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The non-p-part of the fine Selmer group in a Zp-extension

by

Adithya Chakravarthy (Toronto)

Abstract. Fix two distinct primes p and ℓ. Let A be an abelian variety over Q(ζℓ),
the cyclotomic field of ℓth roots of unity. Suppose that A(Q(ζℓ))[ℓ] ̸= 0. We show that
there exists a number field L and a Zp-extension L∞/L where the ℓ-primary fine Selmer
group of A grows arbitrarily quickly. This is a fine Selmer group analogue of a theorem
of Washington that there are certain (non-cyclotomic) Zp-extensions where the ℓ-part
of the class group can grow arbitrarily quickly. We also prove this for a wide class of
non-commutative p-adic Lie extensions. Finally, we include several examples to illustrate
this theorem.

1. Introduction. We begin with a fundamental theorem of Iwasawa,
which serves as the starting point of Iwasawa theory. Let K be a number
field and let K∞/K be a Zp-extension: a Galois extension with Galois group
isomorphic to the additive group Zp of p-adic integers. For such an extension
K∞/K, there exists a unique sequence of fields

K = K0 ⊆ K1 ⊆ · · · ⊆ K∞

such that each Kn/K is a cyclic extension of degree pn. Iwasawa [Iwa59]
proved the following now famous theorem about the growth of class numbers
in such towers.

Theorem (Iwasawa). Let K be a number field and let K∞/K be a Zp-ex-
tension with layers Kn. Suppose that pen is the exact power of p dividing the
class number of Kn. Then there exist integers µ, λ, ν such that

en = µpn + λn+ ν

for all sufficiently large values of n.

A large part of classical Iwasawa theory is devoted to studying the in-
variants µ and λ in the above formula. In a beautiful paper, Iwasawa showed
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[Iwa73, Theorem 1] that there are Zp-extensions for which the µ-invariant
can be arbitrarily large.

Theorem 1.1 (Iwasawa). Let N ≥ 1. There exists a number field L and
a Zp-extension L∞/L such that µ ≥ N .

Now that we have discussed the p-part of the class group in a Zp-ex-
tension, we turns to its ℓ-part, where ℓ ̸= p are distinct primes. The funda-
mental theorem in this area is due to Washington [Was78]:

Theorem 1.2 (Washington). Let ℓ ̸= p be primes. Let K be an abelian
extension of the field Q of rational numbers. Let Kcyc/K be the cyclotomic
Zp-extension of K and let ℓen be the exact power of ℓ dividing the class
number of Kn. Then en is bounded as n → ∞.

Based on this, one might reasonably guess that the ℓ-part of the class
group is bounded in an arbitrary Zp-extension. But this turns out to be false,
as proven in [Was75, Theorem 6].

Theorem 1.3 (Washington). Let N ≥ 1. There exists a number field L
and a Zp-extension L∞/L such that

en ≥ Npn,

where ℓen is the exact power of ℓ dividing the class number of Ln.

The purpose of this article is to discuss analogues of Theorems 1.1 and 1.3
for fine Selmer groups of elliptic curves. Let E be an elliptic curve over a
number field F . The Mordell–Weil Theorem says the group E(F ) of rational
points is a finitely generated abelian group. This arithmetic of this group
is essentially controlled by the Selmer group of E/F . In [Maz72], Mazur in-
troduced the Iwasawa theory of Selmer groups in Zp-extensions of F . The
notion of the fine Selmer group was formally introduced by Coates and Su-
jatha in [CS05], even though it had been studied by Rubin [Rub00] and
Perrin-Riou [PR93, PR95] under various guises in the late 80’s and early
90’s. In [CS05], Coates and Sujatha showed that these fine Selmer groups
have stronger finiteness properties than classical Selmer groups.

In [Kun20, Theorem 4.2], Kundu proved an analogue of Theorem 1.1
for fine Selmer groups: If A is an abelian variety and N ≥ 1 is an integer,
then there exists a number field L and a Zp-extension L∞/L such that the
µ-invariant of the fine Selmer group of A over L∞ is at least N . In other
words, µ-invariants of fine Selmer groups can be arbitrarily large. And in
[KL23, Theorem B], Kundu and Lei proved a fine Selmer group analogue of
Theorem 1.2: In the cyclotomic Zp-extension, the ℓ-part of the fine Selmer
group of A stabilizes.

The purpose of the present paper is to prove a fine Selmer group analogue
of Theorem 1.3. If ℓ is a prime and A is an abelian variety over a number
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field F , let Rℓ∞(A/F ) denote the ℓ-primary fine Selmer group of A over F .
(See Section 5.1 for the precise definition.) If G is an abelian group, the
ℓ-rank of G is defined by rℓ(G) = dimZ/ℓZG[ℓ]. Note that it is possible to
have rℓ(G) = ∞; this is true for example if G contains infinitely many copies
of Z/ℓZ. (See [LM16, Section 3] as a reference for this definition.) Here is
our main result:

Theorem 1.4. Let ℓ ̸= p be primes. Let Q(ζℓ) be the cyclotomic field of
ℓth roots of unity and let A be an abelian variety over Q(ζℓ). Suppose that
A(Q(ζℓ))[ℓ] ̸= 0. For every integer N ≥ 1, there exists a finite extension
L/Q(ζℓ) and a Zp-extension L∞/L such that

rℓ(Rℓ∞(A/Ln)) ≥ Nqn

for all n ≥ 0, where q = min {ℓ, p}. In particular, rℓ(Rℓ∞(A/Ln)) → ∞ as
n → ∞.

More generally, we can also prove this theorem for many non-commuta-
tive p-adic Lie extensions. The relevant statement requires a definition:

Definition 1.5. A pro-p group Γ is uniform of dimension d if it is
topologically finitely generated by d generators and there exists a unique
filtration by the p-descending central series of Γ . In other words, we have

Γ = Γ0 ⊃ Γ1 ⊃ · · ·
such that each Γn+1 is normal in Γn and Γn/Γn+1 ≃ (Z/pZ)d.

If F is a number field and p is a prime ideal of F , then the p-class group
of F is the quotient of Cl(F ) by the subgroup generated by the ideal class
of p.

Assumption 1. Let Γ be a uniform pro-p group with a fixed-point-free
automorphism of order m, where m > 2 is a prime different from p. Assume
that:

(1) there exists a Z/mZ-extension of number fields F/F0, where F0 is totally
imaginary,

(2) the field F contains the pth roots of unity,
(3) there is a unique prime p of F lying over the rational prime p,
(4) the p-part of the p-class group of F is trivial.

Theorem 1.6. Let ℓ ̸= p be primes. Let Q(ζℓ) be the cyclotomic field
of ℓth roots of unity and let A be an abelian variety over Q(ζℓ). Suppose
that A(Q(ζℓ))[ℓ] ̸= 0. Let Γ be a uniform pro-p group with a fixed-point-free
automorphism of order m. If m > 2, suppose that Assumption 1 holds.

Then for every integer N ≥ 1, there exists a finite extension L/Q(ζℓ) and
a Γ -extension L∞/L such that

rℓ(Rℓ∞(A/Ln)) ≥ Nqn
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for all n ≥ 0, where q = min {ℓ, p}. In particular, rℓ(Rℓ∞(A/Ln)) → ∞ as
n → ∞.

Let Selℓ∞(A/F ) denote the ℓ-primary (usual) Selmer group of A over F .
(See Section 5.1 for the precise definition.) Since the fine Selmer group is a
subgroup of the usual Selmer group, we have the following

Corollary 1.7. Retain the notations and assumptions of Theorem 1.6.
For every integer N ≥ 1, there exists a finite extension L/Q(ζℓ) and a Γ -ex-
tension L∞/L such that

rℓ(Selℓ∞(A/Ln)) ≥ Nqn

for all n ≥ 0, where q = min {ℓ, p}. In particular, rℓ(Selℓ∞(A/Ln)) → ∞ as
n → ∞.

We give several numerical examples at the end of the paper to show that
Assumption 1 often holds.

Strategy. We follow Iwasawa’s approach in [Iwa73], which inspired Wash-
ington’s approach in [Was75, Section VI]. We construct a Zd

p-extension L∞/L
where the ℓ-rank of the class group is unbounded.

Theorem 1.8. Let ℓ ̸= p be primes. Let Γ be a uniform pro-p group. If
m > 2, then suppose Assumption 1 holds. For every integer N ≥ 1, there
exists a finite extension L/Q(ζℓ) and a Γ -extension L∞/L such that for all
n ≥ 0

rℓ(Cl(Ln)) ≥ Npn.

In particular, rℓ(Cl(Ln)) → ∞ as n → ∞.

We then use results of Lim–Murty [LM16] to show that the ℓ-rank of the
fine Selmer group is close in size to the ℓ-rank of the class group. Putting
these two results together, we conclude that the ℓ-part of the fine Selmer
group is unbounded in L∞/L, proving Theorem 1.6.

2. Construction of the Γ -extension K∞/K. In this section we will
construct a Γ -extension K∞/K where infinitely many primes split com-
pletely. Here Γ will be a uniform pro-p group with a fixed-point-free auto-
morphism τ of order m. The construction proceeds differently in the cases
m = 2 and m > 2.

2.1. The case m = 2. By [RZ00, Corolary 4.6.10], if Γ is a uniform
pro-p group with a fixed-point-free automorphism τ of order m = 2, then
Γ ≃ Zd

p for some d ≥ 1.
To motivate the next proposition, recall that if K is an imaginary quad-

ratic field, then there is a Zp-extension K∞/K called the anticyclotomic
Zp-extension of K. This extension has the property that infinitely many
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primes of K split completely in K∞. The next proposition generalizes this
to Zd

p-extensions for d ≥ 1.

Proposition 2.1. Let K be a CM field such that K/Q is a Z/2dZ-
extension. Suppose that there is only one prime in K lying over p. Then
there is a Zd

p-extension K∞/K such that infinitely many primes of K split
completely in K∞.

Proof. This fact is well-known, but for lack of a reference we sketch the
proof here. The construction below is reproduced from [Lon12, Section 2].
Let K+ be the maximal totally real subfield of K. For any integral ideal
c ⊆ OK+ , let Oc = OK+ + cOK be the order of conductor c in K. The ring
class field K[c]/K of K of conductor c is the Galois extension of K such that
there is an isomorphism via the Artin map:

Gal(K[c]/K) ≃ Cl(Oc).

Let p be the unique prime of K+ lying over p. Put K[p∞] =
⋃∞

n=1K[pn].
Define K∞ to be the unique subfield of K[p∞] satisfying

Gal(K∞/K) ≃ Z[K+
p :Qp]

p = Zd
p.

Suppose that ℓ is a rational prime which is inert in K. Then the ideal class of ℓ
is trivial in Cl(K) and hence class field theory shows that ℓ splits completely
in any ring class field K[c] of conductor coprime to ℓ. (See [Nek07, Section
2.6.3].) In particular, if ℓ is inert in K/Q and ℓ is coprime to p then ℓ splits
completely in K∞. By the Chebotarev density theorem, there are infinitely
many such primes.

2.2. The case m > 2. Here is the main result:

Proposition 2.2. Let Γ be a uniform pro-p group. Suppose Assump-
tion 1 holds. Then there exists a Galois extension K/F and a Γ -extension
K∞/K such that infinitely many primes of K split completely in K∞.

Now let F be a number field and let Fmax,p be the maximal pro-p ex-
tension of F unramified outside the primes above p. The number field F is
called p-rational if Gal(Fmax,p/F ) is pro-p free.

Lemma 2.3. Let F be a number field with a primitive pth root of unity.
Then F is p-rational if and only if there exists a unique prime p above p and
the p-part of the p-class group of F is trivial.

Proof. This is part of [Gra, Theorem IV.3.5].

Lemma 2.4. Keep the notations and assumptions from Proposition 2.2.
Let n be an integer such that [F0 : Q]pn ≥ 2d and let K0 (resp. K) be the
nth layer of the cyclotomic Zp-extension of F0 (resp. F ). Then there exists
an intermediate field K ⊂ K∞ ⊂ Kmax, p such that K∞ is Galois over K0
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with Galois group Γ⋊⟨τ⟩. Suppose τ acts fixed-point-freely on Γ . Then every
place of K0 which is inert in K/K0 splits completely in K∞/K.

Proof. This follows from [HM19, Propositions 3.6 and 3.7] if F is p-
rational. But Lemma 2.3 gives conditions for F to be p-rational and F sat-
isfies those conditions.

Proposition 2.2 now follows from Lemma 2.4, because by the Chebotarev
density theorem there are infinitely many primes that are inert in the cyclic
extension K/K0.

3. Construction of the Γ -extension L∞/L. Fix N ≥ 1. In this sec-
tion we will construct a Γ -extension L∞/L with the properties in Theo-
rem 1.8, i.e. such that

rℓ(Cl(Ln)) ≥ Npn for all n ≥ 0.

Proposition 3.1. Let N ≥ 1 be an integer. Let Γ be a uniform pro-p
group of dimension d with a fixed-point-free automorphism of order m. If
m > 2, suppose Assumption 1 holds. Let K∞/K denote the Γ -extension from
Proposition 2.1 (resp. Proposition 2.2) if m = 2 (resp. m > 2). There exists
a finite extension L/K and a Γ -extension L∞/L satisfying the following:

(1) The extension L∞ contains K∞. Furthermore, for all n ≥ 0, the number
of primes ramifying in Ln/Kn is at least

(N +mdℓ(ℓ− 1))pn.

(2) We have [Ln : Q] ≥ mℓ(ℓ− 1)dpn for all n ≥ 0.

Proof. We only prove the case m > 2; the proof for m = 2 is identical
and left to the reader. By Proposition 2.2, infinitely many primes of K split
completely in K∞/K. Let t ≥ 1 be an integer (to be chosen later) and let
v1, . . . , vt be primes in K that split completely in K∞/K.

Claim 3.2. There exists α ∈ K such that ordvi(α) = 1 for all i = 1, . . . , t.

Proof of claim. Consider the ideal class I = [v1 · . . . · vt] ∈ Cl(K). Then
II−1 is trivial in Cl(K) so there exists a fractional ideal w of K such that
v1 ·. . .·vt ·w is a principal ideal; write v1 ·. . .·vt ·w = (α) for some α ∈ K. Then
ordvi(α) ≥ 1 for all i = 1, . . . , t. We can ensure that ordvi(α) is exactly 1 by
dividing w through by vi if necessary. This proves the claim.

Now let α ∈ K be such that ordvi(α) = 1 for all i = 1, . . . , t. Put
L = K(α1/ℓ, ζℓ). Then L/K(ζℓ) is a cyclic degree ℓ extension where v1, . . . , vt
ramify. Put L∞ = K∞L. Then L∞/L is a Γ -extension. We summarize this
in a diagram:
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L∞

K∞(ζℓ)

L K∞

K(ζℓ)

K

K0

ℓ

ℓ−1

m

Γ

Let Kn (resp. Ln) be the nth layer of the Γ -extension K∞ (resp. L∞).
The primes v1, . . . , vt ramify in L/K. Furthermore, all the primes of Kn lying
over v1, . . . , vt must ramify in Ln as well. Since each vi splits completely, there
are tpn such primes of Kn. Therefore, the number of primes of Ln/Kn that
ramify is at least tpn. Now set

t := N +mdℓ(ℓ− 1).

This proves property (1).
To prove property (2), we just count degrees in the above field diagram,

noting that [Ln : L] = dpn. This completes the proof of Proposition 3.1.

4. Growth of class groups in L∞/L: the proof of Theorem 1.8. We
want to show that the ℓ-part of the class group in the Γ -extension L∞/L is
unbounded. Our main tool to do this is the so-called ambiguous class number
formula.

Definition 4.1. Let ℓ be a prime. Let K be a number field and L/K be
a cyclic Z/ℓZ-extension. Let σ ∈ Gal(L/K) be a generator. An ideal class
[a] ∈ Cl(L) is called strongly ambiguous if [a]σ−1 = (1).

The subgroup of Cl(L) consisting of strongly ambiguous classes is denoted
by Amst(L/K).

The following is given in [Kun20, Proposition 4.5].

Proposition 4.2 (Ambiguous class number formula). Let ℓ be a prime.
Let K be a number field and L/K be a cyclic Z/ℓZ-extension such that σ is
a generator of the Galois group Gal(L/K). Then

rℓ(Amst(L/K)) ≥ T − [L : Q],

where T is the number of ramified primes in L/K.
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Proof of Theorem 1.8. Observe that for each n ≥ 1, the extension Ln/Kn

is cyclic of degree ℓ. Applying Proposition 4.2 to Ln/Kn, we have

rℓ(Amst(Ln/Kn)) ≥ T − [Ln : Q],

and the number of primes ramifying in Ln/Kn is at least

(N + 2dℓ(ℓ− 1))pn.

We have [Ln : Q] ≥ mℓ(ℓ− 1)dpn for all n ≥ 0.
By Proposition 3.1(2), we have T ≥ (N +mdℓ(ℓ− 1))pn and [Ln : Q] ≥

mdℓ(ℓ− 1)pn. And since Amst(Ln/Kn) is a subgroup of Cl(Ln), we have

rℓ(Cl(Ln)) ≥ rℓ(Amst(Ln/Kn)).

Combining these, we obtain

rℓ(Cl(Ln)) ≥ rℓ(Amst(Ln/Kn)) ≥ T − [Ln : Q]

≥ (N +mdℓ(ℓ− 1))pn −mdℓ(ℓ− 1)pn = Npn

for all n ≥ 0. This completes the proof of Theorem 1.8.

5. Application to fine Selmer groups: the proof of Theorems 1.6

5.1. Review of fine Selmer group. Let F be a number field and p
be a prime. Let A be an abelian variety over F and let S be a finite set of
primes containing Sp∪Sbad∪S∞. Denote by FS the maximal extension of F
unramified outside S.

The usual p∞-Selmer group of A is defined by

Selp∞(A/F ) = ker
(∑

H1(F,A[p∞]) →
∏
v

H1(Fv, A)[p
∞]

)
.

Here v runs through all the primes of F . The fine Selmer group of A is
defined by the exact sequence

0 → Rp∞(A/F ) → Selp∞(A/F ) →
⊕
v|p

A(Fv)⊗Z Qp/Zp.

5.2. Proof of Theorem 1.6. Let F be a number field and S a finite
set of places of F . The S-class group of F , denoted ClS(F ), is the quotient
of Cl(F ) by the subgroup generated by the ideal classes of prime ideals in S.
The following proposition is proven in [LM16, Lemma 4.3].

Proposition 5.1. Let A be an abelian variety over a number field F .
Let S be a finite set of primes containing Sℓ ∪ Sbad ∪ S∞. Suppose that
A(F )[ℓ] ̸= 0. Then

rℓ(Rℓ∞(A/F )) ≥ rℓ(ClS(F )) · rℓ(A(F )[ℓ])− 2 dim(A),

where dim(A) denotes the dimension of the abelian variety A.

We will first relate the S-class group of F to the class group of F .
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Lemma 5.2. Let L be a number field and let ℓ be a rational prime. Let
S be a finite set of places of L containing the primes above ℓ. Let s0 be the
number of finite primes in S. Then for all n,

|rℓ(Cl(Ln))− rℓ(ClS(Ln))| ≥ 2s0ℓ
n.

Proof. We reproduce this proof from [Kun20, Lemma 4.6, Step A]. Let
sn be the number of finite primes of Ln lying over a prime of S. Consider
the following short exact sequence for all n [NSW13, Lemma 10.3.12]:

Zs0 → Cl(Ln) → ClS(Ln).

Taking ℓ-ranks of this sequence, by [LM16, Lemma 3.2] we obtain

|rℓ(Cl(Ln))− rℓ(ClS(Ln))| ≥ 2s0ℓ
n.

Proof of Theorem 1.6. Recall that we have primes ℓ ̸= p and an abelian
variety A defined over Q(ζℓ). Let S = Sp ∪Sbad ∪S∞. Let s0 be the number
of finite places of S. We can apply Theorem 1.8 (replacing N with N +2s0)
to construct a Γ -extension L∞/L such that

rℓ(Cl(Ln)) ≥ (N + 2s0)p
n

for all n ≥ 0. Proposition 5.1 tells us that for all n ≥ 0,

rℓ(Rℓ∞(A/Ln)) ≥ rℓ(ClS(Ln)) · rℓ(A(Ln)[ℓ])− 2 dim(A).

Since we have assumed A(ζℓ)[ℓ] ̸= 0, it follows that rℓ(A(Ln)[ℓ]) ≥ 1 for all
n ≥ 1. This gives us

rℓ(Rℓ∞(A/Ln)) ≥ rℓ(ClS(Ln))− 2 dim(A).

Applying Lemma 5.2, we get

rℓ(Rℓ∞(A/Ln)) ≥ (rℓ(Cl(Ln))−2s0ℓ
n)−2d ≥ N+2s0p

n−2s0ℓ
n−2 dim(A).

Suppose ℓ < p. Then we have

rℓ(Rℓ∞(A/Ln)) ≥ N + 2s0ℓ
n − 2s0ℓ

n − 2d = Nℓn − 2 dim(A).

Now suppose ℓ > p. Then

rℓ(Rℓ∞(A/Ln)) ≥ N + 2s0p
n − 2s0p

n − 2d = Npn − 2 dim(A).

Either way, we get

rℓ(Rℓ∞(A/Ln)) ≥ Nqn − 2 dim(A) ≥ Nqn,

where q = min {ℓ, p}. This completes the proof of Theorem 1.6.

6. Examples

Example 1. Let E = 11a1. Then E(Q(ζ5))[5] ̸= 0, so we can pick ℓ = 5
and p = 3. Let N = 2. We will construct a Γ = Z3-extension L∞/L such
that

r5(R5∞(E/Ln)) ≥ 2 · 3n for all n ≥ 0.
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We pick K = Q(ζ3) because there is a unique prime of F lying over
p = 3. Let K∞/K be the anticyclotomic Z3-extension of K. We have t =
N +2dℓ(ℓ−1) = 42. We want to find t = 42 primes v1, . . . , vt of F that split
completely in K∞. It is enough to find 42 primes different from p = 3 that
are inert in Q(ζ3). We list these primes below:

2, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191,

197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419.

Let α be the product of these 42 primes,

α = 556482130087816956726678103847022047054729682986681804614281048399478905

195501007583867510.

Now put L = K(ζ5, 5
√
α), and let L∞ = K∞L. Then L∞/L is a Z3-extension.

Theorem 1.8 says that
r5(Cl(Ln)) ≥ 2 · 3n for all n ≥ 0.

And Theorem 1.4 says that
r5(R5∞(E/Ln)) ≥ 2 · 3n for all n ≥ 0.

Example 2. We now look at Zd
p-extensions for d = 3. As in the previous

example, let E = 11a1, ℓ = 5 and p = 3. Set N = 10. We will construct a
Z3
3-extension L∞/L such that

rℓ(Rℓ∞(E/Ln)) ≥ 10 · 3n for all n ≥ 0.
Consider the CM field K = Q(ζ9). Let K∞ be the Z3

3-extension of K
given in Proposition 2.1. We have t = N +2dℓ(ℓ− 1) = 90. We want to find
t = 90 primes v1, . . . , vt that are inert in K. By the well-known splitting laws
for primes in cyclotomic fields, every rational prime which is ≡ 2, 5 modulo
9 is inert in K. Here is a list of 90 such primes:

2, 5, 11, 23, 29, 41, 47, 59, 83, 101, 113, 131, 137, 149, 167, 173, 191, 227, 239, 257, 263, 281,

293, 311, 317, 347, 353, 383, 389, 401, 419, 443, 461, 479, 491, 509, 563, 569, 587, 599, 617, 641,

653, 659, 677, 743, 761, 797, 821, 839, 857, 887, 911, 929, 941, 947, 977, 983, 1013, 1019, 1031,

1049, 1091, 1103, 1109, 1163, 1181, 1193, 1217, 1229, 1283, 1289, 1301, 1307, 1319, 1361,

1373, 1409, 1427, 1433, 1451, 1481, 1487, 1499, 1523, 1553, 1559, 1571, 1607, 1613.

Let α be the product of these primes:

α = 3026691567190856771201105872323454284465474656097714712640878306872219738

2394620312068312110527998801269911739428847490885841444328709130896638616

7902242957859532761609270923483095428112544069874627622945451584053107032

9013191741865236750170.

Now put L = K(ζ5, 5
√
α) and let L∞ = K∞L. Then L∞/L is a Z2

3-extension.
Theorem 1.8 says that

r5(Cl(Ln)) ≥ 10 · 3n for all n ≥ 0.
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And Theorem 1.6 says that

r5(R5∞(E/Ln)) ≥ 10 · 3n for all n ≥ 0.

Example 3. We discuss a non-commutative example of Γ . The nilpotent
uniform groups of dimension d = 3 are parametrized, up to isomorphism, by
a number s ∈ N. They are given by (see [GSK09, Section 7, Theorem 7.4])

Γ (s) = ⟨x, y, z : [x, z] = [y, z] = 1, [x, y] = zp
s⟩.

The groups Γ (s) are non-abelian; they fit in the exact sequence

1 → Zp → Γ (s) → Z2
p → 1.

If p ≡ 1 modulo 3, the group Γ (1) has an automorphism τ of order 3 which
has no fixed points (see [HM19, Proposition 4.1]). Therefore m = 3.

Put Γ = Γ (1). Let E = 19a1. Since E(Q)[3] ̸= 0, let ℓ = 3, and p = 7.
Let N = 6. We will construct a Γ -extension L∞/L such that

r5(R5∞(E/Ln)) ≥ 6 · 3n for all n ≥ 0.

We construct a degree m = 3 extension F/F0 as in Assumption 1. Let
F0 = Q(ζ7). Let F = F0(θ), where θ is a root of the irreducible cubic
polynomial

x3 − x2 − 4x− 1.

Then F/F0 is a degree 3 cyclic extension. According to the LMFDB database
[LMF23], the class number of F is 13 and there is a unique prime p lying
over p = 7. In particular, the p-part of the p-class group of F is trivial so F
is p-rational. Therefore, F/F0 satisfies the hypotheses of Proposition 3.1.

Set t := N+mdℓ(ℓ−1) = 6+3 ·3 ·3 ·2 = 60. We need to find 60 primes of
F0 = Q(ζ7) which are inert in F . Consider the following 10 rational primes:

(1) 43, 127, 491, 673, 953, 1499, 1583, 2129, 2311, 2591.

By a calculation in Sage, each of these 10 rational primes splits completely
in F0 into 6 factors and each of these factors is inert in F . For example,
43 factors in F0 as

43 = (ζ57 + 2ζ37 + ζ27 + 1) · (ζ57 + ζ47 + 2ζ27 + ζ7)

· (2ζ57 + ζ47 + 2ζ37 + ζ27 + 2ζ7 + 1) · (−2ζ57 − ζ47 − ζ37 − 2ζ27 − 2ζ7 − 1)

· (2ζ47 + ζ37 + ζ27 + ζ7) · (ζ57 + ζ47 + ζ37 + 2ζ27 ),

and each of the factors is inert in F . In total, there are 10 · 6 = 60 primes
of F0 lying over the 10 rational primes (1), each of which is inert in F .

Let α be the product of these 60 primes:

α = 78402503779216655405023576089116738265320606062683342998991230977298594

36684020023921188941416161094578321474807227626638759156142079702108239

313497652801991067685041337071171617321114788409671453358754013644971.
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We apply Lemma 2.4. Since [F0 : Q] = 6 ≥ 2d, we set n = 0, so that K0 = F0

and K = F . The lemma says that there exists a Γ -extension K∞/K such
that every inert prime in K/K0 splits completely in K∞.

Put L = K(α1/3, ζ3) and L∞ = LK∞. Then L∞/L is a Γ -extension.
Theorem 1.8 says that

r5(Cl(Ln)) ≥ 6 · 3n for all n ≥ 0.

And Theorem 1.6 says that

r5(R5∞(E/Ln)) ≥ 6 · 3n for all n ≥ 0.
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