On a general density theorem

by
JÁnos Pintz (Budapest)

To the 75th birthday of Henryk Iwaniec

Abstract

Following the pioneering work of Halász and Turán we prove a general zero-density theorem for a large class of Dirichlet series, containing the Riemann and Dedekind zeta functions. Owing to the application of an idea of Halász (contained in the above mentioned work) and a sharp Vinogradov-type estimate for the Riemann zeta function (due to Heath-Brown) the results are particularly sharp in the neighborhood of the boundary line $\operatorname{Re} s=1$.

1. Introduction. More than 50 years ago Halász and Turán HT1969 showed two important theorems about two significant approximations of the Riemann Hypothesis (RH). The Lindelöf Hypothesis (LH) asserts, with the notation ($s=\sigma+i t$)

$$
\begin{equation*}
\mu_{\zeta}\left(\sigma_{0}\right):=\inf \left\{\mu ;|\zeta(\sigma+i t)| \leq T^{\mu} \text { for } \sigma \geq \sigma_{0}, 1 \leq|t| \leq T\right\}, \tag{1.1}
\end{equation*}
$$

that

$$
\begin{equation*}
\mu_{\zeta}(1 / 2)=0 \tag{1.2}
\end{equation*}
$$

The Density Hypothesis (DH) asserts that the estimate

$$
\begin{align*}
& N(\sigma, T):=\sum_{\substack{\zeta(\beta+i \gamma)=0 \\
\beta \geq \sigma,|\gamma| \leq T}} 1 \ll{ }_{\sigma} T^{A(\sigma)(1-\sigma)} \log ^{C} T \tag{1.3}\\
&(C>0 \text { absolute constant }),
\end{align*}
$$ or, in a slightly weaker form

$$
\begin{equation*}
N(1-\eta, T)<_{\eta, \varepsilon} T^{B(\eta) \eta+\varepsilon} \quad(\varepsilon>0 \text { arbitrary }), \tag{1.4}
\end{equation*}
$$

holds with

$$
\begin{equation*}
A(\sigma) \leq A=2, \quad \text { or equivalently } \quad B(\eta) \leq 2, \tag{1.5}
\end{equation*}
$$

for all $\sigma \geq 1 / 2$, respectively for all $\eta \leq 1 / 2$.

[^0]The significance of (DH) is that - together with a slight improvement of the classical zero-free region of de la Vallée Poussin - it implies for the difference of consecutive primes $\left(\mathcal{P}=\left\{p_{i}\right\}_{i=1}^{\infty}\right.$ is the set of all primes) the estimate

$$
\begin{equation*}
p_{n+1}-p_{n} \ll \varepsilon p_{n}^{1-1 / A+\varepsilon} \quad(\varepsilon>0 \quad \text { arbitrary }) \tag{1.6}
\end{equation*}
$$

while the slightly stronger relation, in case of $A=2$,

$$
\begin{equation*}
p_{n+1}-p_{n}=o\left(p_{n}^{1 / 2} \log p_{n}\right) \tag{1.7}
\end{equation*}
$$

is still undecided supposing (RH). In general, (DH) can often substitute (RH). On the other hand, (LH) was supposed to have a weaker connection with the distribution of zeros since Backlund [Bac1918/19] showed its equivalence to

$$
\begin{equation*}
N(\alpha, T+1)-N(\alpha, T)=o(\log T) \quad \text { as } T \rightarrow \infty, \text { for all } \alpha>1 / 2 \tag{1.8}
\end{equation*}
$$

Ingham Ing1937 showed that much more is true, namely on (LH), Carlson's density theorem $A(\sigma)=4 \sigma$ [Car1921] holds in the stronger form with $A(\sigma) \leq A$,

$$
\begin{equation*}
A=2(1+\mu(1 / 2)), \quad \text { or equivalently } \quad B(\eta)=2(1+\mu(1 / 2)) \tag{1.9}
\end{equation*}
$$

which in particular shows that (LH) implies (DH). Another breakthrough came 30 years later when Halász and Turán [HT1969] proved that (LH) implies, for $\sigma=1-\eta>3 / 4$,
$N(\sigma, T) \ll T^{\varepsilon}(\varepsilon>0$ arbitrary $)$, or equivalently $B(\eta)=0$ for $\eta<1 / 4$.
In the same paper they showed unconditionally in a slightly improved form (see Turán's book [Tur1984, Theorem 38.2])

$$
\begin{equation*}
N(\sigma, T) \ll T^{1.2 \cdot 10^{5}(1-\sigma)^{3 / 2}} \log ^{C} T \quad(T>C) \tag{1.11}
\end{equation*}
$$

which first proved unconditionally that (DH) is true in a nontrivial half-plane $\sigma>c_{1}$ with $c_{1}<1$ and even

$$
\begin{equation*}
B(\eta) \leq 1.2 \cdot 10^{5} \sqrt{\eta}=o(1) \quad \text { as } \eta \rightarrow 0 \tag{1.12}
\end{equation*}
$$

Turán even conjectured that (LH) implies 1.10 for all $\sigma>1 / 2$ but this has never been shown. The constant $1.2 \cdot 10^{5}$ was improved in the case of $\eta<c_{2}$ (a small positive absolute constant) in subsequent works of Montgomery Mon1971, Ford [For2002] and Heath-Brown Hea2017] to 4.95. Very recently the author Pin2023 obtained a further slight improvement (using deep results of Heath-Brown's above-mentioned work), namely

$$
\begin{equation*}
B(\eta) \leq(3 \sqrt{2}+o(1)) \sqrt{\eta} \quad \text { as } \eta \rightarrow 0 \tag{1.13}
\end{equation*}
$$

with other similar improvements in the neighbourhood of the line $\operatorname{Re} s=1$.
The author expresses thanks to Gábor Halász who suggested applying the above method to the investigation of the following problem. Halász and

Turán observed (see [Tur1984, Theorems 38.3-38.4]) that proven or hypothetical assumptions (like (LH)) on the vertical growth of Riemann's zetafunction can help to prove density theorems for other more general functions. The goal of the present work is to prove results in this direction. The class of functions we consider will be different from that considered in Tur1984. We will also separate the properties assumed for the general function $f(s)$ and those for $\zeta(s)$. Our method will be similar to that of our earlier paper Pin2023] (but somewhat simpler). We can dispense with the power sum method of Turán Tur1984] but will use a simple but ingenious idea of Halász [Hal1968] which in some form played a crucial role in all later density theorems.

As mentioned above, similarly to Halász and Turán HT1969, Tur1984, in order to prove density theorems of type (1.3)-(1.4) for a general function $f(s)$ we need vertical growth conditions (cf. (1.1)) for both $f(s)$ and $\zeta(s)$, i.e., "the special function $\zeta(s)$ plays a role for general $f(s)$ " Tur1984, p. 368].
2. Results. We do not strive for full generality so will suppose that $f_{1} \neq 0$ and

$$
\begin{equation*}
f(s)=\sum_{n=1}^{\infty} \frac{f_{n}}{n^{s}}, \quad M(s)=\frac{1}{f(s)}=\sum_{n=1}^{\infty} \frac{g_{n}}{n^{s}} \quad \text { are analytic for } \sigma>1 \tag{2.1}
\end{equation*}
$$

(i.e. $M(s) f(s)=1$ for $\sigma>1$), and

$$
\begin{equation*}
f_{n} \ll n^{\Delta}, \quad g_{n} \ll n^{\Delta} \quad \text { for every } \Delta>0 \tag{2.2}
\end{equation*}
$$

REMARK 1. If f_{n} is completely multiplicative as a function of n then $f_{1}=1$ and $g(n)=\mu(n) f_{n}$.

Further we suppose that $f(s)$ can be continued as an analytic function to the half-plane $\sigma \geq \alpha_{f}, \alpha_{f}<1$, up to a simple pole at $s=1$ with residue f_{0} and (cf. 1.1)) with

$$
\begin{equation*}
\mu_{f}\left(\sigma_{0}\right):=\inf \left\{\mu ;|f(\sigma+i t)| \leq T^{\mu} \text { for } \sigma \geq \sigma_{0}, 1 \leq|t| \leq T\right\}<\infty \tag{2.3}
\end{equation*}
$$

for $\sigma_{0} \geq \alpha_{f}$. This is clearly the analogue of Lindelöf's μ-function for $f(s)$ in place of $\zeta(s)$. The following technical definition will be useful in the formulation (and the proof) of our results. The function λ_{f} below depends on μ_{f}, and λ_{ζ} on μ_{ζ}. Let

$$
\begin{align*}
\lambda_{f}(\eta) & :=\min _{0 \leq a ;(a+1) \eta \leq 1-\alpha_{f}} \frac{\mu_{f}(1-(a+1) \eta)}{a \eta} \tag{2.4}\\
\lambda_{\zeta}(\eta) & :=\min _{0 \leq b ;(b+1) \eta \leq 1 / 2} \frac{\mu_{\zeta}(1-(b+1) \eta)}{b \eta}
\end{align*}
$$

Our result will express the density estimates

$$
\begin{equation*}
N_{f}(1-\eta, T) \ll_{\eta, \varepsilon} T^{B_{f}(\eta) \eta+\varepsilon} \tag{2.5}
\end{equation*}
$$

as a function of λ_{f} and λ_{ζ} (in the case of $f=\zeta$ clearly λ_{ζ} is sufficient). For λ_{ζ} we have strong estimates using Korobov-Vinogradov's method and weaker classical ones by the method of Hardy-Littlewood-Weyl Lit1922] or van der Corput vdC1921, vdC1922, which imply that as $\eta \rightarrow 0$,

$$
\begin{equation*}
\mu_{\zeta}(1-\eta)=o(\eta), \quad \text { so } \quad \lambda_{\zeta}(\eta)=o(1) \tag{2.6}
\end{equation*}
$$

Theorem 1. Under conditions (2.1)-2.2 and notation (2.3)-2.5) we have, for $\eta<\min \left(1-\alpha_{f}, 1 / 4\right)$,

$$
\begin{equation*}
B_{f}(\eta) \leq \max \left(4 \lambda_{f}(\eta), 3 \lambda_{\zeta}(2 \eta)\right) . \tag{2.7}
\end{equation*}
$$

Depending on the value

$$
\begin{equation*}
d_{f}(\eta)=\frac{\lambda_{f}(\eta)}{\lambda_{\zeta}(2 \eta)} \tag{2.8}
\end{equation*}
$$

we can improve Theorem 1 for $d_{f}(\eta)>1$ and $d_{f}(\eta)<1 / 2$ as follows (we take $d_{f}(\eta)=\infty$ for $\left.\lambda_{\zeta}(2 \eta)=0\right)$.

Theorem 2. Under the assumptions of Theorem 1 we have

$$
\begin{array}{ll}
B_{f}(\eta) \leq \max \left(2 \lambda_{f}(\eta), 4 \lambda_{\zeta}(2 \eta)\right) & \text { if } d_{f}(\eta)>1 \\
B_{f}(\eta) \leq 2\left(\lambda_{f}(\eta)+\lambda_{\zeta}(2 \eta)\right) & \text { for arbitrary } d_{f} . \tag{2.10}
\end{array}
$$

Remark 2. It is easy to see that (2.9) is stronger than both (2.7) and (2.10) if $d_{f}(\eta)>1$.

Theorems 12 imply the following asymptotic result.
Corollary 1. We have

$$
\begin{equation*}
B_{f}(\eta) \leq 2 \lim _{\eta \rightarrow 0} \lambda_{f}(\eta)+o(1) \quad \text { as } \eta \rightarrow 0 . \tag{2.11}
\end{equation*}
$$

Proof. This follows from 2.10 since $\lambda_{\zeta}(2 \eta)=o(1)$ as $\eta \rightarrow 0$.
Corollary 2. If there is a $D_{f}>0$ such that for any $\varepsilon>0$,

$$
\begin{equation*}
|f(\sigma+i t)| \leq_{\varepsilon, \sigma}|t|^{D_{f}(1-\sigma)+\varepsilon} \quad \text { for }|t|>1, \sigma=1-\eta \geq \alpha_{f} \tag{2.12}
\end{equation*}
$$

i.e., $\mu_{f}(1-\eta) \leq D_{f} \eta$, then

$$
\begin{equation*}
B_{f}(\eta) \leq \frac{2 D_{f}}{1-\eta /(1-\alpha)}, \quad \text { so } B_{f}(\eta) \leq 2 D_{f}+o(1) \text { if } \eta \rightarrow 0 \text {. } \tag{2.13}
\end{equation*}
$$

Proof. We have $\lambda_{f}(\eta) \leq D_{f}\left(1-\alpha_{f}\right) /\left(1-\alpha_{f}-\eta\right)$ if we choose a with $(a+1) \eta=1-\alpha_{f}$ in (2.4).

Corollary 3. If

$$
\begin{equation*}
|f(1-\eta+i t)| \leq|t|^{o(\eta)} \quad \text { for }|t| \geq 1 \text { as } \eta \rightarrow 0 \tag{2.14}
\end{equation*}
$$

then

$$
\begin{equation*}
B_{f}(\eta)=o(1) \quad \text { as } \eta \rightarrow 0 \tag{2.15}
\end{equation*}
$$

Finally, in the case of $f=\zeta$ by Theorem 1 we are able to reach
Corollary 4. We have

$$
\begin{equation*}
B_{\zeta}(\eta) \leq 3 \sqrt{2 \eta}+o(\sqrt{\eta}) \quad \text { as } \eta \rightarrow 0 \tag{2.16}
\end{equation*}
$$

Proof. Theorem 5 of Heath-Brown [Hea2017], together with the remark following it, shows that for any $\delta>0$,

$$
\begin{equation*}
\mu_{\zeta}(1-\eta) \leq\left(\frac{2}{3 \sqrt{3}}+\delta\right) \eta^{3 / 2} \quad \text { if } \eta<\eta_{0}(\delta) \tag{2.17}
\end{equation*}
$$

Choosing $b=2$ in 2.4 we obtain, for any $\delta^{\prime}>0$,

$$
\begin{equation*}
\lambda_{\zeta}(\eta) \leq \frac{\mu_{\zeta}(1-3 \eta)}{2 \eta} \leq\left(1+\delta^{\prime}\right) \sqrt{\eta} \quad \text { if } \eta<\eta_{0}\left(\delta^{\prime}\right) \tag{2.18}
\end{equation*}
$$

In view of $3 \sqrt{2}>4,(2.7)$ and (2.18) clearly imply (2.16).
Finally, the conditional theorem of Halász-Turán also follows immediately for $f(s)=\zeta(s)$ or even for a larger class of functions as well, if we suppose (LH) for both functions $f(s)$ and $\zeta(s)$. This is contained in Corollary 2 as the limiting case $D_{f}=0$.

Corollary 5. (LH) implies (DH) for $\sigma>3 / 4$. More generally, if

$$
\begin{equation*}
\alpha_{f} \leq 3 / 4, \quad \mu_{f}(3 / 4)=\mu_{\zeta}(1 / 2)=0 \tag{2.19}
\end{equation*}
$$

then

$$
\begin{equation*}
B_{f}(\eta)=0 \quad \text { for } \eta<1 / 4 \tag{2.20}
\end{equation*}
$$

Proof. 2.19) implies $\lambda_{f}(\eta)=\lambda_{\zeta}(2 \eta)=0$ for $\eta>1 / 4$ by 2.4.
REMARK 3. It is interesting to note that we need only a weaker assumption for $f(s)$ than for $\zeta(s)$ (i.e. in the range $\sigma>3 / 4$) to obtain

$$
\begin{equation*}
N_{f}(\sigma, T) \ll T^{\varepsilon} \quad \text { for } \sigma>3 / 4 \quad(\varepsilon>0, \text { arbitrary }) \tag{2.21}
\end{equation*}
$$

The same phenomenon was observed by Halász and Turán (see Tur1984, p. 367]) for the class of functions $f(s)$ they investigated.
3. Notation and preparation. We will consider a maximal number K of zeros $\varrho_{j}=\beta_{j}+i \gamma_{j}:=1-\eta_{j}+i \gamma_{j}$ of $f(s)$ with $\left|\gamma_{j}\right| \in[T / 2, T]$, $\left|\gamma_{j}-\gamma_{\nu}\right| \geq 1$ for $\nu \neq j(j, \nu \in[1, K])$ and $\beta_{j}:=1-\eta_{j} \geq \sigma:=1-\eta$. Let ε and Δ be sufficiently small, positive with $\Delta, \varepsilon<c_{0}(\eta, f, T) ; \varepsilon$ may be different at different occurrences and may depend on η and f. Analogously, C will be a positive constant which may depend on η and $f(s)$ and might
be different at different occurrences. Further, let μ be the Möbius function, let

$$
\begin{align*}
& Y=T^{\lambda_{f}(\eta)+\Delta}, \quad Z=T^{\lambda_{\zeta}(2 \eta)+\Delta}, \quad X=T^{\Delta^{2}}, \\
& a_{n}=\sum_{\substack{d \mid n \\
n / d \leq X}} f_{d} g_{n / d}, \quad M_{X}(s)=\sum_{n \leq X} g_{n} n^{-s}, \tag{3.1}\\
& \lambda=\log Y, \quad \mathcal{L}=\max (\lambda, \log T), \quad \eta<1 / 4, \quad Y_{1}=Y e^{3} .
\end{align*}
$$

We note that $\mathcal{L} \ll \log T$; note that the constants implied by o, O and \ll may always depend on η, Δ and $f(s)$.

As a preparation we will show a lemma (actually an application of Perron's formula) which shows that sufficiently long partial sums of the zetafunction are of size $o(1)$. An alternative possibility would be (cf. [Pin2023]) to use a weighted sum as in Mon1971, Appendix II].

Lemma 1. Suppose that $\delta>0, \sigma_{0}=1-\eta_{0} \in[1 / 2,1], 1<|t|<T$, $N \ll T,\left[N_{1}, N_{2}\right]=I(N) \subseteq[N, 2 N)$, and $N \geq T^{\lambda_{\zeta}\left(\eta_{0}\right)+\delta}$. Then (with $s=$ $\left.\sigma_{0}+i t\right)$

$$
\begin{equation*}
S:=\sum_{n \in I(N)} n^{-s} \ll \frac{\mathcal{L} N^{1-\sigma_{0}}}{|t|}+O\left(T^{-C \delta}\right), \tag{3.2}
\end{equation*}
$$

with a C depending on η_{0}.
Proof. Using Perron's formula Per1908 in the form given in MV2007, Corollary 5.3] we have

$$
\begin{equation*}
S=\frac{1}{2 \pi i} \int_{1-\sigma_{0}+1 / \mathcal{L}-2 i T}^{1-\sigma_{0}+1 / \mathcal{L}+2 i T} \zeta(s+w) \frac{N_{2}^{w}-N_{1}^{w}}{w} d w+O\left(N^{-\sigma_{0}}\right)+o\left(\frac{N^{1-\sigma_{0}} \mathcal{L}}{T}\right) . \tag{3.3}
\end{equation*}
$$

Let us denote by b^{\prime} the value of b for which the minimum in the definition of $\lambda_{\zeta}(\eta)$ is attained.

Moving the line of integration to the vertical line segment $\operatorname{Re} w=-b^{\prime} \eta_{0}$, $\operatorname{Im} w=[-2 T, 2 T]$ along the horizontal segments $\operatorname{Im} w=-2 T$ and $\operatorname{Im} w=$ $2 T$, and denoting the new integration line by J, we obtain, from the pole of ζ at $w=1-s$,

$$
\begin{equation*}
S=\frac{1}{2 \pi i} \int_{J} \zeta(s+w) \frac{N_{2}^{w}-N_{1}^{w}}{w} d w+O\left(\frac{\mathcal{L} N^{1-\sigma_{0}}}{|t|}\right)+O\left(N^{-\sigma_{0}}\right) . \tag{3.4}
\end{equation*}
$$

The value of the integral along the vertical segment is

$$
\begin{equation*}
S_{1} \ll \frac{\mathcal{L} T^{\mu_{\zeta}\left(1-\left(b^{\prime}+1\right) \eta_{0}\right)+\varepsilon}}{N^{b^{\prime} \eta_{0}}} \ll \mathcal{L} T^{-b^{\prime} \delta \eta_{0} / 2} \quad \text { if } \varepsilon \leq \delta b^{\prime} \eta_{0} / 2 \tag{3.5}
\end{equation*}
$$

The contribution of the integral along the horizontal segments is, in view of $\mu_{\zeta}(1 / 2) \leq 1 / 4$,

$$
\begin{equation*}
S_{2} \ll T^{\mu_{\zeta}(1 / 2)+\varepsilon+1-\sigma_{0}-1} \ll T^{-1 / 5} . \tag{3.6}
\end{equation*}
$$

Formulae (3.3)-(3.6) prove Lemma 1 .
Remark 4. We can even work with the simpler bound $\mu(0)=1 / 2$ if we change the definition (2.4), or even with $\mu(1 / 2) \leq 1 / 2$ if $\sigma_{0}>1 / 2$.

Remark 5. Lemma 1 is also true if $N>C T$, by the simple Theorem 4.11 of Titchmarsh Tit1951.
4. Proof of Theorems 1 2 2, Let a^{\prime} denote the value of a for which the minimum is attained in the definition of λ_{f} in (2.4). Our starting formula will be, similarly to Pin2023,

$$
\begin{align*}
& I_{j}:=\frac{1}{2 \pi i} \int_{(3)} \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s+\varrho_{j}}} \frac{e^{s^{2} / \mathcal{L}+\lambda s}}{s} d s \tag{4.1}\\
&= \frac{1}{2 \pi i} \int_{(3)} M_{X}\left(s+\varrho_{j}\right) f\left(s+\varrho_{j}\right) \frac{e^{s^{2} / \mathcal{L}+\lambda s}}{s} d s \\
&= \frac{1}{2 \pi i} \int_{\left(\eta_{j}-\left(a^{\prime}+1\right) \eta\right)} M_{X}\left(s+\varrho_{j}\right) \frac{f\left(s+\varrho_{j}\right)}{s} e^{s^{2} / \mathcal{L}+\lambda s} d s+O\left(\frac{X Y^{\eta_{j}}}{\left|\gamma_{j}\right|} e^{-\gamma_{j}^{2} / \mathcal{L}}\right) \\
& \ll X \int_{-\infty}^{\infty} \frac{\left|\gamma_{j}+t\right|^{\mu_{f}\left(1-\left(a^{\prime}+1\right) \eta\right)+\varepsilon}}{a^{\prime} \eta+|t|} e^{-\left|\gamma_{j}+t\right|^{2} / \mathcal{L}} Y^{-a^{\prime} \eta} d t+O\left(e^{-T^{2} / 5 \mathcal{L}}\right) \\
& \ll \mathcal{L} \frac{T^{\mu_{f}\left(1-\left(a^{\prime}+1\right) \eta\right)+\varepsilon}}{Y^{a^{\prime} \eta}}+O\left(e^{-T^{2} /(5 \mathcal{L})}\right)=O\left(T^{-a^{\prime} \eta \delta / 3}\right)=o(1)
\end{align*}
$$

if $\varepsilon<\delta a^{\prime} \eta / 2$, where the error term represents the contribution of the pole of ζ at $s=1-\varrho_{j}=\eta_{j}-i \gamma_{j}$ if we use the trivial estimate $M_{X}(s) \ll X$.

The RHS of (4.1) can be evaluated term by term for every n. The contribution of the term $n=1$ can be obtained by moving the line of integration to $\operatorname{Re} s=-4$. The pole at $s=0$ contributes $a_{1}=1$ and the integral is $O\left(\mathcal{L} Y^{-4}\right)=o(1)$. Further, we have $a_{n}=0$ for $1<n \leq X$. For the terms with $n>Y_{1}=Y e^{3}$ we can shift the line of integration to $\operatorname{Re} s=\mathcal{L}$. Using ($\varepsilon>0$ arbitrary) $a_{n} \ll \tau(n) n^{\varepsilon} \ll n^{\beta_{j}}$ and $\sum_{n>M} n^{-u} \ll M^{-(u-1)}$ for $u \geq 2$, $M \geq 1$, we obtain

$$
\begin{equation*}
\int_{(\mathcal{L})} \sum_{n>e^{\lambda+3}} \frac{a_{n}}{n^{s+\varrho_{j}}} e^{s^{2} / \mathcal{L}+\lambda s} d s \ll e^{-(\lambda+3)(\mathcal{L}-1)+\lambda \mathcal{L}} \int_{-\infty}^{\infty} e^{\left(\mathcal{L}^{2}-t^{2}\right) / \mathcal{L}} d t=o(1) . \tag{4.2}
\end{equation*}
$$

Summarizing, we get

$$
\begin{equation*}
\sum_{X<n<Y_{1}} \frac{a_{n}}{n_{j}^{\varrho}} h(n)=1+o(1) \tag{4.3}
\end{equation*}
$$

where since $\lambda \leq \mathcal{L}$ we have, for every $n \geq 1$,

$$
\begin{align*}
h(n): & =\frac{1}{2 \pi i} \int_{(3)} \frac{e^{s^{2} / \mathcal{L}+(\lambda-\log n) s}}{s} d s=\frac{1}{2 \pi i} \int_{(1 / \mathcal{L})} \frac{e^{s^{2} / \mathcal{L}+(\lambda-\log n) s}}{s} d s \tag{4.4}\\
& \ll \int_{-\infty}^{\infty} \frac{e^{-t^{2} / \mathcal{L}}}{|1 / \mathcal{L}+i t|} d t \ll \mathcal{L} \log \mathcal{L} .
\end{align*}
$$

From this we obtain, by a dyadic subdivision of $\left(X, Y_{1}\right)$, for some $U \in$ $\left[X, Y_{1}\right]$ and $I(U) \subseteq[U, 2 U)$,

$$
\begin{equation*}
\sum_{j=1}^{K}\left|\sum_{n \in I(U)} a_{n}^{*} n^{-\varrho_{j}}\right| \gg \frac{K}{\mathcal{L}} \quad \text { with } a_{n}^{*}=a_{n} h(n) \tag{4.5}
\end{equation*}
$$

Next we will raise the Dirichlet polynomial $\sum_{n \in I(U)} a_{n}^{*} n^{-\varrho_{j}}$ to a minimal integral power $h_{0} \geq 1$ such that $(2 U)^{h_{0}} \geq Z=T^{\lambda_{\zeta}(2 \eta)+\Delta}$. Since $U \geq X$ and $\lambda_{\zeta}(2 \eta) \leq 1$, we have $h_{0} \leq 1+\frac{\log Y_{1}}{\log X} \ll 1$. The resulting polynomial will have coefficients $b_{n}^{*} \ll \tau_{h_{0}}(n) n^{\varepsilon} \mathcal{L}^{h_{0}}(\log \mathcal{L})^{h_{0}}=T^{o(1)}$ by 4.4 4.5 for any $\varepsilon>0$.

Further, with a suitable value $M \in\left[U^{h},(2 U)^{h}\right), 4.5$ can be substituted using Hölder's inequality by

$$
\begin{equation*}
\sum_{j=1}^{K}\left|\sum_{n \in I(M)} b_{n}^{*} n^{-\varrho_{j}}\right| \gg \frac{K}{\mathcal{L}^{h_{0}}} \tag{4.6}
\end{equation*}
$$

If $U^{2} \geq T^{\lambda_{\zeta}(2 \eta)+\Delta}=Z$ we take $h_{0}=2$. If $X \leq U \leq T^{\left(\lambda_{\zeta}(2 \eta)+\Delta\right) / 2}$ we can choose the minimal integer $h \geq 2$, i.e. $h=h_{0}$ with

$$
U^{h_{0}} \in\left[T^{\lambda_{\zeta}(2 \eta)+\Delta}, T^{(3 / 2)\left(\lambda_{\zeta}(2 \eta)+\Delta\right)}\right]=\left[Z, Z^{3 / 2}\right]
$$

Since $U \leq Y_{1}$, in both cases we have $U^{h_{0}} \ll \max \left(Y^{2}, Z^{3 / 2}\right)$.
Let us now define the numbers φ_{j} with $\left|\varphi_{j}\right|=1$ so that

$$
\begin{equation*}
\left|\sum_{n \in I(M)} b_{n}^{*} n^{-\varrho_{j}}\right|=\varphi_{j} \sum_{n \in I(M)} b_{n}^{*} n^{-\varrho_{j}} \quad(j=1, \ldots, K) \tag{4.7}
\end{equation*}
$$

Halász's idea is to square the LHS of (4.7), interchange the order of summation over j and n and use the Cauchy-Schwarz inequality for the sum when n runs through $I(M)$ with

$$
\begin{equation*}
b_{n}^{*} n^{-\varrho_{j}}=b_{n}^{*} n^{-1 / 2-a^{\prime} \eta} \cdot n^{-1 / 2+a^{\prime} \eta+\eta_{j}-i \gamma_{j}}=: d_{n} \cdot e_{n}^{(j)} \quad(n \in I(M)) \tag{4.8}
\end{equation*}
$$

Separating the diagonal terms (those with $j=\nu$), we deduce, from Lemma 1 and 4.6-4.8 for any $\varepsilon>0$,

$$
\begin{align*}
& \frac{K^{2}}{\mathcal{L}^{2 h_{0}}} \ll\left(\sum_{j=1}^{K} \varphi_{j} \sum_{n \in I(M)} b_{n}^{*} n^{-\varrho_{j}}\right)^{2}=\left(\sum_{n \in I(M)} d_{n} \sum_{j=1}^{K} \varphi_{j} e_{n}^{(j)}\right)^{2} \tag{4.9}\\
& \ll\left(\sum_{n \in I(M)} \frac{\left|b_{n}^{*}\right|^{2}}{n^{1+2 a^{\prime} \eta}}\right)\left(\sum_{j=1}^{K} \sum_{\nu=1}^{K} \varphi_{j} \overline{\varphi_{\nu}} \sum_{n \in I(M)} \frac{1}{n^{1-2 a^{\prime} \eta-\eta_{j}-\eta_{\nu}+i\left(\gamma_{j}-\gamma_{\nu}\right)}}\right) \\
& \ll T^{o(1)} M^{-2 a^{\prime} \eta}\{K(K-1) o(1) \\
& \quad+M^{2\left(a^{\prime}+1\right) \eta} \sum_{j=1}^{K} \sum_{\nu=1}^{K} \frac{1}{j \neq \nu}\left|\gamma_{j}-\gamma_{\nu}\right| \\
& \left.j \neq M^{2\left(a^{\prime}+1\right) \eta}\right\} \\
& \ll o\left(K^{2} \mathcal{L}^{-2 h_{0}}\right)+K T^{o(1)} M^{2 \eta} .
\end{align*}
$$

Since $M \asymp U^{h_{0}} \ll \max \left(Y^{2}, T^{3 / 2\left(\lambda_{\zeta}(2 \eta)+\Delta\right)}\right.$) and (3.1) we deduce

$$
\begin{equation*}
B_{f}(\eta) \leq \max \left(4 \lambda_{f}(\eta), 3 \lambda_{\zeta}(2 \eta)\right) \tag{4.10}
\end{equation*}
$$

because Δ can be chosen arbitrarily small with $\Delta<c_{0}(f, \eta, T)$.
The proof of Theorem 2 runs completely analogously with the following small change. To show 2.10 we can take

$$
\begin{equation*}
u=\frac{\log U}{\log T}, \quad h_{1}=\left[\frac{\lambda_{\zeta}(2 \eta)+\Delta}{u}\right]+1 . \tag{4.11}
\end{equation*}
$$

In this case we can choose $h=h_{0}=h_{1}$ to obtain

$$
\begin{equation*}
U^{h_{1}} \geq Z \tag{4.12}
\end{equation*}
$$

and so (since Δ can be chosen arbitrarily small) since $U \leq Y_{1}$ we have

$$
\begin{equation*}
B_{f}(\eta) \leq 2 h_{1} u \leq 2\left(\lambda_{\zeta}(2 \eta)+\lambda_{f}(\eta)\right) \tag{4.13}
\end{equation*}
$$

To prove 2.9 we distinguish three cases.
CASE 1. If $U \geq Z$ we choose $h_{0}=1$ to obtain

$$
\begin{equation*}
B_{f}(\eta) \leq 2 u \leq 2 \lambda_{f}(\eta) \tag{4.14}
\end{equation*}
$$

CASE 2. If $U \in(\sqrt{Z}, Z)$ we choose $h_{0}=2$ to obtain

$$
\begin{equation*}
B_{f}(\eta) \leq 4 u \leq 4 \lambda_{\zeta}(2 \eta) \tag{4.15}
\end{equation*}
$$

CASE 3. If $U \leq \sqrt{Z}$ we choose $h_{0}=h_{1}$ as in 4.11 to obtain

$$
\begin{equation*}
B_{f}(\eta) \leq 2 h_{1} u \leq 2 \lambda_{\zeta}(2 \eta)+2 u \leq 3 \lambda_{\zeta}(2 \eta) \tag{4.16}
\end{equation*}
$$

Inequalities (4.14)-4.16) prove (2.9).

Acknowledgements. Research supported by the National Research Development and Innovation Office of Hungary, NKFIH, K133819 and K147153.

References

[Bac1918/19] R. J. Backlund, Über die Beziehung zwischen Anwachsen und Nullstellen der Zetafunktion, Öfversigt Finska Vetensk. Soc. 61A (1918/1919), no. 9, 8 pp.
[Car1921] F. Carlson, Über die Nullstellen der Dirichlet'schen Reihen und der Riemann'scher ζ-Funktion, Ark. Mat. Astronom. Fys. 15 (1921), no. 20, 28 pp.
[vdC1921] J. G. van der Corput, Zahlentheoretische Abschätzungen, Math. Ann. 84 (1921), 53-79.
|vdC1922] J. G. van der Corput, Verschärfung der Abschätzung beim Teilerproblem, Math. Ann. 87 (1922), 39-65.
[For2002] K. Ford, Vinogradov's integral and bounds for the Riemann zeta function, Proc. London Math. Soc. (3) 85 (2002), 565-633.
[Hal1968] G. Halász, Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen, Acta Math. Hungar. 19 (1968), 365-404.
[HT1969] G. Halász and P. Turán, On the distribution of roots of Riemann zeta and allied functions, I, J. Number Theory 1 (1969), 121-137.
[Hea2017] D. R. Heath-Brown, A new kth derivative estimate for a trigonometric sum via Vinogradov's integral, Proc. Steklov Inst. Math. 296 (2017), 88-103.
[Ing1937] A. E. Ingham, On the difference between consecutive primes, Quart. J. Math. Oxford Ser. 8 (1937), 255-266.
[Lit1922] J. E. Littlewood, Researches in the theory of the Riemann ζ-function, Proc. London Math. Soc. (2) 20 (1922), Records xxii-xxviii.
[Mon1971] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, 1971.
[MV2007] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I: Classical Theory, Cambridge Univ. Press, 2007.
[Per1908] O. Perron, Zur Theorie der Dirichletschen \mathcal{L}-Reihen, J. Reine Angew. Math. 134 (1908), 95-143.
[Pin2023] J. Pintz, Density theorems for Riemann's zeta-function near the line $\operatorname{Re} s=1$, Acta Arith. 208 (2023), 1-13.
[Tit1951] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press, Oxford, 1951.
[Tur1984] P. Turán, On a New Method of Analysis and Its Applications, Wiley, New York, 1984.

[^0]: 2020 Mathematics Subject Classification: Primary 11M26; Secondary 11M06.
 Key words and phrases: Riemann's zeta function, density hypothesis, density theorems. Received 6 July 2023.
 Published online 15 April 2024.

