(1−q)

2q−1
if B(⌈u⌉+1, n−⌈u⌉; 1−q) < 1+δ

2 ,

B−1
(
⌈u⌉+1, n−⌈u⌉; 1+δ

2

)
−(1−q)

2q−1
if B(⌊u⌋, n−⌊u⌋+1; q) > 1−δ

2 ,

B−1
(
⌊u⌋, n−⌊u⌋+1; 1−δ

2

)
−B−1

(
⌈u⌉+1, n−⌈u⌉; 1+δ

2

)
2q−1

otherwise.

Recall that u = n(x(2q − 1) + (1− q)).
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The length of the c.i. is a random variable. It depends on q, n and x.
There are at least three approaches to the problem of minimizing the length
of the c.i.:

(a) minimizing for each x,
(b) minimizing the expected length,
(c) almost sure minimizing.

Minimizing the length for the observed x relies on changing the probabilities
of over- and underestimation. This method was widely discussed by Zieliński
(2010, 2017). To obtain the shortest c.i. in the Neyman sense, i.e., controlling
the probability of coverage, randomization is needed. In what follows we
consider equitailed c.i. and confine ourselves to the problem of minimizing
the expected length and almost sure minimization.

Note that the length decreases as n increases, hence the problem of min-
imizing the length is equivalent to finding the appropriate q, i.e., the proba-
bility of a positive answer to the neutral question. As we proceed, the sample
size n is treated as a given number.

Minimizing expected length. The problem to be solved may be writ-
ten in the following way:

q∗e = argmin
q∈Q

sup
π∈Π

EC(π)
π l(π̂CM, q, n),

where Q and Π are acceptable sets for q and π and respectively,

EC(π)
π l(π̂CM, q, n) =

∑
x∈C(π)

l(x, q, n)Pπ{π̂CM = x}

denotes the expected length of the c.i. covering the estimated value of π.
The set C(π) = {x : πL(x; δ) < π < πR(x; δ)} includes those values of
the variable π̂CM for which the c.i. covers π. Without prior knowledge of q
and π the set Q equals [0, 0.5) (under the prior assumption that q < 0.5)
and Π = (0, 1).

Almost sure minimizing of length. The problem to be solved may
be written in the following way:

q∗d = argmax
q∈Q

inf
π∈Π

PC(π)
π {l(π̂CM, q, n) ≤ d},

where d is a given number chosen in advance and

δ · PC(π)
π {l(π̂CM, q, n) ≤ d} =

∑
x∈C(π)

Pπ{π̂CM = x}1(l(x, q, n) ≤ d)

denotes the probability that the length of the c.i. covering the estimated
value of π does not exceed d; d should be small. The function 1(p) is equal
to 1 if p is true and zero otherwise.
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It is easy to see that for Q = [0, 0.5), the minimal length with respect
to q is obtained for q = 0, which is equivalent to not asking the neutral
question. Such a questionnaire (without a neutral question) is useless for our
purposes. Hence we have to introduce a limitation on the probability q.

Tan et al. (2009) introduced the notion of degree of privacy protection
through the probabilities

Pπ{Y = 1 | Z = 1} and Pπ{Y = 1 | Z = 0}.
These probabilities are connected with the safety of the interviewee of non-
discovering her/his positive answer to the sensitive question. In the CM
model these probabilities are as follows (by a simple application of the Bayes
theorem):

p1,1(q) := Pπ{Y = 1 | Z = 1} =
πq

πq + (1− π)(1− q)
,

p1,0(q) := Pπ{Y = 1 | Z = 0} =
π(1− q)

π(1− q) + (1− π)q
.

These probabilities should be appropriately small, so that they do not exceed
a given value γ ∈ (0, 1). Note that for all q ∈ (0, 0.5) and all π ∈ (0, 1) we
have p1,0(q) ≥ p1,1(q) (see Figure 4.1). Therefore we are interested in q < 0.5

0.1 0.2 0.3 0.4 0.5

π

1

q

p1,1(q)

p1,0(q)

Fig. 4.1. Privacy protection versus q

such that
(2) p1,0(q) ≤ γ for π ∈ Π.

Simple algebra gives the following condition for q:
(3) q(π; γ) ≤ q < 0.5 for π ∈ Π,

where q(π; γ) = π(1−γ)
γ(1−2π)+π . Since q(γ, γ) = 0.5 for all π ∈ Π, the above con-

dition (3) holds for γ > π. This means that the maximal privacy protection
(i.e., minimal γ to be chosen) is limited by the percentage of the population
who committed socially stigmatizing misdeeds. Hence, the problem of min-
imizing the length, assuming π ≤ π0, for a given π0 ∈ (0, 1), is well defined
for q ∈ [q(π0; γ), 0.5). The privacy protection criterion is satisfied for γ > π0.
Based on this, we assume that Π = (0, π0] and Q = [q(π0; γ), 0.5).
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Note that Π, as well as Q, does not depend on the sample size n. So, the
length of the c.i. may be minimized by choosing an appropriate sample size.

Let d ∈ (0, 1) be a given number. We would like to find a sample size that
gives the c.i. of length not greater than d. In particular, we are interested in
the c.i. covering the estimated value of π. There are two approaches to the
problem: find minimal n such that

• E
C(π)
π l(π̂CM, q∗e , n) ≤ d for all π ∈ Π, or

• P
C(π)
π {l(π̂CM, q∗d, n) ≤ d} ≥ 1− λ for a given probability 1− λ and for all

π ∈ Π.

In the first approach, we want the average length of the c.i. covering the
estimated value of π to be less than the given d. In the second approach, we
want the length of at least (1 − λ)% of the c.i. covering the estimated π to
be less than the given d. Let us note that we have at least δ% of intervals
covering the unknown parameter π and for an infinitely large sample size n,
the value P

C(π)
π {l(π̂CM, q, n) ≤ d} is 1.

Consider the first approach. The analysis of EC(π)
π l(π̂CM, q, n) shows that

(see Figures 4.2, 4.3)

(a) for each q and n, it increases as π increases for π ∈ (0, 0.5),
(b) for each π and n, it increases as q increases for q ∈ (0, 0.5).

Hence it is enough to find the sample size n with E
C(π0)
π0 l(π̂CM, q(π0, γ), n)

≤ d. For a given π0, γ, and d, the solution may be found numerically.

Fig. 4.2. Expected length versus q with respect to π under the condition that π is in the
confidence interval

In Table 4.1 some exemplary minimal sample sizes are given for confi-
dence level δ = 0.95 and privacy protection γ = 0.5.
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Fig. 4.3. Expected length versus π with respect to q under the condition that π is in the
confidence interval

Table 4.1. The smallest n such that E
C(π0)
π0 l(Zn, q(π0, γ), n) ≤ d

π0 d = 0.05 d = 0.06

0.1 1326 929
0.2 3428 2388
0.3 8557 5955
0.4 34862 24206

Note: π0 = q(π0, γ) for γ = 0.5

Now consider the second approach, i.e., we want to find a sample size n
such that

PC(π)
π {l(π̂CM, q, n) ≤ d} ≥ 1− λ

for given d and λ. The analysis of PC(π)
π {l(π̂CM, q, n) ≤ d} shows that (see

Figures 4.4 and 4.5)

(a) for every d, q, and n, it decreases in π (for π ∈ (0, 0.5)),
(b) for every d, π, and n, it does not decrease in q (for q ∈ (0, 0.5)).

The monotonicity of P
C(π)
π {l(π̂CM, q, n) ≤ d} in q is disturbed due to

the discreteness of the observed variable ρ̂. However, the probability gen-
erally decreases in q (see Figure 4.5). This distinctive feature allows us to
recommend that it is enough to find a sample size n such that

PC(π0)
π0

{l(π̂CM, q(π0; γ), n) ≤ d} ≥ 1− λ.

For given π0, γ, d, and λ, the solution may be found numerically. In Table 4.2,
some example minimal sample sizes are given for confidence level δ = 0.95,
privacy protection γ = 0.5, and λ = 0.01 and λ = 0.05.
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Fig. 4.4. P
C(π)
π {l(π̂CM, q, n) ≤ d} versus π; the case of n = 1000 and δ = 0.95
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Fig. 4.5. P
C(π)
π {l(π̂CM, q, n) ≤ d} versus q; the case of n = 1000 and δ = 0.95

Table 4.2. The smallest n such that P
C(π0)
π0 {l(π̂CM, q(π0; γ), n) ≤ d} ≥ 1− λ

d = 0.05 d = 0.06

π0 λ = 0.01 λ = 0.05 λ = 0.01 λ = 0.05

0.1 1570 1551 1111 1094
0.2 3861 3845 2699 2686
0.3 9508 9499 6623 6615
0.4 38576 38572 26819 26815

Note: π0 = q(π0, γ) for γ = 0.5
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As may be expected, the sample size increases when the requirements for
the length of the c.i. increase, i.e., d decreases. Also, to obtain the c.i. of a
given length for π which is prior smaller, i.e., π0 is smaller the smaller sample
size is needed. It is interesting that a slight increase in sample size gives a
higher percentage for c.i. for a given length covering an unknown value of π
(the probability λ is smaller, i.e., 1− λ is greater).

5. Conclusions. In the paper a new confidence interval for the fraction
of sensitive questions is proposed. Recall that Neyman (1934) defined a c.i.
as a method of estimation with “... the probability of an error in a statement
of this sort being equal to or less than 1 − ε, where ε is any number 0 <
ε < 1, chosen in advance. The number ε I call the confidence coefficient.”
(In our notation the confidence level is δ.) The new c.i. keeps the prescribed
confidence level, while the very popular asymptotic c.i. does not.

An important practical problem is the sample size. We have derived the
minimal sample size fulfilling two criteria: average length and almost sure
length. To derive these sample sizes, we put restrictions on privacy pro-
tection, i.e., the probability of discovering the YES answer to the sensitive
question. This probability should be appropriately small so that the intervie-
wee can feel safe answering the questionnaire. Also, we restricted ourselves
to rare phenomena, so we consider sensitive questions with a small (given in
advance) probability of a positive answer.

We do not compare the length of our c.i. with asymptotic versions. The
asymptotic c.i.’s must be shorter, since they do not keep a prescribed confi-
dence level; the real probability of coverage is less than the given confidence
level. Hence, the comparison of the lengths makes no sense. Note that our
confidence interval is very easy to calculate; even a standard smartphone
has a spreadsheet application that can calculate the quantiles of Beta dis-
tribution. Recall that asymptotic c.i.’s based on normal approximation were
useful when computers were not easily available. We, therefore, recommend
using our confidence interval in practice.
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