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Abstract. Following the pioneering work of Halász and Turán we prove a general
zero-density theorem for a large class of Dirichlet series, containing the Riemann and
Dedekind zeta functions. Owing to the application of an idea of Halász (contained in
the above mentioned work) and a sharp Vinogradov-type estimate for the Riemann zeta
function (due to Heath-Brown) the results are particularly sharp in the neighborhood of
the boundary line Re s = 1.

1. Introduction. More than 50 years ago Halász and Turán [HT1969]
showed two important theorems about two significant approximations of the
Riemann Hypothesis (RH). The Lindelöf Hypothesis (LH) asserts, with the
notation (s = σ + it)

(1.1) µζ(σ0) := inf {µ; |ζ(σ + it)
∣∣ ≤ Tµ for σ ≥ σ0, 1 ≤ |t| ≤ T},

that
(1.2) µζ(1/2) = 0.

The Density Hypothesis (DH) asserts that the estimate

(1.3) N(σ, T ) :=
∑

ζ(β+iγ)=0
β≥σ, |γ|≤T

1 ≪σ TA(σ)(1−σ) logC T

(C > 0 absolute constant),
or, in a slightly weaker form
(1.4) N(1− η, T ) ≪η,ε T

B(η)η+ε (ε > 0 arbitrary),
holds with
(1.5) A(σ) ≤ A = 2, or equivalently B(η) ≤ 2,

for all σ ≥ 1/2, respectively for all η ≤ 1/2.
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The significance of (DH) is that – together with a slight improvement
of the classical zero-free region of de la Vallée Poussin – it implies for the
difference of consecutive primes

(
P = {pi}∞i=1 is the set of all primes

)
the

estimate
(1.6) pn+1 − pn ≪ε p

1−1/A+ε
n (ε > 0 arbitrary),

while the slightly stronger relation, in case of A = 2,
(1.7) pn+1 − pn = o(p1/2n log pn),

is still undecided supposing (RH). In general, (DH) can often substitute
(RH). On the other hand, (LH) was supposed to have a weaker connec-
tion with the distribution of zeros since Backlund [Bac1918/19] showed its
equivalence to
(1.8) N(α, T + 1)−N(α, T ) = o(log T ) as T → ∞, for all α > 1/2.

Ingham [Ing1937] showed that much more is true, namely on (LH), Carl-
son’s density theorem A(σ) = 4σ [Car1921] holds in the stronger form with
A(σ) ≤ A,
(1.9) A = 2(1 + µ(1/2)), or equivalently B(η) = 2(1 + µ(1/2)),

which in particular shows that (LH) implies (DH). Another breakthrough
came 30 years later when Halász and Turán [HT1969] proved that (LH)
implies, for σ = 1− η > 3/4,
(1.10)

N(σ, T ) ≪ T ε (ε > 0 arbitrary), or equivalently B(η) = 0 for η < 1/4.

In the same paper they showed unconditionally in a slightly improved
form (see Turán’s book [Tur1984, Theorem 38.2])

(1.11) N(σ, T ) ≪ T 1.2·105(1−σ)3/2 logC T (T > C),

which first proved unconditionally that (DH) is true in a nontrivial half-plane
σ > c1 with c1 < 1 and even
(1.12) B(η) ≤ 1.2 · 105√η = o(1) as η → 0.

Turán even conjectured that (LH) implies (1.10) for all σ > 1/2 but this
has never been shown. The constant 1.2 · 105 was improved in the case of
η < c2 (a small positive absolute constant) in subsequent works of Mont-
gomery [Mon1971], Ford [For2002] and Heath-Brown [Hea2017] to 4.95. Very
recently the author [Pin2023] obtained a further slight improvement (using
deep results of Heath-Brown’s above-mentioned work), namely

(1.13) B(η) ≤ (3
√
2 + o(1))

√
η as η → 0,

with other similar improvements in the neighbourhood of the line Re s = 1.
The author expresses thanks to Gábor Halász who suggested applying

the above method to the investigation of the following problem. Halász and
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Turán observed (see [Tur1984, Theorems 38.3–38.4]) that proven or hypo-
thetical assumptions (like (LH)) on the vertical growth of Riemann’s zeta-
function can help to prove density theorems for other more general functions.
The goal of the present work is to prove results in this direction. The class
of functions we consider will be different from that considered in [Tur1984].
We will also separate the properties assumed for the general function f(s)
and those for ζ(s). Our method will be similar to that of our earlier pa-
per [Pin2023] (but somewhat simpler). We can dispense with the power sum
method of Turán [Tur1984] but will use a simple but ingenious idea of Halász
[Hal1968] which in some form played a crucial role in all later density theo-
rems.

As mentioned above, similarly to Halász and Turán [HT1969, Tur1984],
in order to prove density theorems of type (1.3)–(1.4) for a general function
f(s) we need vertical growth conditions (cf. (1.1)) for both f(s) and ζ(s),
i.e., “the special function ζ(s) plays a role for general f(s)” [Tur1984, p. 368].

2. Results. We do not strive for full generality so will suppose that
f1 ̸= 0 and

(2.1) f(s) =
∞∑
n=1

fn
ns

, M(s) =
1

f(s)
=

∞∑
n=1

gn
ns

are analytic for σ > 1

(i.e. M(s)f(s) = 1 for σ > 1), and

(2.2) fn ≪ n∆, gn ≪ n∆ for every ∆ > 0.

Remark 1. If fn is completely multiplicative as a function of n then
f1 = 1 and g(n) = µ(n)fn.

Further we suppose that f(s) can be continued as an analytic function
to the half-plane σ ≥ αf , αf < 1, up to a simple pole at s = 1 with residue
f0 and (cf. (1.1)) with

(2.3) µf (σ0) := inf {µ; |f(σ + it)| ≤ Tµ for σ ≥ σ0, 1 ≤ |t| ≤ T} < ∞

for σ0 ≥ αf . This is clearly the analogue of Lindelöf’s µ-function for f(s) in
place of ζ(s). The following technical definition will be useful in the formu-
lation (and the proof) of our results. The function λf below depends on µf ,
and λζ on µζ . Let

(2.4)
λf (η) := min

0≤a; (a+1)η≤1−αf

µf (1− (a+ 1)η)

aη
,

λζ(η) := min
0≤b; (b+1)η≤1/2

µζ(1− (b+ 1)η)

bη
.
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Our result will express the density estimates

(2.5) Nf (1− η, T ) ≪η,ε T
Bf (η)η+ε

as a function of λf and λζ (in the case of f = ζ clearly λζ is sufficient).
For λζ we have strong estimates using Korobov–Vinogradov’s method and
weaker classical ones by the method of Hardy–Littlewood–Weyl [Lit1922] or
van der Corput [vdC1921, vdC1922], which imply that as η → 0,

(2.6) µζ(1− η) = o(η), so λζ(η) = o(1).

Theorem 1. Under conditions (2.1)–(2.2) and notation (2.3)–(2.5) we
have, for η < min(1− αf , 1/4),

(2.7) Bf (η) ≤ max(4λf (η), 3λζ(2η)).

Depending on the value

(2.8) df (η) =
λf (η)

λζ(2η)

we can improve Theorem 1 for df (η) > 1 and df (η) < 1/2 as follows (we
take df (η) = ∞ for λζ(2η) = 0).

Theorem 2. Under the assumptions of Theorem 1 we have

Bf (η) ≤ max(2λf (η), 4λζ(2η)) if df (η) > 1,(2.9)
Bf (η) ≤ 2(λf (η) + λζ(2η)) for arbitrary df .(2.10)

Remark 2. It is easy to see that (2.9) is stronger than both (2.7) and
(2.10) if df (η) > 1.

Theorems 1–2 imply the following asymptotic result.

Corollary 1. We have

(2.11) Bf (η) ≤ 2 lim
η→0

λf (η) + o(1) as η → 0.

Proof. This follows from (2.10) since λζ(2η) = o(1) as η → 0.

Corollary 2. If there is a Df > 0 such that for any ε > 0,

(2.12) |f(σ + it)| ≤ε,σ |t|Df (1−σ)+ε for |t| > 1, σ = 1− η ≥ αf ,

i.e., µf (1− η) ≤ Dfη, then

(2.13) Bf (η) ≤
2Df

1− η/(1− α)
, so Bf (η) ≤ 2Df + o(1) if η → 0.

Proof. We have λf (η) ≤ Df (1 − αf )/(1 − αf − η) if we choose a with
(a+ 1)η = 1− αf in (2.4).

Corollary 3. If

(2.14) |f(1− η + it)| ≤ |t|o(η) for |t| ≥ 1 as η → 0,
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then

(2.15) Bf (η) = o(1) as η → 0.

Finally, in the case of f = ζ by Theorem 1 we are able to reach

Corollary 4. We have

(2.16) Bζ(η) ≤ 3
√
2η + o(

√
η) as η → 0.

Proof. Theorem 5 of Heath-Brown [Hea2017], together with the remark
following it, shows that for any δ > 0,

(2.17) µζ(1− η) ≤
(

2

3
√
3
+ δ

)
η3/2 if η < η0(δ).

Choosing b = 2 in (2.4) we obtain, for any δ′ > 0,

(2.18) λζ(η) ≤
µζ(1− 3η)

2η
≤ (1 + δ′)

√
η if η < η0(δ

′).

In view of 3
√
2 > 4, (2.7) and (2.18) clearly imply (2.16).

Finally, the conditional theorem of Halász–Turán also follows immedi-
ately for f(s) = ζ(s) or even for a larger class of functions as well, if we
suppose (LH) for both functions f(s) and ζ(s). This is contained in Corol-
lary 2 as the limiting case Df = 0.

Corollary 5. (LH) implies (DH) for σ > 3/4. More generally, if

(2.19) αf ≤ 3/4, µf (3/4) = µζ(1/2) = 0,

then

(2.20) Bf (η) = 0 for η < 1/4.

Proof. (2.19) implies λf (η) = λζ(2η) = 0 for η > 1/4 by (2.4).

Remark 3. It is interesting to note that we need only a weaker assump-
tion for f(s) than for ζ(s) (i.e. in the range σ > 3/4) to obtain

(2.21) Nf (σ, T ) ≪ T ε for σ > 3/4 (ε > 0, arbitrary).

The same phenomenon was observed by Halász and Turán (see [Tur1984,
p. 367]) for the class of functions f(s) they investigated.

3. Notation and preparation. We will consider a maximal number
K of zeros ϱj = βj + iγj := 1 − ηj + iγj of f(s) with |γj | ∈ [T/2, T ],
|γj − γν | ≥ 1 for ν ̸= j (j, ν ∈ [1,K]) and βj := 1 − ηj ≥ σ := 1 − η.
Let ε and ∆ be sufficiently small, positive with ∆, ε < c0(η, f, T ); ε may be
different at different occurrences and may depend on η and f . Analogously,
C will be a positive constant which may depend on η and f(s) and might
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be different at different occurrences. Further, let µ be the Möbius function,
let

(3.1)

Y = T λf (η)+∆, Z = T λζ(2η)+∆, X = T∆2
,

an =
∑
d|n

n/d≤X

fdgn/d, MX(s) =
∑
n≤X

gnn
−s,

λ = log Y, L = max(λ, log T ), η < 1/4, Y1 = Y e3.

We note that L ≪ log T ; note that the constants implied by o, O and ≪
may always depend on η, ∆ and f(s).

As a preparation we will show a lemma (actually an application of Per-
ron’s formula) which shows that sufficiently long partial sums of the zeta-
function are of size o(1). An alternative possibility would be (cf. [Pin2023])
to use a weighted sum as in [Mon1971, Appendix II].

Lemma 1. Suppose that δ > 0, σ0 = 1 − η0 ∈ [1/2, 1], 1 < |t| < T ,
N ≪ T , [N1, N2] = I(N) ⊆ [N, 2N), and N ≥ T λζ(η0)+δ. Then (with s =
σ0 + it)

(3.2) S :=
∑

n∈I(N)

n−s ≪ LN1−σ0

|t|
+O(T−Cδ),

with a C depending on η0.

Proof. Using Perron’s formula [Per1908] in the form given in [MV2007,
Corollary 5.3] we have
(3.3)

S =
1

2πi

1−σ0+1/L+2iT�

1−σ0+1/L−2iT

ζ(s+ w)
Nw

2 −Nw
1

w
dw +O(N−σ0) + o

(
N1−σ0L

T

)
.

Let us denote by b′ the value of b for which the minimum in the definition
of λζ(η) is attained.

Moving the line of integration to the vertical line segment Rew = −b′η0,
Imw = [−2T, 2T ] along the horizontal segments Imw = −2T and Imw =
2T , and denoting the new integration line by J , we obtain, from the pole of
ζ at w = 1− s,

(3.4) S =
1

2πi

�

J

ζ(s+ w)
Nw

2 −Nw
1

w
dw +O

(
LN1−σ0

|t|

)
+O(N−σ0).

The value of the integral along the vertical segment is

(3.5) S1 ≪
LTµζ(1−(b′+1)η0)+ε

N b′η0
≪ LT−b′δη0/2 if ε ≤ δb′η0/2.
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The contribution of the integral along the horizontal segments is, in view of
µζ(1/2) ≤ 1/4,

(3.6) S2 ≪ Tµζ(1/2)+ε+1−σ0−1 ≪ T−1/5.

Formulae (3.3)–(3.6) prove Lemma 1.

Remark 4. We can even work with the simpler bound µ(0) = 1/2 if we
change the definition (2.4), or even with µ(1/2) ≤ 1/2 if σ0 > 1/2.

Remark 5. Lemma 1 is also true if N > CT , by the simple Theorem
4.11 of Titchmarsh [Tit1951].

4. Proof of Theorems 1–2. Let a′ denote the value of a for which the
minimum is attained in the definition of λf in (2.4). Our starting formula
will be, similarly to [Pin2023],

(4.1) Ij :=
1

2πi

�

(3)

∞∑
n=1

an
ns+ϱj

es
2/L+λs

s
ds

=
1

2πi

�

(3)

MX(s+ ϱj)f(s+ ϱj)
es

2/L+λs

s
ds

=
1

2πi

�

(ηj−(a′+1)η)

MX(s+ ϱj)
f(s+ ϱj)

s
es

2/L+λs ds+O

(
XY ηj

|γj |
e−γ2

j /L
)

≪ X

∞�

−∞

|γj + t|µf (1−(a′+1)η)+ε

a′η + |t|
e−|γj+t|2/LY −a′η dt+O(e−T 2/5L)

≪ LTµf (1−(a′+1)η)+ε

Y a′η
+O(e−T 2/(5L)) = O(T−a′ηδ/3) = o(1)

if ε < δa′η/2, where the error term represents the contribution of the pole
of ζ at s = 1− ϱj = ηj − iγj if we use the trivial estimate MX(s) ≪ X.

The RHS of (4.1) can be evaluated term by term for every n. The contri-
bution of the term n = 1 can be obtained by moving the line of integration
to Re s = −4. The pole at s = 0 contributes a1 = 1 and the integral is
O(LY −4) = o(1). Further, we have an = 0 for 1 < n ≤ X. For the terms
with n > Y1 = Y e3 we can shift the line of integration to Re s = L. Using
(ε > 0 arbitrary) an ≪ τ(n)nε ≪ nβj and

∑
n>M n−u ≪ M−(u−1) for u ≥ 2,

M ≥ 1, we obtain
(4.2)

�

(L)

∑
n>eλ+3

an
ns+ϱj

es
2/L+λs ds ≪ e−(λ+3)(L−1)+λL

∞�

−∞
e(L

2−t2)/L dt = o(1).
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Summarizing, we get

(4.3)
∑

X<n<Y1

an
nϱ
j

h(n) = 1 + o(1),

where since λ ≤ L we have, for every n ≥ 1,

h(n) :=
1

2πi

�

(3)

es
2/L+(λ−logn)s

s
ds =

1

2πi

�

(1/L)

es
2/L+(λ−logn)s

s
ds(4.4)

≪
∞�

−∞

e−t2/L

|1/L+ it|
dt ≪ L logL.

From this we obtain, by a dyadic subdivision of (X,Y1), for some U ∈
[X,Y1] and I(U) ⊆ [U, 2U),

(4.5)
K∑
j=1

∣∣∣ ∑
n∈I(U)

a∗nn
−ϱj

∣∣∣ ≫ K

L
with a∗n = anh(n).

Next we will raise the Dirichlet polynomial
∑

n∈I(U) a
∗
nn

−ϱj to a minimal
integral power h0 ≥ 1 such that (2U)h0 ≥ Z = T λζ(2η)+∆. Since U ≥ X and
λζ(2η) ≤ 1, we have h0 ≤ 1+ log Y1

logX ≪ 1. The resulting polynomial will have
coefficients b∗n ≪ τh0(n)n

εLh0(logL)h0 = T o(1) by (4.4)–(4.5) for any ε > 0.
Further, with a suitable value M ∈ [Uh, (2U)h), (4.5) can be substituted

using Hölder’s inequality by

(4.6)
K∑
j=1

∣∣∣ ∑
n∈I(M)

b∗nn
−ϱj

∣∣∣ ≫ K

Lh0
.

If U2 ≥ T λζ(2η)+∆ = Z we take h0 = 2. If X ≤ U ≤ T (λζ(2η)+∆)/2 we can
choose the minimal integer h ≥ 2, i.e. h = h0 with

Uh0 ∈
[
T λζ(2η)+∆, T (3/2)(λζ(2η)+∆)

]
= [Z,Z3/2].

Since U ≤ Y1, in both cases we have Uh0 ≪ max(Y 2, Z3/2).
Let us now define the numbers φj with |φj | = 1 so that

(4.7)
∣∣∣ ∑
n∈I(M)

b∗nn
−ϱj

∣∣∣ = φj

∑
n∈I(M)

b∗nn
−ϱj (j = 1, . . . ,K).

Halász’s idea is to square the LHS of (4.7), interchange the order of summa-
tion over j and n and use the Cauchy–Schwarz inequality for the sum when
n runs through I(M) with

(4.8) b∗nn
−ϱj = b∗nn

−1/2−a′η · n−1/2+a′η+ηj−iγj =: dn · e(j)n (n ∈ I(M)).
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Separating the diagonal terms (those with j = ν), we deduce, from
Lemma 1 and (4.6)–(4.8) for any ε > 0,

(4.9)
K2

L2h0
≪

( K∑
j=1

φj

∑
n∈I(M)

b∗nn
−ϱj

)2
=

( ∑
n∈I(M)

dn

K∑
j=1

φje
(j)
n

)2

≪
( ∑

n∈I(M)

|b∗n|2

n1+2a′η

)( K∑
j=1

K∑
ν=1

φjφν

∑
n∈I(M)

1

n1−2a′η−ηj−ην+i(γj−γν)

)

≪ T o(1)M−2a′η

{
K(K − 1)o(1)

+M2(a′+1)η
K∑
j=1

K∑
ν=1

j ̸=ν

1

|γj − γν |
+KM2(a′+1)η

}

≪ o
(
K2L−2h0

)
+KT o(1)M2η.

Since M ≍ Uh0 ≪ max(Y 2, T 3/2(λζ(2η)+∆)) and (3.1) we deduce

(4.10) Bf (η) ≤ max(4λf (η), 3λζ(2η)),

because ∆ can be chosen arbitrarily small with ∆ < c0(f, η, T ).
The proof of Theorem 2 runs completely analogously with the following

small change. To show (2.10) we can take

(4.11) u =
logU

log T
, h1 =

[
λζ(2η) +∆

u

]
+ 1.

In this case we can choose h = h0 = h1 to obtain

(4.12) Uh1 ≥ Z,

and so (since ∆ can be chosen arbitrarily small) since U ≤ Y1 we have

(4.13) Bf (η) ≤ 2h1u ≤ 2(λζ(2η) + λf (η)).

To prove (2.9) we distinguish three cases.

Case 1. If U ≥ Z we choose h0 = 1 to obtain

(4.14) Bf (η) ≤ 2u ≤ 2λf (η).

Case 2. If U ∈ (
√
Z,Z) we choose h0 = 2 to obtain

(4.15) Bf (η) ≤ 4u ≤ 4λζ(2η).

Case 3. If U ≤
√
Z we choose h0 = h1 as in (4.11) to obtain

(4.16) Bf (η) ≤ 2h1u ≤ 2λζ(2η) + 2u ≤ 3λζ(2η).

Inequalities (4.14)–(4.16) prove (2.9).
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