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Summary. We apply deep results of Dougherty and Foreman and of Drinfeld and Mar-
gulis to give a very simple proof of the following theorem. Let B be the Boolean ring of
Lebesgue measurable sets with the property of Baire in the sphere Sn or bounded Lebesgue
measurable sets with the property of Baire in the Euclidean space Rn+1 (n ≥ 2). Then
the Lebesgue measure in B is the unique finitely additive measure suitably normalized and
invariant under isometries. Moreover, we prove that there exist everywhere dense Gδ sets
in the sphere Sn (n ≥ 2) and in the cube [0, 1]n (n ≥ 3) that can be packed into arbitrarily
small open sets using only subdivisions into finitely many Borel pieces.

1. Introduction. The Ruziewicz problem for Borel sets asks if the
Lebesgue measure is the only finitely additive and isometry-invariant mea-
sure µ on Borel sets in the sphere Sn (n ≥ 2) or bounded Borel sets in Rn

(n ≥ 3) such that µ(Sn) = 1 or µ([0, 1]n) = 1. A similar question for the
spaces R1,R2 and S1 has a negative answer (see [9, Chapter 13]).

In the present paper we will give a partial answer to the problem, showing
the uniqueness of Lebesgue measure in the case of a larger family of sets than
the Borel ones, the class of Lebesgue measurable sets having the property of
Baire. However, our method does not work in the case of Borel sets and so
the Ruziewicz problem for Borel sets remains open.

We say that a set A in a metric space X can be packed into the set
B ⊆ X if there exist a partition of A into finitely many sets A1, . . . , Ak and
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some isometries f1, . . . , fk such that fi(Ai) ⊂ B and fi(Ai) ∩ fj(Aj) = ∅ for
all i ̸= j.

By a theorem of Drinfeld and Margulis (see Theorem 2.3 below) a positive
answer to the Ruziewicz problem follows from the following conjecture:

Conjecture. Every Gδ-set in Sn or Rn of Lebesgue measure 0 can be
packed using Borel pieces into any non-empty open set in the same space.

If one uses only pieces from an amenable group of isometries acting on
Sn or Rn, the above conjecture is false (even if the pieces were not re-
quired to be Borel [7, 9]). This follows from the existence of Marczewski
measures, which are isometry-invariant finitely additive measures, defined
over all subsets of Sn or Rn, that vanish on all meager sets and normalize
some compact set. The existence of a Marczewski measure requires the Ax-
iom of Choice for uncountable families of sets. But the lack of packing of
some Gδ-sets is also a theorem of the theory ZF+DC+AD (see [7] for more
details).

As shown in [7], a positive answer to the Ruziewicz problem for Borel
sets is also a theorem of the theory ZF + DC + AD.

Using a deep theorem of Dougherty and Foreman [1] we will prove the
following theorem:

Theorem 1.1. There exist some Gδ-sets everywhere dense in Sn (n ≥ 2)
that can be packed into any non-empty open set, using finitely many Borel
pieces. The same is true for the cube [0, 1]n (n ≥ 3).

The above theorem implies an answer to a problem stated in [7] about
G-Tarski null sets (studied in [6, 7]) and the property of Baire (see Corol-
lary 3.1 below and the definitions before the corollary).

Let B ∩ L be the algebra of subsets in Sn or Rn, where B is the algebra
of sets with the property of Baire and L the algebra of Lebesgue measurable
sets. We will show, using another theorem of [1], the following theorem:

Theorem 1.2. The Lebesgue measure is the only finitely additive and
isometry-invariant measure µ on the sets in B∩L of Sn (n ≥ 2) or bounded
sets in B∩L of Rn (n ≥ 3) such that µ(Sn) = 1 or µ([0, 1]n) = 1, respectively.

The above result was also obtained by Grabowski, Máthé and Pikhurko
[3, Theorem 1.14], but their proof is more complicated than ours.

2. Preliminaries. Let G be a group of isometries of Rn or Sn. We
will say that subsets A and B of Rn or Sn are G-equidecomposable (in
symbols A ≡ B) if A can be partitioned into sets A1, . . . , Ak such that
g1(A1), . . . , gk(Ak) is a partition of B for some elements g1, . . . , gk of G.

Two open sets A,B in Rn (or Sn) are densely equidecomposable if there
are finitely many disjoint open subsets Ai of A and isometries σi such that
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⋃
iAi is dense in A, the sets σi(Ai) are pairwise disjoint, and

⋃
σi(Ai) is

dense in B.
We will use the following theorems proved in [1, Cor. 2.8 and Cor. 2.7]:

Theorem 2.1 (Dougherty and Foreman without the Axiom of Choice).
Any two open subsets of Sn (n ≥ 2) or open bounded subsets of Rn (n ≥ 3)
are densly equidecomposable.

Theorem 2.2 (Dougherty and Foreman using the Axiom of Choice).
Any two bounded subsets of Rn (n ≥ 3) or of Sn (n ≥ 2) with non-empty
interiors are equidecomposable with parts having the property of Baire.

The next theorem, which we will need in the proof of Theorem 1.2, shows
that the Ruziewicz problem for Lebesgue measurable sets has an affirmative
answer. It was obtained first in the case of Sn (n ≥ 4) and Rn (n ≥ 5),
independently by Margulis [4] and Sullivan [8]. Then Margulis [5] settled the
cases of R3 and R4, and the remaining two cases, S2 and S3, were obtained
by Drinfeld [2].

Theorem 2.3. Let G be a group of isometries of Sn (n ≥ 2) or Rn

(n ≥ 3). Then the Lebesgue measure is the only finitely additive and G-
invariant measure µ on the Lebesgue measurable sets in the sphere Sn (n ≥ 2)
or bounded Lebesgue measurable sets in Rn (n ≥ 3) such that µ(Sn) = 1 or
µ([0, 1]n) = 1.

3. Proofs and a corollary

Proof of Theorem 1.1. Consider an infinite sequence A1, A2, . . . of disjoint
spherical triangles in Sn (n ≥ 2) with diameters tending to 0. Then, by
Theorem 2.1, one can pack the whole sphere Sn modulo a nowhere dense set
into any set Ai. Denote the subset of Sn that can be packed into Ai by Si.
Clearly, the intersection S of all the sets Si is a Gδ-set that is everywhere
dense in Sn. Moreover, S can be packed into any Ai using Borel pieces. Now,
it is enough to observe that since the action of the group of all isometries
of Sn is transitive, every open set contains a spherical triangle of the form
g(Ai), where g is an isometry of S and i is a positive integer. Moreover,
isometries preserve Borel sets.

The same proof works in the case of Rn for n ≥ 3.

We say that a set A ⊂ Rn or A ⊂ Sn is G-Tarski null if it can be
packed into arbitrarily small balls using transformations in G. Recall that
the theory ZF+DC+AD has a model called L(R) (see [7] for more details).
In the model every subset has the property of Baire. Our Theorem 1.1 solves
the Problem in [7] about existence of non-meager G-Tarski null sets in Rn

or Sn.
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Corollary 3.1. Let G be the group of rotations of Sn or the group of
isometries of Rn+1 (n ≥ 2). Then, in the theory ZF+DC+AD, there exists
a G-Tarski null set that has the property of Baire but is not meager.

Proof. Consider the Gδ-set constructed in the proof of Theorem 1.1,
which is clearly comeager. Since Theorem 1.1 is a theorem of ZF + DC, the
result follows.

In what follows we will denote by Borb the ring of bounded Borel sets
in Rn or Sn and by Lb the ring of bounded sets in L. The following lemma,
suggested by the referee, will be helpful in the proof of Theorem 1.2:

Lemma 3.2. Let Σ be some ring such that Borb ⊆ Σ ⊆ Lb and let µ be
an isometry-invariant finitely additive normalized measure that is absolutely
continuous on Σ with respect to the Lebesgue measure. Then µ is the Lebesgue
measure.

Proof. Observe that for any set A ∈ Lb there exist Borel sets B1 ⊆ A
⊆ B2 such that B2 \B1 has Lebesgue measure zero. Thus µ can be extended
to an invariant measure on Lb and so, by Theorem 2.3, µ is the Lebesgue
measure.

Proof of Theorem 1.2. Consider an isometry-invariant normalized mea-
sure µ defined on B ∩ Lb. By Lemma 3.2 it is enough to show that µ is
absolutely continuous with respect to λn. To get the absolute continuity of µ
it is enough to show that every subset of B∩Lb of Lebesgue measure zero can
be packed into an arbitrarily small spherical triangle (resp. small cube) using
pieces that are in B ∩ L. Indeed, every finitely additive isometry-invariant
measure agrees on spherical triangles (resp. cubes) with Lebesgue measure,
so by isometry-invariance, packing of a given set into any such triangle (resp.
cube) implies that the measure of such a set equals 0. So take a bounded sub-
set A of B∩L such that λn(A) = 0. This set is contained in a bounded subset
B ∈ B with non-empty interior. Now, by Theorem 2.2, B is equidecompos-
able using Baire pieces with an arbitrarily small spherical triangle C (resp.
small cube). Next, we observe that any subset of a Lebesgue null set has
Lebesgue measure zero, thus the pieces witnessing the equidecomposability
of B and C belong to the algebra B ∩ L.

Remark 3.3. We observe that since a subset of a Borel set of Lebesgue
measure zero might not be Borel, the method applied in the proof of Theorem
1.2 does not work in the case of the ring of bounded Borel sets.
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