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Abstract. The S-unit equation αx+βy = 1 in x, y ∈ O×
S plays a very important role

in Diophantine number theory. We first present the best known effective upper bounds for
the solutions of this equation, obtained recently by Le Fourn (2020) and Győry (2019).
Then we prove some generalisations for the case of larger multiplicative groups instead
of O×

S . Further, we provide a new application to monic polynomials with given discrimi-
nant. Finally, we considerably improve our general upper bounds in the case of the special
S-unit equation xn + y = 1 in x, y ∈ O×

S .

1. Introduction. Let K be an algebraic number field and S a finite
set of places of K containing all infinite places. Denote by OS the ring of
S-integers, and by O×

S the group of S-units in K.
Let α, β be nonzero elements of K and consider the S-unit equation

(1.1) αx+ βy = 1 in x, y ∈ O×
S .

Equations of this type (and their homogeneous versions) play a very im-
portant role in Diophantine number theory. For various results, applications
and references, we refer to the books and survey papers of Győry [13, 14],
Shorey and Tijdeman [27], Evertse et al. [9], Sprindžuk [29], Bombieri and
Gubler [4], Baker and Wüstholz [2] and Evertse and Győry [7, 8]. For al-
gorithmic and computational aspects, see also Smart [28], von Känel and
Matschke [22] and Alvarado et al. [1].

Equation (1.1) has only finitely many solutions. The first explicit upper
bounds for the heights of the solutions were given by Győry [11, 12] by means
of Baker’s theory of logarithmic forms. Later, considerable improvements
have been established e.g. by Bugeaud and Győry [6], Bugeaud [5], Győry
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and Yu [20]. In terms of S, their bounds depend on the cardinality s of S,
the number t of finite places in S, the largest norm of the prime ideals
corresponding to finite places in S, denoted by PS , and the S-regulator RS

of K. The best known bounds are due to Le Fourn [23] and Győry [18]. To
state them, we need further notation.

Let d, r, hK and RK be the degree, unit rank, class number and regulator
of K, respectively, and let

RK = max(hK , cdRK)

with

c =


0 if r = 0,

1/d if r = 1,

29er!r
√
r − 1 log d if r ≥ 2.

Denote by P ′
S the third largest norm of prime ideals in S (with P ′

S = 1 if
t ≤ 2). Let h(·) denote the absolute logarithmic height on Q and put

H = max(h(α), h(β), 1).

We shall also use the notation log∗ a = max(log a, 1) for a > 0.
Previously, the best bounds for the solutions of (1.1) were established

by Győry and Yu [20, Theorems 1 and 2]. The first of these bounds was
considerably improved by Le Fourn [23] by replacing PS with P ′

S . Combining
[20, proof of Theorem 1] with his new variant of the so-called Runge method,
Le Fourn proved the following theorem.

Theorem A (Le Fourn [23, Theorem 1.4]). Every solution (x, y) of (1.1)
satisfies

(1.2) max(h(x), h(y)) ≤ 2c1P
′
S

(
1 +

log∗RS

log∗ P ′
S

)
RSH

with c1 = (16ds)2(s+3).

We note that c1 is a slightly larger and simplified form of the constant
in [20, Theorem 1].

The following theorem of Győry [18] significantly improved the second
bound in [20]. In terms of S, it provides the best known upper bound for
the solutions of (1.1). Its proof is a combination of Le Fourn’s variant of
Runge’s method with a general approximation theorem of Evertse and Győry
[7, Theorem 4.2.1], based on the results of Matveev [25] and Yu [31] on loga-
rithmic forms and with some new results of [7] from the geometry of numbers.

Theorem B (Győry [18, Theorem 1]). Every solution (x, y) of (1.1)
satisfies

(1.3) max(h(x), h(y)) ≤ c2Rt+4
K

P ′
S

log∗ P ′
S

(
1 +

log∗ logPS

log∗ P ′
S

)
RSH

with c2 = s5(16ed)4s+3.
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Theorem B is proved in [18] with a slightly smaller but more complicated
constant c2.

The most notable fact about the bounds in Theorems A and B is the
(sub)linear dependence on P ′

S instead of PS in previous bounds, which makes
this particularly interesting when only one or two places of S have large norm.
This is due to the preliminary use of Runge’s method, which in the case of
the S-unit equation allows us to “take out” two places of S before applying
the usual estimates for linear forms in logarithms in the complex and p-adic
case.

It is interesting to compare the bounds in Theorems A and B. In terms
of S, ss is the dominating factor in the bound (1.2) whenever t > logPS .
The appearance of s2s is due to the use of a fundamental system of S-units
such that the product of their heights does not exceed s2sRS ; see Hajdu [21]
or Bugeaud and Győry [6].

In the bound in Theorem B, no factor ss occurs. This led to several new
applications in Győry [18, 19] and Section 3 below. Further, in (1.3) there
is an extra factor 1/log∗ P ′

S compared to (1.2), and log∗ logPS in (1.3) is
smaller than log∗RS + 5 in (1.2).

Finally, we note that in Theorem A, the dependence of the bound on
hK and RK (via RS) is better than in Theorem B. For a more detailed
comparison of (1.2) and (1.3), see [18].

The organisation of the paper is as follows. In Section 2 we give some
generalisation for the case of larger multiplicative groups instead of O×

S . In
Section 3, some applications from [18, 19] of Theorem B to Thue equations
and towards the ABC conjecture over number fields are presented. Further,
we give a new application of Theorem B to monic polynomials with given
discriminant. Finally, in Section 4, we considerably improve the bound (1.2)
and, except in terms of s, (1.3) in the case of the special S-unit equations
xn + y = 1 in x, y ∈ O×

S .

2. Generalisations. Let us start with the equation

(2.1) αx+ βy = 1 in x, y ∈ Γ,

where α, β are nonzero elements of K with H = max(h(α), h(β), 1) and Γ
is a finitely generated multiplicative subgroup of K∗.

We note that in (2.1) and in Theorem C below it is not necessary to
assume that α, β ∈ K∗. Indeed, if (2.1) has a solution (x, y), for every K-
embedding σ of K0 = K(α, β) in C we have

σ(α)x+ σ(β)y = 1.

Hence, if α /∈ K∗ or β /∈ K∗, this together with (2.1) gives a much better
bound for h(x) and h(y) than (2.4) below.
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Let {ξ1, . . . , ξm} be a system of generators for Γ up to torsion (not neces-
sarily a basis, which is important for certain applications). Let us fix S such
that Γ ⊂ O×

S and then use the same notations as before, with the following
additional ones. Let

(2.2) ΘΓ :=
m∏
i=1

h(ξi),

and

(2.3) A := 16c3s
P ′
S

log∗ P ′
S

ΘΓ max(log(c3sP
′
S), log

∗ΘΓ )

with c3 = 2(m+ 1) log∗(dm)(log∗ d)2(16ed)3m+5.

Theorem C (Győry [18, Theorem 2]). With the above notations, every
solution (x, y) of (2.1) satisfies

(2.4) max(h(x), h(y)) ≤ AH.

This theorem can be regarded as a generalisation of Theorem A with a
slightly weaker absolute constant. In the special case Γ = O×

S , Theorem C
gives Theorem A. Indeed, choosing in O×

S a system of fundamental units such
that ΘΓ ≤ s2sRS , we deduce (1.2). We note that Theorem C was proved in
a weaker form by Evertse and Győry [7] with PS in place of P ′

S .
To generalise equation (1.1), let us fix a finitely generated subgroup Γ of

positive rank of (Q∗
)2 endowed with coordinatewise multiplication. We will

study the equation

(2.5) a1x1 + a2x2 = 1, (x1, x2) ∈ Γ,

and some of its generalisations, where (a1, a2) ∈ (Q∗
)2. For x = (x1, x2) ∈

(Q∗
)2, we define the height

h(x) = h(x1) + h(x2)

and let ω1 = (ξ1, η1), . . . , ωr = (ξr, ηr) be a system of generators of Γ up
to torsion. Define K as the smallest number field such that Γ ⊂ K2, and
S as the smallest set of places of K (containing the infinite ones) such that
Γ ⊂ (O×

S )
2. We define here

h0 = max(h(ξ1), . . . , h(ξr), h(η1), . . . , h(ηr)), ΘΓ :=

r∏
j=1

h(ωj)

and, as above, d = [K : Q], s = |S| and P ′
S is the third greatest norm of

prime ideals from S. We also define the division group of Γ,

Γ := {x ∈ (Q∗
)2 | ∃n ∈ N>0, x

n ∈ Γ},
then the cylinder around Γ,

Γε := {x ∈ (Q∗
)2 | x = y · z, y ∈ Γ, z ∈ (Q∗

)2, h(z) < ε},
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and the truncated cone around Γ,

C(Γ, ε) := {x ∈ (Q∗
)2 | x = y · z, y ∈ Γ, z ∈ (Q∗

)2, h(z) < ε(1 + h(y))}.

We now consider the solutions of equation (2.5) in Γ,Γ,Γε and C(Γ, ε),
respectively. For solutions from Γ, Γ ε or C(Γ, ε) we also need an effective
upper bound for the degree of the field generated by the solutions.

The following theorem is a considerable improvement of Theorem 2.1,
Corollary 2.4, Theorem 2.3 and Theorem 2.5, respectively, of Bérczes et
al. [3].

Theorem 2.1. Fix K0 = K(a1, a2) and define H = max(h(a1), h(a2), 1).

(a) For every solution (x1, x2) of (2.5), we have

(2.6) h(x1, x2) ≤ AH,

where

A = 16c4s
P ′
S

log∗ P ′
S

ΘΓmax(log(c4sP
′
S), log

∗ΘΓ)

with c4 = r2(16ed)3r+6.
(b) For the same equation (2.5) with unknown x ∈ Γ, we have

(2.7) h(x1, x2) ≤ AH + 3Arh0

and [K0(x1, x2) : K0] ≤ 2.
(c) For (2.5) with unknown x ∈ Γε, if ε < 0.025, the same bounds hold as

in (b).
(d) For (2.5) with unknown x∈C(Γ, ε), if ε< 0.09/(8Ah(a1, a2)+20rh0A),

we have

(2.8) h(x1, x2) ≤ 3AH + 5Arh0

and [K0(x1, x2) : K0] ≤ 2.

We now prove Theorem 2.1. The first assertion (a) can be deduced from
Theorem C. In our proofs we shall use some ideas of the corresponding proofs
of Bérczes et al. [3].

Proof of Theorem 2.1. The degree estimates in parts (b)–(d) have been
proved in Bérczes et al. [3], hence it will be enough to prove the height
estimates.

(a) Suppose that ξ1, . . . , ξr (the first coordinates of the chosen generators
of Γ) generate a multiplicative subgroup of rank > 0, say Γ , of Q∗. Clearly,
Γ is contained in K∗. We may assume that ξ1, . . . , ξr′ with r′ ≤ r are not
roots of unity and all the others are, so ξ1, . . . , ξr′ is a system of generators
of Γ/Γtors. The assumption on ω1, . . . , ωr implies that ηr′+1, . . . , ηr are not
roots of unity. Put

ΘΓ := h(ξ1) · · ·h(ξr′).
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We now make use of the following lemma.

Lemma 2.2 (Voutier [30]). Suppose that α ̸= 0 is an algebraic number of
degree d which is not a root of unity. Then

(2.9) h(α) ≥ c5(d) :=

{
log 2 if d = 1,

2
d(log 3d)3

if d ≥ 2.

Using Lemma 2.2, we obtain

ΘΓ ≤ c5(d)
r′−rΘΓ.

Now, let (x1, x2) be a solution of (2.5). Then, applying Theorem C to this
solution, we obtain (2.4) with m replaced by r′. Using r′ ≤ r and (2.9), we
get (2.6).

(d) Fix a solution (x1, x2) ∈ C(Γ, ε). Then we can write

(2.10) (x1, x2) = (y1, y2)(z1, z2)

with (y1, y2) ∈ Γ and h(z1, z2) < ε(1+h(y1, y2)). Further, we have (y1, y2) =
(y′1, y

′
2)(ω1, ω2) with (y′1, y

′
2) ∈ Γ and

(ω1, ω2) =
r∏

i=1

(ξi, ηi)
ci with ci ∈ Q, |ci| ≤ 1/2 (1 ≤ i ≤ r)

(note that ω1, ω2 are defined up to roots of unity). Hence,

(2.11) h(ω1, ω2) ≤
r∑

i=1

cih(ξi, ηi) ≤ rh0.

Put (a′1, a
′
2) = (a1, a2)(ω1, ω2)(z1, z2). Then, by (2.10) and (2.11),

h(a′1, a
′
2) ≤ h(a1, a2) + rh0 + ε(1 + h(y1, y2)),

which yields

(2.12) h(a′1, a
′
2) ≤ h(a1, a2) + rh0 + ε(1 + h(y′1, y

′
2) + rh0).

Further, our equation (2.5) can be written in the form

(2.13) a′1y
′
1 + a′2y

′
2 = 1 in (y′1, y

′
2) ∈ Γ.

Applying now part (a) to this equation, we get

h(y′1, y
′
2) ≤ Amax(h(a′1, a

′
2), 1),

where A is the constant defined in (a). Notice that this constant does not
depend on the field generated by a′1, a′2. Further, using (2.12), we get

h(y′1, y
′
2) ≤ Ah(a1, a2) + rh0A+ εA+ εAh(y′1, y

′
2) + rh0εA.

Our assumption in (d) implies that ε < 1/(2A) (the stronger inequality on ε
we assume is necessary to have [K0(x1, x2) : K0] ≤ 2), so it follows that

(2.14) h(y′1, y
′
2) ≤ 2Ah(a1, a2) + (1 + 2Arh0 + rh0).
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Now we have

h(y1, y2) ≤ h(y′1, y
′
2) + h(ω1, ω2) ≤ 2Ah(a1, a2) + (1 + 2Arh0 + 2rh0),

h(x1, x2) ≤ h(y1, y2) + ε(1 + h(y1, y2)) ≤ (1 + ε)h(y1, y2) + ε,

so we get (2.8). Finally, as in [3, proof of Theorem 2.5], under the stated
assumption on ε, we do have [K0(x1, x2) : K0] ≤ 2.

(c) The proof is completely similar to that of (d). The only difference is
that the estimate h(z1, z2) < ε(1 + h(y1, y2)) has to be replaced by h(z1, z2)
< ε. This slightly modifies the estimates in the proof of (d) and instead of
(2.14) we get

h(y′1, y
′
2) ≤ Ah(a1, a2) +A(ε+ rh0).

This leads to h(x1, x2) ≤ Ah(a1, a2) + 3Arh0, which proves (2.7).
(b) This part is an immediate consequence of (c).

3. Some applications. As was mentioned in the Introduction, the ef-
fective finiteness theorems concerning S-unit equations have many applica-
tions. The first named author, and later others as well, applied their results
on equation (1.1) systematically to get effective finiteness theorems in quan-
titative form, among others on decomposable form equations, including Thue
equations, discriminant form and index form equations, and on power inte-
gral bases in number fields, arithmetic graphs and irreducible polynomials.

In this section we present some applications of Theorem B to Thue equa-
tions, to the ABC conjecture over number fields and to monic polynomials
with given degree and given discriminant. We note that Theorem A has
similar applications, but slightly weaker bounds in terms of S.

3.1. Application to Thue equations. As above, let K be a number
field of degree d with class number hK and regulator RK , S a finite set of
places on K containing the archimedean ones, OS the ring of S-integers,
s = |S|, t the number of finite places in S, PS (resp. P ′

S) the largest (resp.
the third largest) norm of prime ideals in S (with P ′

S = 1 if t ≤ 2), QS the
product of the norms of the prime ideals in S (equal to 1 if t = 0) and RS

the S-regulator. Consider the Thue equation

(3.1) F (x, y) = δ in x, y ∈ OS ,

where F ∈ OS [X,Y ] is a binary form of degree n ≥ 3 which factorises
into linear factors over K and at least three of these factors are pairwise
nonproportional. Further, let δ ∈ OS \{0} and H be an upper bound for the
heights of the coefficients of F .

In various generalities, there are many results providing effective upper
bounds for the heights of the solutions (x, y) of equation (3.1). In terms of
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S with t > 0, the following theorem provides the best known bound for the
solutions.

Theorem D (Győry [18, Corollary 4]). Let t > 0. Under the above as-
sumptions and notation, all solutions (x, y) of (3.1) satisfy

max(h(x), h(y)) < cs6
P ′
S

log∗ P ′
S

(
1 +

log∗ logPS

log∗ P ′
S

)
(logQS)RS ,

where c6 is an effectively computable positive number depending only on d,
hK , RK , n, h(δ) and H.

Theorem D improves several earliers bounds in terms of S, including
Corollary 3 of Győry and Yu [20]. In fact, Theorem D is a special case (for
m = 2) of a more general theorem on decomposable form equations in m ≥ 2
unknowns which was proved by Győry [18] by means of Theorem B above.

3.2. Application towards Masser’s ABC conjecture in number
fields. Keeping the above notation, let againK be an algebraic number field
of degree d. For v ∈MK , we choose an absolute value | · |v normalised in the
following way: if v is infinite given by an embedding σ : K → C, then we put
|α|v = |σ(α)|nv for α ∈ K, where nv = 1 if v is real and nv = 2 otherwise.
If v is finite given by a prime ideal p, and ordp α denotes the exponent of
p in the prime ideal decomposition of the fractional ideal (α), then we put
|α|v = N(p)− ordp α for α ∈ K∗ and |0|v = 0.

The height of (a, b, c) ∈ (K∗)3 is defined as

HK(a, b, c) =
∏

v∈MK

max(|a|v, |b|v, |c|v)

and the radical of (a, b, c) as

(3.2) NK(a, b, c) =
∏
p

N(p)ordp p,

where p is a rational prime such that pZ = p ∩ Z and the product is over
all prime ideals p such that |a|v, |b|v, |c|v are not all equal for the associated
place v.

There have been several proposals for generalising the classical ABC con-
jecture over Q to algebraic number fields. The following version is due to
Masser [24].

Uniform ABC conjecture over number fields. For every ε > 0,
there exists C(ε) depending only on ε such that for every number field K
with degree d and absolute discriminant ∆K ,

(3.3) HK(a, b, c) < C(ε)d(∆KNK(a, b, c))1+ε

for all a, b, c ∈ K∗ which satisfy a+ b = c.
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The upper bound in (3.3) is best possible in terms of ε. Further, (3.3) is
uniform in the sense that it has good behaviour under field extensions. For
K = Q, this general conjecture reduces to the classical ABC conjecture.

Of particular importance is the effective version of the conjecture when
(3.3) holds for every ε > 0 with an effectively computable C(ε).

The effective results concerning S-unit equations can be used to obtain
weaker, but unconditional and effective bounds on HK(a, b, c). Indeed, let
a, b, c ∈ K∗ with a + b + c = 0, and let S be the subset of MK made up
of all the infinite places and all the finite places v for which |a|v, |b|v, |c|v
are not equal. Then x = −a/c, y = −b/c give a solution of the S-unit
equation

x+ y = 1 with x, y ∈ O×
S .

Applying Theorem B to this equation, Győry [19] proved the following.

Theorem E (Győry [19, Theorem 1]). Let a, b, c ∈ K∗ with a+b+c = 0.
Then

(3.4) logHK(a, b, c) < c7N
1/3+c8 log3 N

∗/log2 N
∗
,

where N = NK(a, b, c), N∗ = max(N, 16) and c7, c8 are effectively com-
putable positive constants depending only on d and ∆K .

In the proof, it is crucial that in the bound in Theorem B no factor ss
occurs. The proof gives in fact the better bound c9P ′N ε for logHK(a, b, c),
where ε > 0 is arbitrary, P ′ is the third greatest factor N(p) in (3.2) and c9
is an effectively computable positive constant which depends only on d,∆K

and ε.
Theorem E is an improvement of [17, Theorem 1]. We note that in [26],

Scoones also deduced Theorem E from Theorem B in a different way and in
a somewhat weaker form.

3.3. Application to monic polynomials of given degree and given
discriminant. The results in Theorems A and B also lead to improvements
on effective and quantitative results on monic polynomials with given dis-
criminant over the S-integers.

Two monic polynomials f, g ∈ OS [X] are called OS-equivalent when
there exists a ∈ OS such that g(X) = f(X + a). Then they have the same
discriminant.

In various generalities, there are several effective finiteness theorems in
quantitative form on monic polynomials with given degree and given dis-
criminant; see e.g. Győry [10], Evertse and Győry [8] and the references
given there. We deduce from (1.3) a result of this type with a considerably
improved bound in terms of S.
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The logarithmic height of a polynomial f = a0 + · · · + anX
n ∈ Q[X] is

defined as
h(f) =

1

[L : Q]

∑
v∈ML

logmax(1, |a0|v, . . . , |an|v)

(with absolute values normalised as in the previous subsection), where L is
any number field containing the coefficients of f .

For the statement of the theorem, define QS =
∏

p∈S N(p) as above and
for any α ∈ K∗, NS(α) =

∏
v∈S |α|v.

Theorem 3.1. If f ∈ OS [X] is monic with degree m ≥ 3, nonzero dis-
criminant δ ∈ OS and all roots in OS, then f is OS-equivalent to a polyno-
mial f∗ such that
(3.5)

h(f∗) ≤ 4mcs10Rt+5
K

P ′
S

log∗ P ′
S

(
1 +

log∗ logPS

log∗ P ′
S

)
RS log(QSNS(δ)) +

h(δ)

m− 1
,

where c10 is an effectively computable constant which depends only on d.

Under the assumptions in Theorem 3.1, (3.5) considerably improves the
bound in [15, Theorem 4]. The main improvement is the replacement of PS

by P ′
S , which can be much smaller than PS . To prove our theorem, let us

first recall two lemmas.

Lemma 3.2. For every α ∈ OS \ {0}, there exists ε ∈ O×
S such that

h(εα) ≤ 1

d
logNS(α) +RK logQS .

Proof. This is obtained in greater generality in [18, Lemma 3].

Lemma 3.3 (Bombieri and Gubler [4, Theorem 1.6.13]). Let α1, . . . , αm

∈ Q and f = (X − α1) · · · (X − αm). Then∣∣∣h(f)− m∑
i=1

h(αi)
∣∣∣ ≤ m log 2.

Proof of Theorem 3.1. Let f ∈ OS [X] be a monic polynomial with degree
m ≥ 3, nonzero discriminant δ ∈ OS and roots α1, . . . , αm all in OS . As the
S-norm is multiplicative,

(3.6)
∏

1≤i<j≤m

(αi − αj)
2 = δ

implies that the S-norm of αi − αj (i ̸= j) is always at most NS(δ)
1/2.

Applying this with Lemma 3.2 multiple times, for each i ∈ {3, . . . ,m} we
get ε1i, εi2, ε12 ∈ O×

S and γ1i, γi2, γ12 ∈ OS such that

α1 − αi = ε1iγ1i, αi − α2 = εi2γi2, α1 − α2 = ε12γ12
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and the heights of the gamma numbers do not exceed

ρ1 := RK log(QSNS(δ)).

Each trivial identity
α1 − αi

α1 − α2
+
αi − α2

α1 − α2
= 1

then gives an S-unit equation
ε1i
ε12

· γ1i
γ12

+
εi2
ε12

· γi2
γ12

= 1

with coefficients the gamma ratios, which have heights at most 2ρ1. Applying
now Theorem B to that equation, we obtain the upper bound

ρ2 := 2c2Rt+5
K

P ′
S

log∗ P ′
S

(
1 +

log∗ logPS

log∗ P ′
S

)
RS log(QSNS(δ))

for the heights of ε1i/ε12 and εi2/ε12. As a consequence, the heights of all
(α1 −αi)/(α1 −α2) and hence of all (αi −αj)/(α1 −α2) are at most 3ρ2. It
now follows from (3.6) that

h(α1 − α2) ≤
h(δ)

m(m− 1)
+ 3ρ2 = ρ3.

By the symmetric role of the roots, the same bound holds for all h(αi−αj).
Finally, consider f∗(X) = f(X + α1), which is OS-equivalent to f and has
zeroes αi − α1 for i ∈ {1, . . . ,m}. By Lemma 3.3, we then have h(f∗) ≤
mρ3 +m log 2.

4. Further improvements of the bounds for special S-unit equa-
tions. In this section, we focus on an S-unit equation with power, namely

(4.1) xn + y = 1 in x, y ∈ O×
S ,

where n ≥ 2 is a fixed integer. We denote by τ(n) the divisor counting
function.

First of all, let us state the main result of this section.

Theorem 4.1. For any solution (x, y) of (4.1), we have

max(nh(x), h(y)) ≤ nc11
P

(τ(n)+2)
S

log∗ P
(τ(n)+2)
S

log

(
2nc11(P

(τ(n)+2)
S )2

log∗ P
(τ(n)+2)
S

)
,

where for each k ≥ 1, P (k)
S is the kth largest norm amongst finite places of S,

with P (k)
S = 1 if S has at most k − 1 finite places, and

c11 = 2s−1s((s− 2)!)2ds−2 log∗(ds)(16ed)3s+2.

Remark 4.2. Here we adjust the bound on the height of xn because xn
and not x is close to y in height. Furthermore, in the case K = Q, it follows
from [16, Theorem] that n≤max(30, PS+1) when there is a solution of (4.1).
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The section is devoted to the proof of Theorem 4.1, which follows the
general strategy of Le Fourn [23, Section 5].

Let us define Un ⊂ P1
Q to be the set of nth roots of unity, and denote by

Un its Zariski closure in P1
Z. For every maximal ideal p of OK , xn − 1 ∈ p if

and only if x mod p ∈ Un, so the solutions of (4.1) correspond to integral
points of (P1 \ ({0,∞}∪Un))(OS) (i.e. by definition, points in P1(K) whose
reduction modulo any prime p not in S is not 0, 1 or an nth root of unity).

We will use the factorisation of Xn − 1 in Q[X] to obtain better bounds
in the case of (4.1) than for (1.1). Indeed, we can write Un =

⊔
d|nDd, where

Dd is the set of primitive dth roots of unity in Q (in other words, the zeroes
of the dth cyclotomic polynomial Φd).

As we will refer to these sets repeatedly, we define I = {0,∞}∪ {d ≥ 1 |
d |n}, which is of cardinality τ(n) + 2, and for each i ∈ I the associated set
Di (where D0 = {0} and D∞ = {∞}). For each place v ∈ MK , we define
the v-adic heights associated to each of the sets Di as follows:

λv,0(x) := log+(1/|x|v),
λv,∞(x) := log+ |x|v,

λv,d(x) :=
log+(1/|Φd(x)|v)

φ(d)
(d |n)

with φ the Euler totient function, and the associated heights

hi(x) :=
1

[K : Q]

∑
v∈MK

nvλv,i(x) (i = 0,∞ or d |n).

The following lemma reflects the fact that the sets D0, D∞ and Dd (d |n)
are pairwise disjoint.

Lemma 4.3. For any distinct i, j ∈ I, any v ∈MK and any x ∈ K,

min(λv,i(x), λv,j(x)) ≤ log(2n).

Proof. Assume first that v is nonarchimedean. As Φd is monic, for any
d |n we have

min(λv,0(x), λv,∞(x)) = min(λv,0(x), λv,d(x)) = min(λv,∞(x), λv,d(x)) = 0

(one can distinguish between the cases |x|v < 1, |x|v > 1 and |x|v = 1). For
other cases, we recall below an easily proved lemma on cyclotomic polyno-
mials.

Lemma 4.4. For any prime p and any d ∈ Z≥1:

(a) If p ∤ d, then Φd mod p is squarefree and its roots are the primitive dth
roots of unity in Fp.

(b) If d = pαd0 with α ≥ 1, then Φd = Φd0(X)φ(p
α).
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We can now prove the theorem for v nonarchimedean associated to a
prime ideal p and two distinct divisors d, d′ of n. First, we can assume x to
be v-integral by the previous bounds for ∞ and d.

If λv,d(x) > 0, this means Φd(x) = 0 in the residue field Fv so x ∈ Fp is
a primitive d0th root of unity in Fp where d = pαd0 with v | p and p ∤ d0.

Therefore, if min(λv,d(x), λv,d′(x)) > 0 (which we assume now), one must
have d′ = pβd0 for some β. Assume by symmetry that β < α, and fix
x′ = xp

α−1 . Then

Φd(x) =
Φd0((x

′)p)

Φd0(x
′)

and |Φd′(x)|v ≥ |(x′)d0 − 1|v.

By assumption, we have |(x′)d0 − 1|v < 1 so fixing a place w | v of K(ζn),
there exists a unique d0th root of unity ζd0 such that |x′ − ζd0 |w < 1. Now,
for any d0pth primitive root of unity ζd0p, we have

|ζd0 − ζd0p|w =

∣∣∣∣ζd0pζd0
− 1

∣∣∣∣
w

≥ |ζd0d0p − 1|w ≥ 1

p
.

Consequently, if |x′−ζd0 |w < 1/p, we have |x′−ζd0p|w ≥ 1/p for all primitive
d0pth roots of unity (and this is less than 1 only for the p−1 primitive d0pth
roots of unity reducing modulo w to ζd0). Therefore, |Φd0((x

′)p)/Φd0(x
′)|w ≥

1/pp−1 for all w | v, so finally

min(λv,d(x), λv,d′(x)) ≤
log p

φ(d0)
≤ log(2n).

Now, for the infinite places, the following lemma can be easily obtained.

Lemma 4.5. For any distinct d, d′ ∈ Z≥1 and any primitive dth (resp.
d′th) root of unity ζd (resp. ζd′),

|ζd − ζd′ | ≥
1

lcm(d, d′)

because ζ−1
d ζd′ is a lcm(d, d′)th root of unity different from 1.

Thus, for any divisors d ̸= d′ of n and any x ∈ C, if |x−ζd| ≤ 1
2 lcm(d,d′) for

some primitive root ζd then |x− ζd′ | ≥ 1
2 lcm(d,d′) for all primitive d′th roots

of unity by Lemma 4.5, and we obtain log |Φd′(x)| ≥ −φ(d′) log(2 lcm(d, d′)).
By symmetry (and considering the other cases), we finally obtain

min(λv,d(x), λv,d′(x)) ≤ log(2 lcm(d, d′)) ≤ log(2n).

Lemma 4.6. For every i ∈ I and every x ∈ K,

h(x) ≤ hi(x) + log 2.

Proof. The assertion is obvious for i = 0 and i = ∞ by definition of the
Weil height (h(x) = hi(x)); let us prove it for i = d dividing n.
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For any nonarchimedean place v of K and any x ∈ K,

max(1, |x|v)φ(d) ≥ max(1, |Φd(x)|v), so λv,0(x) ≤ λv,d(x)

(with equality if x is not v-integral) as Φd is monic. Now, for v archimedean,

|Φd(x)|v =
∏
ζ

|x− ζ| ≥
(
|x|
2

)φ(d)

if |x| ≥ 2, so log+ |Φd(x)|v ≥ φ(d)(log+ |x|v−log 2) for all values of x, treating
the case |x| ≤ 2 separately. Combining this with the nonarchimedean bounds,
we obtain the result.

Proof of Theorem 4.1. Let (x, y) be a solution of (4.1). Let S′ be a
subset of S such that |S \ S′| < τ(n) + 2. For each v ∈ S \ S′, there is at
most one set Di, i ∈ I, that is v-close to x, so eliminating them one by one,
by the pigeonhole principle there remains Di such that for all v ∈ S \ S′,
λv,i(x) ≤ log(2n); we fix that Di from now on.

Now, by hypothesis, λv′,i(x) = 0 for all v′ ∈ MK \ S so there is v ∈ S
(which we fix from now on) such that

λv,i(x) ≥
1

|S|
hi(x).

If such a v belongs to S \ S′, we obtain directly a much smaller bound for
hi(x), hence for h(x) by Lemma 4.6, smaller than the one stated in the
theorem. We can thus assume v ∈ S′.

As explained in Le Fourn [23, Section 3], at this stage we need for each
i ∈ I a rational function ψi mapping Di to 1 and sending our x to an S-unit
v-adically close to 1. Such conditions are satisfied as follows (other choices
would be possible, but for these it is obvious that their images of a solution
are S-units):

ψ0(x) := 1− xn = y, ψ∞(x) := 1− 1

xn
= − y

xn
, ψd(x) = xn.

It is also clear that for each j ∈ I, h(ψj(x)) ≤ 2max(nh(x), h(y)).
Now, assume for example i = d for some d |n. By Evertse and Győry [7,

Theorem 4.2.1] we then have

hd(x)

s
≤ λv,d(x) =

log+(1/|Φd(x)|v)
φ(d)

≤ log+(1/|xn − 1|v) ≤ C
Nv

logNv
Θ log∗(Nvnh(x))

with ξ1, . . . , ξm generating O×
S , Θ associated to ξ1, . . . , ξm as in (2.2) (we

can fix m = s − 1), Nv = N(p) if v is associated to a prime ideal p (and
N(p) = 1 otherwise) and C = 2(m + 1) log∗(dm)(16ed)3m+5 (the constant
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c11 in the cited book). We thus end up (generously bounding h(x) from above
by 2hd(x) and using [20, Lemma 2]) with

h(x) ≤ 2sCC ′ Nv

logNv
log∗(Nvnh(x))

where C ′ = ((m − 1)!)2(2m−2dm−1). This being an iterated logarithm, we
finally obtain

h(x) ≤ 4sCC ′ Nv

logNv
log

(
2nsCC ′N2

v

logNv

)
.

If x is close to 0 or ∞, we apply the same ideas with ψi(x) and obtain a
smaller bound.

Finally, to obtain the theorem, we choose S′ at the beginning so that S\S′

contains the τ(n)+1 largest Nv′ , v′ ∈ S, and then for v ∈ S′, Nv ≤ P
(τ(n)+2)
S ,

and we have c11 = 2sCC ′.
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