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MAREK BESKA (Gdansk)

GEBELEIN INEQUALITY IN A HILBERT SPACE

Abstract. We present the Gebelein inequality in a separable real Hilbert
space. As an application we prove the Strong Law of Large Numbers for
Gaussian functionals with values in a separable real Banach space.

1. Introduction. Let p be a standard Gaussian measure on the real
line R and |p| < 1. We use L?(u1) for L?(R, B(R), i), where B(R) denotes the
Borel o-algebra of subsets of R. In L?(y) we have the inner product

(f,9)u =\ f(@)g(x) du(x),  f,g € L*(n),

R
and the norm

1712 = (] P du@) . Fe L2,
R

We recall the Hermite polynomials
3

Hy=1, Hy(z)=(-1)" exp(m2/2)j?(exp(f:v2/2)), reR,n>1,

and their generating function

o0 t”
(1.1) w(t, ) := exp(tz — t2/2) :Z—'Hn(x), t,x eR.
= n!
We put h,, := H,/v/n!, n € Ny := NU{0}. It is known that the collection
{hn}nen, forms an orthonormal basis in L?(u).
The Ornstein—Uhlenbeck operator

By L* () = L*(p)
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is defined by
(Pof) ) =\ Floy+ V1= p22)dp(z), yeR, fel’(n).

R

The Ornstein—Uhlenbeck operator has the following probabilistic interpreta-
tion. Let random variables X and Y have the Gaussian distribution p and
let cov(X,Y) = E(XY) = p. Then for f,g € L?(u), we have

(1.2) E[f(X)g(Y)] = EIE(f(X)[Y)g(Y)] = E[h(Y)g(Y)],

where h(y) = E(f(X)|Y =y), y € R. On the other hand, if Z is a Gaussian
random variable with the standard distribution and independent of Y, then

LWUY)=L(X,Y),

where U = pY + /1 —p?Z and L(X,Y) denotes the distribution of the
random vector (X,Y"). Thus

(1.3)  E[f(X)g(Y)] = E[f(U)g(Y)] = E[E(f(U)Y)g(Y)]
= E[E(f(pY + V1 =p>2)[Y)g(Y)] = E[P,f(Y)g(Y)].

By comparing (1.2) and (1.3) we see that (P,f)(Y) is a version of the
conditional expectation E[f(X)|Y]. It is easy to see that P, is symmet-

vic ((Pof, 9 = {fs Pog)p, f,9 € L?(pn)) and a linear contraction in L?(p). It
is clear that P, is an isometric isomorphism in L?(u) when |p| = 1. Moreover,
the Hermite polynomials H,,, n € Ny, are its eigenvectors, that is,

P,H, = p"H,, n €N,

and P, has the following expansion in the Hermite basis:

Bof =Y 0" hn)ulin, € LP(p).
n=0

We recall the Gebelein inequality.
THEOREM 1.1 ([G], [DK], [B]). If f € L*(w), {f,1), = 0 and |p| < 1,
then
1P fll2 < lpl 112,

with equality if and only if f is a linear function. =

Using the Gebelein inequality, one can prove the Strong Law of Large
Numbers for Gaussian functionals.

THEOREM 1.2 (|BC]). Let {X;}i>1 be a Gaussian sequence of standard
random variables such that

[o.¢]
Y o] < .

i1 24
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where p;j = E(X;X;), i,j > 1. Then for f € L* (1) we have
X X,
e AREIES (c R PR

n n—00

Note that for a centered Gaussian vector V. = (X,Y) with covariance

matrix
2 2
cov(V) = [U 7 p] ,

o’p o2

where 02 = EX? = EY? and p is a correlation coefficient of V, we can also
define the Ornstein-Uhlenbeck operator. Namely, for f € L?(jy), where jio
is the distribution of X, we put

(Po)(w) =\ Floy + V1= p*2)dus(2), yER.
R
Now, the orthogonal Hermite polynomials have the form
H,pn(z) = Hp(x/o), x€R,
and if normalized in L?(j),
hom(z) == Hyp(z)/Vn!, z€R.
The orthonormal system {hq p}n>0 is a basis in L?(py) and
Pyhopn = p"hopn, n>0.

Moreover, it is easy to check that in this case the Gebelein inequality has
the same form as in Theorem This observation concerning the random
vector V shows that we can extend our considerations about the Gebelein
inequality and the Ornstein—Uhlenbeck operator to the case of a Hilbert
space.

2. Gaussian measures on the Cartesian product of Hilbert spaces.
Let H be a fixed (infinite-dimensional) real separable Hilbert space with
inner product (-,-) and norm || - ||. We denote by L(H) := L(H,H) the
Banach algebra of all continuous linear operators from H into H. It is well
known that the Cartesian product H x H is also a real separable Hilbert
space with inner product

<Iay>H><H = <3317y1> + <$27?/2>,

where © = (z1,22) € H x H and y = (y1,y2) € H x H. Thus the norm of
H x H is equal to

el e o= Vlleal? + [le2l?, @ = (z1,22) € H x H.

It is known that if a system {ey, },>1 is an orthonormal basis in H, then the
system {(en,0)}n>1 U {(0,ep)}n>1 is an orthonormal basis in H x H.
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Let B € L(H x H). Then for x,y € H we have
B(ﬂ?,y) = (Bl(xvy)7B2(x7y))a
where B, By € L(H x H, H). Note that for z,y € H,
Bl(xvy) = Bl(x,O) + Bl(ovy)7
Bg(l',y) = BQ(JT,O) + BQ(an)
Hence we can introduce operators B;; € L(H), i,j = 1,2, as follows:
Bii(z) = Bi(z,0), Bia(y) = Bi1(0,y), z,y€H,
BQI(IE) = Bz(ﬂf,O), 322(3/) = B2(07y)a T,y € H.
and we have
Bi(x,y) = Bu(z) + Bi2(y), =,y € H,
By(z,y) = Ba1(z) + Ba(y), x,y€H.

Therefore, we can represent the operator B in matrix form:

Blay) = |20 PP oy enxn,
Bs1 Bao| |y
and briefly
_|Bu B2
" |By Bl

We denote by B(H) the Borel o-algebra of H and by pg a fixed cen-
tered Gaussian measure on (H, B(H)) with covariance operator () such that
Ker @ = {0} (then supp(pg) = H). It is well known that there exists a com-
plete orthonormal basis {ey}n,>1 on H and a sequence {\,},>1 of positive
numbers such that

Qen) = Mnen, meN, and Z)\n < 00.
n=1

Without loss of generality we may and will assume that
M= =A, >Ait1 ==y > o1 =+ -
Then for each 7 > 1 we have
di — di—1 = dim[Ker(\g,I — Q)], do :=0.
We recall that the Cameron-Martin space QY/?(H) C H can be defined by

QY*(H) = {y €H ) (y.en)?/2n < OO}-
n=1

Let us consider the mapping
W QY(H) — L*(H,png), QY*(H)>yw— W, e L*(H, ug),
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where W, (z) = (z,Q™'/%y) for x € H. If y1,y2 € Q/?(H) then

| W Wy, dug = (QQ™" 251, Q%) = (y1, 1),
H

Hence W is an isometry. Since QY 2(H) is dense in H, the mapping W can be
uniquely extended to H. The operator W is called the white noise mapping.
Note that for fixed y € H the random variable W, is a centered Gaussian
random variable on the probability space (H, B(H), ug) with variance ||y||?.
Moreover, if y = | (y, en)en, then

(2.4) Wy = ;1(@/, en)We, = 31@7 en) New
and for S € L(H),
Wsy =D (Sy,en)We, = Y _(y.en)Wse,  in L*(1q)-
n=1 n=1

Let B € L(H x H). We say that B is positive (written B > 0) if
<B(x7y)7(x7y)>H><H20 for all l’,yEH.

Let @ be the covariance operator as above and let R € L(H). Assume

that an operator B € L(H x H) has the form
Q@ QR

RQ Q
where R* is the adjoint operator of R. We see at once that B is symmetric
(i.e. B= B*).

LEMMA 2.1. An operator B € L(H x H) of the form (2.5) is positive if
and only if
(2.6) 1Q*RQ™ 2| g1 /2y < 1,
where || - [|g1/2(z) denotes the norm of H restricted to the Cameron—Martin

space QY/2(H). Moreover, if QR = RQ then B is positive if and only if
IR <1.

Proof. Let (x,y) € H x H. Then
(B(z,y), (z,y))mxr = (Qr + QRy, R*Qz + Qy), (x,y)) HxnH
= (Qz,z) + (QRy, z) + (R"Qz,y) + (Qy,y)
= (Qz,x) + 2(QRy, z) + (Qy, y)
= Q"2x|” + 2(Q'*RQ Q" ?y, Q'?x) + | Q' ?y||?
= [Jull® + 2(Q"2RQ™?v,u) + |[v]|?,

(2.5) B=

)
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where u := QY22 and v := Q'/2y. Hence B is positive if and only if
2.7)  lull? +2(QY2RQ™V v, u) + ||v]|? = 0 for all u,v € QV2(H).
Let us assume that (2.7) is fullfilled. Then

(2.8) lul® + |v]]? > =2(QY?RQ™?v,u), w,ve QY?(H).
Putting —u instead of u in (2.8)), we get
(2.9) lul® + [v]]? = 2QY2RQ™?v,u),  u,ve QV?(H).

From ([2.8) and (2.9) we obtain
[l + [lv]|* > 2(QY*RQ™?v,u)|,  u,v € QY*(H).

Taking the sup over all u,v € QY/2(H) such that |ju|| = ||v|| = 1 we obtain
(2.6). Conversely, assume that (2.6) is fullfilled. Then

(@VPRQ™v,u)| < lellful, w0 € QA(H).

Hence
(QV2RQ™V?v,u) > —||v|| [ull,  u,v e Q(H).

Therefore
[ul?+2(QY2RQ™ v, w)+|[v|* > |ull*=2[Jull [[v]|+[[v]|* = ([[u]—v]))* >0,

where u,v € QY2(H). From (2.7)) it follows that B is positive. The second
part of the lemma follows from the first part and from the density of the
Cameron-Martin QY/2(H) space in H. =

An operator T' € L(H) is said to be nuclear if there exist two sequences
{hi}ti>1,{gi}i>1 C H such that Y .2, ||hs| ||gi|]| < co and T has the represen-

tation
o

Tx:Z(x,hZ-)gi, x € H.
i=1

For a nuclear operator T', we can define its trace by tr(T) = > .2 (T fi, fi),
where {f;}i>1 is an othonormal basis of H. It is known that tr(7") is a well-
defined number, independent of the choice of { f; }i>1. Moreover, a symmetric
positive operator 7' € L(H) is nuclear if and only if for some (or each)
orthonormal basis { f;}i>1 of H we have > .2 (T fi, fi) < cc.

Now, we are going to show that the operator B € L(H x H) of the form
is under certain assumptions the covariance operator of some centered
Gaussian measure on (H x H,B(H x H)).

THEOREM 2.2. Let Q) be the covariance operator as above and R € L(H)
be such that ||[R|| <1 and RQ = QR. Then the operator B € L(H x H) of
the form is the covariance operator of some centered Gaussian measure
on (H x H/B(H x H)).
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Proof. The symmetry of B is obvious. Lemma [2.1] implies positivity. An
easy computation shows that B has a finite trace. Then the conclusion follows
from the Mourier theorem (see e.g. [VIC]). u

3. The Ornstein—Uhlenbeck operator on a Hilbert space. Let
(£2, F, P) be a fixed probability space and let (X,Y) : 2 — H x H be a
centered Gaussian vector with covariance operator B of the form , where
QR = RQ and ||R|| < 1. By definition of the covariance operator of (X,Y),
we have

X(X,z)dP = | Y(Y,z)dP,

where * € H and the above integrals are in the Bochner sense. Let Z :
{2 — H be a centered Gaussian vector with covariance operator () and
independent of the random vector Y. Let us denote

U=RY ++vVI—RR*Z,
where [ is the identity operator on H. Note that I — RR* is a symmetric
and positive operator.

Now, we determine the covariance operator of the random vector (U,Y).
For x € H we have

\U(U,z)dP = \(RY + VI = RR* Z)(RY + VI — RR* Z,z) dP

(0] (0]
= | RY/(RY,z)dP + \ RY(VI = RR* Z,z) dP
2 2
+\ VT —RR* Z(RY,z)dP + \ VT — RR* Z(VI — RR* Z,x)dP
2 k0]

\ RY(RY,x)dP + \ VT — RR* Z(VT - RR* Z,x) dP
2 2
= RQR*z ++VI - RR*QVI — RR*z = Q(x).

Similarly,
| U(y,z)dP = | RY(Y,2) dP = RQ(z) = QR(x)
02 (9}
and
\Y(U,2)dP = | Y(RY,2)dP = QR*(z) = R*Q(x).
2 2
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Hence, we see that (X,Y) and (U,Y) have equal covariance operators.
This implies that £(X,Y) = L(U,Y). So, we can define the Ornstein—
Uhlenbeck operator Pr : L*(ug) — L*(ug), where L?(ug) is shorthand
for L*(H, B(H), 11q),
(Prf)(y) = E[f(X)|Y =y] = E[f({U)|Y = y]
= Sf(Ry+vI—RR*z)duQ(z), y € H.
H

It is easy to see that Pp is a contraction on LQ(MQ). Let us point out that
we can define Pr on L”(11g), p > 1, and in this case Pg is also a contraction.
The operator Pr is symmetric if R is symmetric.

For a sequence n = {n;}i>1 C No we define

o o
In| = an and n!:= Hnl'
i=1 i=1

Let us introduce the sets

A= {n = {nz‘}i21 S NISI : ]n\ < OO}7

Ay ={n={n;}i>1€A4:n;=0,i>r}, relN
For n = {n;}i>1 € A we define Hermite polynomials on H by

Hn(:li) = HHm(W%(m))? r € H,
=1

and
hn(z) = Ho(z)/Vn!, =€ H,

where {ej}n>1 is as above (i.e. {e,}n>1 is the basis of H composed of nor-
malized eigenvectors of the operator Q) and W is the white noise mapping.

THEOREM 3.1 (|N]). The system {hn}neca is an orthonormal basis in
L*(pq)- =

For any n > 1 we will denote by H,, the closed linear subspace of LZ(,LLQ)
generated by the random variables {H,,(W}) : y € H, |y|| = 1}, and Hg will
be the set of constants. It is well known that the subspaces H,, and H,, are
orthogonal whenever n % m. The subspace H,, n > 0, is called the Wiener
chaos of order n, and the set {hp, : |m| =n, m € A} is an orthonormal basis
in H,, (see e.g. [N]).

THEOREM 3.2 (|N]). The space L*(pq) can be decomposed into the infi-
nite orthogonal sum of the subspaces Hp, n > 0, i.e.

Lz(MQ) = @Hn- .
n=0
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In the next assertion we determine a generating function of the Hermite
polynomials {hy, }nea.

LEMMA 3.3. Fort € H we have
(3.10) exp(Wy — [[t]*/2) = Z H = Z
nE/l \/7
wheret = Zizl tiei, ti = (tye;), i > 1, andt" = Hz‘Zl &' with the convention
0% := 1. The convergence in (3.10)) is in the norm of L*(ug).
Proof. We will show that the Fourier coefficients of w; := exp(W; —

|t]|2/2) with respect to the basis {hy,}n>1 are equal to t"/v/n!, n € A. Let
n = {n;};>1 € A. Assume that n =0 := (0,0,...). Then

(@i, ho)ug = (@i g = | exp(We = 1t1%/2) dpg = 1.
H

Now, let n # 0. Then there is m € N such that n; = 0 for ¢ > m. Using
(2.4), independence of {W¢, }i>1 and (1.1)) we have

(@, ha) g = | exp(We — [[t%/2)hn dng
H
1
= ﬁeXp(—lltHQ/?) exp(Wi) Hy dpug

exp
i=m—+1
X S exp(z tzWei) HHm(Wez) dpq
H i=1 i=1
1 1
— el IP/2) exp(%:;l@,e#)
< TT § expltatve, ), (7,,)d
i=1H
1
= e xp(—|t]2/2) Zg_lexp (t3/2)
X ﬁ S exp(t?/2) Z We, ) Hy,(We,) dug
1=1H 0
i 1
=—|| tnl=—1t"

Vol At "t
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COROLLARY 3.4. Assume that t =Y ;_,tie; € H, r € N. Then equality

(3.10) has the form
t" t"
exp(Wy — [|t]|?/2) = — H, = —— hp,.
PV 4%/2) = 32 Dot = 32

TLGAT ’

4. Main result. The set of all infinite matrices (with countable rows
and columns) with elements from R (or Np) is denoted by My (R) (resp.
Moo(Ng)). If M € My (R), the jth column and ith row of M are de-
noted by M; and M ¢ respectively. From time to time we shall use the short-
hand M = [M J’] As usual we identify rows and columns of M with vectors
from R*. Let us introduce the set

Ma(Np) = {K € M(Np) : |K| € A},

where |K| = (K], |K?|,...). If K € M4(Np), it is easy to see that K has
a finite number of non-zero columns and rows. Moreover, for K € M ,(Np)
and M € M (R), we denote

Kl:=][K"=[[ &' and M":=][()"* =[] )",
i=1 i,j=1 i=1 i,j=1

with the convention 0° = 1. From the above definitions we immediately get

COROLLARY 4.1. Let K € M4(Ny) and M € My (R). Then

(i) K! = (KT)! and MX" = (MT)X (here and hereafter, T stands for
transposition).
(i) Let K} # 0 and M} =0 for some i,j € N. Then M* = 0.

(iii) If |[K| =n and |KT| = m, then |n| = |m|. =

Given M € My (R) such that M* €1y fori > 1, n € Aand t € l. It is
easy to check that

n! T
n __ e K| K|
(4.11) (M= > o M
KeMa(No)
|K|=n
Putting t = (1,1,...) in (4.11)) we obtain
n!
n _ noL K
(4.12) MM =Y o M,
KeM(Nog)
|K|=n

where |[M| = (|]M1|,|M?|,...). We now turn to the Ornstein—Uhlenbeck op-
erator Pr, where R € L(H), |R|| <1, RQ = QR, where @ is as above. The
matrix of the operator R in the orthonormal basis {e,},>1 (we recall that
{en}n>1 is the basis of H composed of the normalized eigenvectors of the
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operator Q) is denoted by

R = [R;‘]i,jﬂ where R; = <R€j,6i>, i,j > 1.

Since @ and R commute, the spaces Ker(Ag,I — @), i € N, are invariant
under R, i.e.

R(Ker(Ag,] — Q)) C Ker(M\g,] — Q), i€eN.

This implies that R is a block diagonal matrix, where the dimensions of the
blocks are (dz — difl) X (dl — difl), 1€ N.

LEMMA 4.2. Let K € Ma(Ng) and |K| = n, |[KT| = m (obviously
n={ni}ti>1,m = {m;}ti>1 € A) and RX £ 0. Then for each r € N we have
n € Ag, if and only if m € Ag,.

Proof. (=) Assume that n € Ay, for some fixed r € N. Then |K‘| =0
for ¢ > d,. Assume that there exists jo > d, such that m;, # 0. It follows
that there exists 1 < ig < d, such that K;g # 0. Since R;g = 0 we get
R® = 0. This contradicts our assumption.

(<) The proof is similar. m

Note that if the matrix R satisfies the condition sup;>1 >~ 5 |R§\ < 00,

then it defines an operator (denoted by the same letter) R : I — lo with
the norm

IRjoo = sup Y |Ri.
=l

LEMMA 4.3. Let |R|oo < 1 and |RT||oo < 1. Then |R|| < 1 (here | R||
means the operator norm of R).

Proof. This is immediate from the Frobenius theorem (see [HLP]). =
THEOREM 4.4. Let m € A. Then

m! T
(4.13) Pr(Hp)= > ERK Hig.
KeMa(No) =
KT |=m

Proof. Let us point out that the number of terms in the above sum is
finite. For any ¢t € H we define

wi(x) := exp(=|[t|*/2 + Wi(x)), « € H.
Let t = Zk21 trer, where tp = (x,ex), k > 1. Hence and from (2.4) we
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obtain
(Prwy) (@) = | exp(—[t|?/2 + Wy(Rz + VI — RR* ) dug(y)
H
— exp(—I[¢]2 ox > (Rx ++1 — RR*y,ep)
= exal-l1P/2) | p(kz:jltk s ) dua(y)
B 2. (Rz,ep)
—exp<|tr2/2>exp(kzﬂtk m)
. (VT—=RR*y,e
xéjexp(;tk< my k>>duQ(y).
Note that
(Rz,er)  (x,R'er)  (z,Q V2QY*Rrey)

= <ZE, Q_I/QR*ek>

Ve VA VA&

and similarly

<\/Ty’ U (y,Q 2V T=RE ey).

It follows that

(Prear) () = exp(— 1l /2) exp (3 tele, @ V2 Roey))

k=1

x| exp(; tely, @ VAVT = RE er)) dug(y)

H

— exp(—[|t1%/2) exp (D tsWie, () | exp (3 t6Wr=pe o, ) ) diia(v).
k=1 H k=1

From ([2.4) we conclude that

o o
Wree =Y tiWreep and Worgge, = Y 6Wyrpre., i L (ug).
k=1 k=1

Therefore

Pr(w;) = exp(=1t]*/2) exp(Wr+) | exp[W, =gz (v)] duo(y)
H

= exp(—||tl|*/2) exp(Wrst) exp([|[VI — RR* t[|*/2)

*4\n THn
= exp[Wge — ||R*t||?/2] = Z & lt) Hy = Z & 't) Ha.

n n
neA neA
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Let us fix m € A. There exist s, jo € Nsuch that m € A, and dj,—1 < s < djq.
Let r :=dj,. Then for any t = ), ., t;e; we have

T\n Ti\n
Prw) = > (R”*) H, = lim ) (R”¢) H, in L*(ug).

| |
nel, n! h%ooneAT n!
In|<l
From (4.11)) it follows that
n' KT |KT|

r(wr) = lim, Z > RO,

ned, KeMA (No)

[n|<l |K|=n

= hm Z Z I;(K!HKT'H|K|.

nGA KGMA(N())

Note that the number of terms in the above two sums is finite. By Corollary
4.1)(iii) and Lemma (4.2 we obtain

T
= hm Z Z RKK'ﬂKTHuq

> ned, KeM(No)
‘”|<l |KT|=n

DYDY K,R Hig= Z > K,R "Hig.

neA, KEMA (No) TLGAT KEMA(N())
In|<l |KT |=n |KT|=n

On the other hand, from Corollary [3:4] and from the continuity of Pg in
L2(1q), we get
tn
Pr(w) = Y — Pr(Hy).
neA,

By comparing this formula with the formula obtained above, we get (4.13]),
and the proof is complete. n

COROLLARY 4.5. For each n € Ny,

PR(Hn) C %n- ]

For the Hermite polynomials orthonormal in L?(pg), formula (4.13)) takes

the form
vml/| K| T

(4.14) Pr(hm) = > K'|| RY hyge.

KEMA(N())
|KT|=m

The next theorem is a generalization of the Gebelein inequality to Hilbert
spaces.
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THEOREM 4.6. Let QQ € L(H) be as above and let R € L(H) satisfy
QR = RQ and |Rl|l <1 and |RT||oc < 1. Then for f € L*(ug) such that
(fs Dpo =0 we have

(4.15) PRIz < A/ IR [loo R Jloo [1.f2-

Proof. Let us first see that by Lemma the operator Pr is prop-
erly defined. For |R|/s = 0, inequality holds trivially. Assume that
|IR|lw # 0. Let us consider the linear operator S : L%*(ug) — L*(ug)
defined as

VIETIIET  er
n=> > <f7hKT|>HQ’]’(!||RK o, f € L*(pq)-

neA Ke M, (No)
|K|=n

We shall prove that Sg is continuous. Let f € L%(ug). Then
VIKT|\WIK _ er
> > Ao RY

neAd KeM,(No)
|[K|=n

VIKTIWIK  er 2
:Z( Z |I|(!’|R <f>h|KT|>uQ>

neA KEMA No)
|[K|=n

<> (5 R el )

neA > KeMy(No)
|K|=n

where R = [|R§ i, j>1 (here \R;| means the absolute value of R;) From what
has already been proved, from (4.12)) and by the Jensen inequality we see that

Bl n)2
Isa(piz <y B

neA

1 2
(o X @RI el

IR | KeMa(No)

2
I1Se()I3 = | ha| duo

H

|K|=n
=T
(R ™* 1 nl =T g o 2
SZ p — Z ﬁ(R) (K Vs by g
ne R ke
|K[=n
=T n K|V —7 k
YR Y ERE g2,
neA KeM,(No)

|K|=n
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SRTLY Y B RS ez,

neA Ke My (Np)
|K|=n
KTk
SR Y S e R (e
neA Ke M4 (No)
|KT|=n
_ T |K’ *K
SR Y Y RN (m,
nEAKEMA(No)
|K|=n

Now, from (4.12)) we conclude that

(4.16) ISR(NIE < IR [loo D RI™ (£, hn)iayy-
neA

By assumption |[R”||s < 1 and |R|® <1 (JR|® = 1). Therefore
ISR(Hllz < IIfll2, f € L*(1q),

i.e. Sk is a continuous linear operator on L?(ug). Moreover, Pr(hy,) =
SRr(hm)for m € A: indeed,

KT /K]!
Y T e K

neA Ke M, (No)
|K|=n

VKT |K|!
:Z Z | }|(!| |RKT

neAd KeM(No)
|K|=n
|KT|=m
VIKT|W/|K]! T
= Y | I'(' Kl grry, = Pr(hm).
KeM(Ng)
|KT|=m
Hence and from the continuity of Pr and Sr we conclude that Sgp = Pg.
Finally, from (4.16)) and by assumption (f,1),, = 0 we obtain

1PR(NIZ = ISR(IE < IR Nloo D RI" (f, k)i < IR ol Rloo |l £13,
neA

where f € L?(ug) and the proof of (4.15)) is complete. m

EXAMPLE. Assume that R is a diagonal matrix with main diagonal
{pi}ti>1 (e.g. if R is symmetric then we can find an orthonormal basis of
H such that in this basis both operators  and R have diagonal matri-
ces). It is clear that RT = R and (by the assumption of Theorem [4.6)
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llolloo = |IR||loo < 1, where p = (p1, p2,...). From (4.14) it follows that

Vol /K] er
SO S (LS VU
KeMa(No)
|KT|=n
n! "

KeM4(No)
|K|=IKT |=n

Thus

(4.17) Pr(f) =Y p"{fsha)hn,  f € L(nq),
neA

and the Gebelein inequality has the form

(4.18) PRz < llpllocll fll2,  f € LQ(MQ) {(f; Dug =0

In order to examine the equality case in we shall con81der three cases,
the proof of which is an immediate consequence of (4.17|
(i) If |pi| < ||pllos, @ € N, then we have equality in 18) if and only if

f=0.
(ii) If |pi| = |lpllec = 1, ¢ € I C N, then we have equality in (4.18) if and

only if
= toha, Yt <o,

nE/lI RGAI
where A; ={n={n;}i>1 € A:n; #0=1¢€ I}.
(i) If |ps| = ||lplloc < 1,7 € I C N, then we have equality in if and

only if
f=> tahn, > th <o,

TLGA[l TLGA[l

where /1[1 = {TL = {ni}izl € /1[ : ]n] = 1}.
Assume additionally that H is finite-dimensional, say dim(H) = d. It is
clear that in this case

Pr(hp) = p"hn, neNL p=(p1,...,pa)
It follows that
IPR(F)l2 < lolmax fll2s f € LP (1), (f, Do =0,

where [|p||max = maxi<i<q|pi|. It is well known that for every f € L*(ug)
there exists a Borel function ¢ : R? — R such that

f(z) =gz, e1),...,(x,eq)), x€H,

and

SfZ(ac)duQ(x) = S G2ty .. tg)dv(ty, ... tq),
H Rd
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where v = puy, X -+ X py,. If we replace the condition (f,1),, = 0, f €
L?(ug) with the stronger condition

(4.19) Voltr,. . ta)duy,(t) =0, i=1,....d,
R
then the Gebelein inequality has the form

_ 0 if p; =0,
(4.20)  [[PR(N)llz < lpal™ -+ lpal ™l fll2 = 77l fll2, i = L
L if Pi 7é Oa
fori=1,...,d and p = (|p1],...,|pal), € = (e1,...,€4). If H is infinite-
dimensional, then condition (4.19) has the form
(4.21) Vo(ti ta, .. ) dun (t:) =0, i=1,2,...,
R

where g : R — R is a Borel function such that

f(.%’):g(<$,61>,<1‘,62>,...), $€H7f€L2(MQ)'
It is easy to check that (4.21]) implies (f, hpn)u, = 0,1 € A, ie. f = 0. There-
fore in the infinite-dimensional case inequality (4.20]) under the assumption

(4.21) has a trivial form.

5. Applications. Let Q € L(H) be as above and let {X,},>1 be a
centered Gaussian sequence of random vectors X, : 2 — H, n > 1, with
covariance operator () and such that the covariance operator of (Xj, Xj),
1,7 > 1, has the form

Q@ QR
R;Q @
where for 4, j > 1 the operators R;; € L(H) are symmetric, R;;QQ = QR;; and

|Rijlloc <1 (notethat R;; = I is the identity operator). Assume additionally
that

COV[(Xi,Xj)] = y i,j > 1,

o0
supz |IRj|loo < 00.
i>1 4
j=1
Adopting now the methods from [BC| we obtain the following statement.
THEOREM 5.1. Let {X,,}n>1 be a centered Gaussian sequence as above.

Suppose that f € L*(ug). Then
f(X1) + -+ f(Xn)

n n—00

SfduQ P-a.s. =
H

Let E be a separable real Banach space with norm || - ||z. We denote by
L'(ug; F) the space of (equivalence classes of) Bochner measurable functions
g: H — Esuch that {, ||g dug < co. Now Theoremand a slight change
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in the proof of Ranga Rao (see e.g. [DS]) of the Strong Law of Large Numbers
for independent random vectors show that for a Gaussian sequence { X, }n>1
(under the above assumptions) and for g € L!(ug; E) we have

9(X1) +--- +9(Xn)

n n—00

S gdpg  P-as.
H
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