
ACTA ARITHMETICA
Online First version

The first coefficient of Langlands Eisenstein series for SL(n,Z)
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Abstract. Fourier coefficients of Eisenstein series figure prominently in the study of
automorphic L-functions via the Langlands–Shahidi method, and in various other aspects
of the theory of automorphic forms and representations.

In this paper, we define Langlands Eisenstein series for SL(n,Z) in an elementary
manner, and then determine the first Fourier coefficient of these series in a very explicit
form. Our proofs and derivations are short and simple, and use the Borel Eisenstein series
as a template to determine the first Fourier coefficient of other Langlands Eisenstein series.

1. Introduction. The classical upper half-plane is the set of complex
numbers

h2 := {x+ iy | x ∈ R, y > 0},

which can also be realized, in group-theoretic terms, by the Iwasawa decom-
position (see [Gol06]) as

h2 = GL(2,R)/(O(2,R) · R×) =

{(
y x

0 1

) ∣∣∣∣ x ∈ R, y > 0

}
.

For g =
( y x
0 1

)
∈ h2 and s ∈ C we define the power function

(1.1) Is(g) := ys.

Let

Γ∞ =

{(
1 m

0 1

) ∣∣∣∣ m ∈ Z
}
.
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Then the non-holomorphic Eisenstein series for SL(2,Z) is defined for
Re(s) > 1 by the convergent series

E(g, s) :=
∑

γ∈Γ∞\SL(2,Z)

1
2 · Is(γg).

For g =
( y x
0 1

)
∈ h2 (with y fixed), the Eisenstein series E(g, s) has a

Fourier expansion in the x-variable given by

(1.2) E(g, s) = ys + ϕ(s)y1−s︸ ︷︷ ︸
constant term

+
2

π−sΓ (s)ζ(2s)︸ ︷︷ ︸
first Fourier coeff.

∑
n̸=0

σ1−2s(n)|n|s−
1
2︸ ︷︷ ︸

Hecke eigenvalue

W2,s− 1
2
(|n|y) · e2πinx

where

ϕ(s) =
√
π
Γ
(
s− 1

2

)
ζ(2s− 1)

Γ (s)ζ(2s)
, σs(n) =

∑
d|n
d>0

ds,

and

W2,α(y) =

√
y

2

∞�

0

e−πy(u+1/u)uα
du

u
.

The Fourier expansion (1.2) is one of the most important in the theory
of modular forms. We have singled out the “constant term,” the “first Fourier
coefficient,” and the “Hecke eigenvalue,” which have each played a significant
role in the history of the subject.

Let F be a number field with associated adele ring AF . The constant
term of the Fourier expansion of Langlands Eisenstein series for a quasi-split
group over AF has been known for a long time (see [Lan76, Lan71, GS88]).
The Langlands–Shahidi method (first introduced in [Sha81]) is a method to
compute local coefficients for generic representations of reductive groups. In
the case of Eisenstein series, Shahidi uses the Casselman–Shalika formula for
Whittaker functions to express the first coefficient as a product of L-functions
(see [Sha85, Sha90]). This gives a new proof of the analytic continuation and
functional equation of Rankin–Selberg L-functions since they occur in the
non-constant term of certain Eisenstein series.

The Langlands–Shahidi method of studying L-functions by way of Eisen-
stein series has numerous applications. For example, Kim and Shahidi apply
this method to the analysis of GL(2)×GL(3) tensor product representations
[KS02b], and to the symmetric cube representation on GL(2) [KS99, KS02b],
deriving functoriality results in both cases. Further, from the symmetric
cube result, they are able to advance the state of the art concerning the
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Ramanujan–Petersson and Selberg conjectures for GL(2), obtaining an up-
per bound of 5/34 for Hecke eigenvalues of GL(2) Maass forms, over any
number field and at any prime (finite or infinite).

In additional work, Kim [Kim03] uses the Langlands–Shahidi method
to obtain functoriality results concerning exterior square representations on
GL(4), and symmetric fourth power representations on GL(2). As a conse-
quence of the latter result, Kim and Sarnak [Kim03, Appendix 2] obtain a
lower bound λ1 ≥ 975/4096 ≈ 0.238 for the first eigenvalue of the Laplacian,
acting on the corresponding hyperbolic space. Moreover, in [KS02a], Kim
and Shahidi prove a criterion for cuspidality of the GL(2) symmetric fourth
power representation, and deduce from this a number of results towards the
Ramanujan–Petersson and Sato–Tate conjectures.

In further work, Kim [Kim08] applies the Langlands–Shahidi method to
exceptional groups. In this context, various other types of L-functions arise,
and a number of results concerning the holomorphy of these L-functions
follow.

There are numerous other applications and potential applications, some
of which are discussed in [Kim03]. In sum, information concerning Fourier
coefficients of Eisenstein series is central to the Langlands–Shahidi method,
which has proved a powerful tool in the theory of automorphic forms and rep-
resentations, and has strong potential for relevance to additional Langlands
functoriality and related results.

The main goal of this paper is to first define Langlands Eisenstein series
for SL(n,Z) in an elementary manner, and then determine the first Fourier
coefficient of the Langlands Eisenstein series in a very explicit form. This
result is stated in Theorem 4.8, which is the main theorem of this paper.
The proof of this theorem is also short and simple (following the methods
introduced in [GMW21]) using the Borel Eisenstein series as a template to
determine the first Fourier coefficient of other Eisenstein series.

2. Basic functions on the generalized upper half-plane hn. For an
integer n ≥ 2, let Un(R) ⊆ GL(n,R) denote the group of upper triangular
unipotent matrices and let O(n,R) ⊆ GL(n,R) denote the group of real
orthogonal matrices.

Definition 2.1 (Generalized upper half-plane). We define the general-
ized upper half-plane as

hn := GL(n,R)/(O(n,R) · R×).

By the Iwasawa decomposition of GL(n) (see [Gol06]) every element of hn
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has a coset representative of the form g = xy where

(2.1) x =


1 x1,2 x1,3 ··· x1,n

1 x2,3 ··· x2,n

. . .
...

1 xn−1,n

1

 ∈ Un(R), y =


y1y2···yn−1

y1y2···yn−2

. . .
y1

1

 ,

with yi > 0 for each 1 ≤ i ≤ n − 1. The group GL(n,R) acts as a group of
transformations on hn by left multiplication.

Definition 2.2 (Character of Un(R)). LetM = (m1, . . . ,mn−1) ∈ Zn−1.
For an element x ∈ Un(R) of the form

(2.2) x =


1 x1,2 x1,3 ··· x1,n

1 x2,3 ··· x2,n

. . .
...

1 xn−1,n

1

 ,

we define the character ψM by

(2.3) ψM (x) := m1x1,2 +m2x2,3 + · · ·+mn−1xn−1,n.

Next, we generalize the power function (1.1), which is used to construct
the Eisenstein series for SL(2,Z).

Definition 2.3 (Power function). Fix an integer n ≥ 2. Let

α = (α1, . . . , αn) ∈ Cn

with α1 + · · · + αn = 0. Let ρ = (ρ1, . . . , ρn), where ρi = n+1
2 − i for

i = 1, . . . , n. We define a power function on xy ∈ hn by

(2.4) In(xy, α) =

n∏
i=1

dαi+ρi
i =

n−1∏
i=1

y
α1+···+αn−i+ρ1+···+ρn−i

i ,

where di =
∏

j≤n−i
yj is the ith diagonal entry of the matrix g = xy as above.

Definition 2.4 (Weyl group). Let Wn
∼= Sn denote the Weyl group of

GL(n,R). We consider it as the subgroup of GL(n,R) consisting of permu-
tation matrices, i.e., matrices that have exactly one 1 in each row/column
and all zeros otherwise. The long element of Wn is

wlong :=

(
1

··
·

1

)
.

Definition 2.5 (Jacquet’s Whittaker function). Let g ∈ GL(n,R) with
n ≥ 2. Let α = (α1, . . . , αn) ∈ Cn with α1 + · · · + αn = 0. We define the
completed Whittaker function W±

n,α : GL(n,R)/(O(n,R) · R×) → C by the
integral

W±
n,α(g) :=

∏
1≤j<k≤n

Γ
(1+αj−αk

2

)
π

1+αj−αk
2

·
�

U4(R)

In(wlongug, α)ψ1,...,1,±1(u) du,



First coefficient of Langlands Eisenstein series 5

which converges absolutely if Re(αi − αi+1) > 0 for 1 ≤ i ≤ n − 1 (see
[GMW21]), and has meromorphic continuation to all α ∈ Cn satisfying
α1 + · · ·+ αn = 0.

Remark 2.6. With the additional Gamma factors included in this defi-
nition (which can be considered as a “completed” Whittaker function) there
are n! functional equations. This is equivalent to the fact that the Whittaker
function is invariant under all permutations of α1, . . . , αn. Moreover, even
though the integral (without the normalizing factor) often vanishes identi-
cally as a function of α, this normalization never does.

If g is a diagonal matrix in GL(n,R) then the value of W±
n,α(g) is inde-

pendent of sign, so we drop the ±. We also drop the ± if the sign is +1.

3. The Borel Eisenstein series for SL(n,Z). The Borel subgroup B
for GL(n,R) is given by

B =

{( ∗ ∗ ··· ∗
∗ ··· ∗

. . .
...
∗

)
⊂ GL(n,R)

}
.

Among the general parabolic subgroups defined in Definition 4.3, the Borel
subgroup is minimal. The Borel Eisenstein series EB(g, α) for SL(n,Z) is
a complex-valued function of variables g ∈ GL(n,R) and α = (α1, . . . , αn)
∈ Cn where α1+ · · ·+αn = 0. For Γn := SL(n,Z) and Re(αi)−Re(αi+1) > 1
(i = 1, . . . , n− 1), it is defined by the absolutely convergent series

(3.1) EB(g, α) :=
∑

(B∩Γn)\Γn

In(γg, α).

Proposition 3.1 (The Mth Fourier–Whittaker coefficient of EB). De-
fine the vector M := (m1, . . . ,mn−1) ∈ Zn−1

+ and the matrix

M∗ :=

m1m2···mn−1

...
m1m2

m1
1

 .

Then the M th term in the Fourier–Whittaker expansion of EB (see [Gol06])
is given by �

Un(Z)\Un(R)

EB(ug, α)ψM (u) du =
AEB(M,α)∏n−1
k=1 m

k(n−k)/2
k

Wn,α(M
∗g),

where AEB(M,α) = AEB((1, . . . , 1), α) · λEB(M,α), and

(3.2) λEB((m, 1, . . . , 1), α) =
∑

c1,...,cn∈Z+
c1···cn=m

cα1
1 · · · cαn

n (m ∈ Z+)

is the (m, 1, . . . , 1)th (or more informally the mth) Hecke eigenvalue of EB.

Proof. See [Gol06].
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Proposition 3.2 (The first Fourier coefficient of EB). We have

AEB((1, . . . , 1), α) = c0
∏

1≤j<k≤n

ζ∗(1 + αj − αk)
−1

for some constant c0 ̸= 0 (depending only on n), and

ζ∗(w) = π−w/2Γ

(
w

2

)
ζ(w)

is the completed Riemann ζ-function.

Proof. See [GMW21].

4. Eisenstein series attached to lower-rank Maass cusp forms on
Levi components

Definition 4.1 (Langlands parameters). Let n ≥ 2. A vector

α = (α1, . . . , αn) ∈ Cn

is termed a Langlands parameter if α1 + · · ·+ αn = 0.

Definition 4.2 (Maass cusp forms). Fix n ≥ 2. A Maass cusp form
with Langlands parameter α ∈ Cn for SL(n,Z) is a smooth function ϕ :
hn → C which satisfies ϕ(γg) = ϕ(g) for all γ ∈ SL(n,Z), g ∈ hn. In
addition, ϕ is square integrable and has the same eigenvalues under the
action of the algebra of GL(n,R)-invariant differential operators on hn as
the power function In(∗, α). The Laplace eigenvalue of ϕ is given by (see
[Mil02, Section 6])

n3 − n

24
− α2

1 + · · ·+ α2
n

2
.

The Maass cusp form ϕ is said to be tempered at infinity if the coordinates
α1, . . . , αn of the Langlands parameter are all pure imaginary.

Definition 4.3 (Parabolic subgroups). For n ≥ 2 and 1 ≤ r ≤ n,
consider a partition of n given by n = n1 + · · · + nr with positive integers
n1, . . . , nr. We define the standard parabolic subgroup

P := Pn1,...,nr :=




GL(n1) ∗ · · · ∗

0 GL(n2) · · · ∗
...

...
. . .

...
0 0 · · · GL(nr)


 .
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Letting Ir denote the r × r identity matrix, the subgroup

NP :=




In1 ∗ · · · ∗
0 In2 · · · ∗
...

...
. . .

...
0 0 · · · Inr




is the unipotent radical of P. The subgroup

MP :=



GL(n1) 0 · · · 0

0 GL(n2) · · · 0
...

...
. . .

...
0 0 · · · GL(nr)




is the Levi subgroup of P.

Definition 4.4 (Maass form Φ associated to a parabolic P). Let n ≥ 2.
Consider a partition n = n1 + · · ·+ nr with 1 ≤ r ≤ n. Let P := Pn1,...,nr ⊂
GL(n,R). For i = 1, . . . , r, let ϕi : GL(ni,R) → C be either the constant
function 1 (if ni = 1) or a Maass cusp form for SL(ni,Z) (if ni > 1). The
Maass form Φ := ϕ1 ⊗ · · · ⊗ ϕr is defined on GL(n,R) = P(R)K (where
K = O(n,R)) by the formula

Φ(nmk) :=
r∏

i=1

ϕi(mi) (n ∈ NP , m ∈MP , k ∈ K),

where m ∈MP has the form

m =

m1 0 ··· 0
0 m2 ··· 0
...

...
. . .

...
0 0 ··· mr

 with mi ∈ GL(ni,R).

In fact, this construction works equally well if some or all of the ϕi are
Eisenstein series.

Definition 4.5 (Character of a parabolic subgroup). Let n ≥ 2. Fix a
partition n = n1+ · · ·+nr with associated parabolic subgroup P = Pn1,...,nr .
Define

(4.1) ρP (j) =

{
n−n1

2 , j = 1,
n−nj

2 − n1 − · · · − nj−1, j ≥ 2.

Let s = (s1, . . . , sr) ∈ Cr satisfy
∑r

i=1 nisi = 0. Consider the function

| · |sP := I(·, α)
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on GL(n,R), where

α =
( n1 terms︷ ︸︸ ︷
s1 − ρP (1) +

1−n1
2 , s1 − ρP (1) +

3−n1
2 , . . . , s1 − ρP (1) +

n1−1
2 ,

n2 terms︷ ︸︸ ︷
s2 − ρP (2) +

1−n2
2 , s2 − ρP (2) +

3−n2
2 , . . . , s2 − ρP (2) +

n2−1
2 , . . . ,

...
nr terms︷ ︸︸ ︷

sr − ρP (r) +
1−nr
2 , sr − ρP (r) +

3−nr
2 , . . . , sr − ρP (r) +

nr−1
2

)
.

The conditions
∑r

i=1 nisi = 0 and
∑r

i=1 niρP (i) = 0 guarantee that the
entries of α sum to zero. When g ∈ P, with diagonal block entries mi ∈
GL(ni,R), one has

|g|sP =

r∏
i=1

|det(mi)|si ,

so that | · |sP restricts to a character of P which is trivial on NP .

Definition 4.6 (Langlands Eisenstein series attached to Maass cusp
forms of lower rank). Let Γ = SL(n,Z) with n ≥ 2. Consider a parabolic
subgroup P = Pn1,...,nr of GL(n,R) and functions Φ and | · |sP as given in
Definitions 4.4 and 4.5, respectively. Let

s = (s1, . . . , sr) ∈ Cr, where
r∑

i=1

nisi = 0.

The Langlands Eisenstein series determined by this data is defined by

(4.2) EP,Φ(g, s) :=
∑

γ∈(P∩Γ )\Γ

Φ(γg) · |γg|s+ρP
P

as an absolutely convergent sum for Re(si) sufficiently large, and extends to
all s ∈ Cr by meromorphic continuation.

For k = 1, . . . , r, let α(k) := (αk,1, . . . , αk,nk
) denote the Langlands pa-

rameters of ϕk. We adopt the convention that if nk = 1 then αk,1 = 0. Then
the Langlands parameters of EP,Φ(g, s) (denoted αP,Φ(s)) are

(4.3)
( n1 terms︷ ︸︸ ︷
α1,1 + s1, . . . , α1,n1 + s1,

n2 terms︷ ︸︸ ︷
α2,1 + s2, . . . , α2,n2 + s2, . . . ,

nr terms︷ ︸︸ ︷
αr,1 + sr, . . . , αr,nr + sr

)
.

Proposition 4.7 (The Mth Fourier coefficient of EP,Φ). Let

s = (s1, . . . , sr) ∈ Cr,
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where
∑r

i=1 nisi = 0. Consider EP,Φ(∗, s) with associated Langlands param-
eters αP,Φ(s) as defined in (4.3). Let M = (m1, . . . ,mn−1) ∈ Zn−1

>0 . Then
the M th term in the Fourier–Whittaker expansion of EP,Φ is

�

Un(Z)\Un(R)

EP,Φ(ug, s)ψM (u) du =
AEP,Φ

(M, s)∏n−1
k=1 m

k(n−k)/2
k

WαP,Φ
(s)(Mg),

where AEP,Φ
(M, s) = AEP,Φ

((1, . . . , 1), s) · λEP,Φ
(M, s), and

λEP,Φ
((m, 1, . . . , 1), s) =

∑
c1,...,cr∈Z>0
c1···cr=m

λϕ1(c1) · · ·λϕr(cr) · c
s1
1 · · · csrr(4.4)

is the (m, 1, . . . , 1)th (or more informally the mth) Hecke eigenvalue of EP,Φ.

Proof. The proof of (4.4) is given in [Gol06].
Theorem 4.8 (The first Fourier coefficient of EP,Φ). Assume that each

Maass form ϕk (with 1 ≤ k ≤ r) occurring in Φ has Langlands parameters
α(k) := (αk,1, . . . , αk,nk

) with the convention that if nk = 1 then αk,1 = 0.
Assume also that each ϕk is normalized to have Petersson norm ⟨ϕk, ϕk⟩ = 1.
Then the first coefficient of EP,Φ is given by

AEP,Φ
((1, . . . , 1), s) =

r∏
k=1
nk ̸=1

L∗(1,Adϕk)
−1/2

∏
1≤j<ℓ≤r

L∗(1+sj−sℓ, ϕj×ϕℓ)−1

up to a non-zero constant factor with absolute value depending only on n.
Here

L∗(1,Adϕk) = L(1,Adϕk)
∏

1≤i ̸=j≤nk

Γ

(
1 + αk,i − αk,j

2

)
and

L∗(1 + sj − sℓ, ϕj × ϕℓ) =


L∗(1 + sj − sℓ, ϕj) if nℓ = 1 and nj ̸= 1,

L∗(1 + sj − sℓ, ϕℓ) if nj = 1 and nℓ ̸= 1,

ζ∗(1 + sj − sℓ) if nj = nℓ = 1.

Otherwise, L∗(1+sj−sℓ, ϕj×ϕℓ) is the completed Rankin–Selberg L-function.

Proof. We apply the template method introduced in [GMW21]. In the
template protocol we replace each cusp form ϕk in Φ with a (smaller) Borel
Eisenstein series EB(∗, α(k)) with the same Langlands parameters as ϕk. The
next step is to determine the correct normalization of EB(∗, α(k)). Since ϕk
has Petersson norm = 1, it follows from [GSW21] that the first Fourier
coefficient of ϕk (denoted Aϕk

(1, . . . , 1)) is given by

Aϕk
(1, . . . , 1)=

L(1,Adϕk)
−1/2

∏
1≤i<j≤nk

Γ

(
1+αk,i−αk,j

2

)−1

if nk> 1,

1 if nk =1
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up to a non-zero constant factor with absolute value depending only on n.
This together with (3.2) shows that

(4.5) Aϕk
(1, . . . , 1)

( ∏
1≤i<j≤nk

ζ∗(1 + αk,i − αk,j)
)
· EB(∗, α(k))

has exactly the same first coefficient as ϕk up to a non-zero constant factor
with absolute value depending only on n.

Recall the Langlands parameters of EP,Φ(g, s) (denoted αP,Φ(s)) given by

(4.6)
( n1 terms︷ ︸︸ ︷
α1,1 + s1, . . . , α1,n1 + s1,

n2 terms︷ ︸︸ ︷
α2,1 + s2, . . . , α2,n2 + s2, . . . ,

nr terms︷ ︸︸ ︷
αr,1 + sr, . . . , αr,nr + sr

)
.

By replacing each ϕk with (4.5) we may form a new Borel Eisenstein series
EB,new with Langlands parameters given by (4.6). We then apply Proposition
3.2 to obtain the first coefficient of EB,new which takes the form[ ∏

1≤k≤r
nk ̸=1

L(1,Adϕk)
−1/2

∏
1≤i<j≤nk

Γ

(
1 + αk,i − αk,j

2

)−1

×
( ∏

1≤i<j≤nk

ζ∗
(
1 + αk,i − αk,j

))]( ∏
1≤k≤r

∏
1≤i<j≤nk

ζ∗(1 + αk,i − αk,j)
)−1

×
( ∏
1≤k<ℓ≤r

∏
1≤i≤nk

∏
1≤j≤nℓ

ζ∗(1 + sk − sℓ + αk,i − αℓ,j)
)−1

=
( ∏
1≤k≤r
nk ̸=1

L∗(1,Adϕk)
−1/2

)

×
( ∏

1≤k<ℓ≤r

∏
1≤i≤nk

∏
1≤j≤nℓ

ζ∗(1 + sk − sℓ + αk,i − αℓ,j)
)−1

,

up to a non-zero constant factor with absolute value depending only on n.
By the template method, the occurrence of ζ∗(1 + sk − sℓ + αk,i − αℓ,j)

in the first coefficient of EB,new tells us that L∗(1 + sk − sℓ, ϕk × ϕℓ) is
the corresponding component of the first coefficient of EP,Φ(g, s) provided
neither ϕk or ϕℓ are the constant function 1. The other cases (when one or
both of ϕk, ϕℓ equal 1) follow in a similar manner.
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