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A basis for the space of modular forms
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1. Introduction and statement of results. Modular forms of one
variable have been studied for a long time. They appear in many areas of
mathematics and in theoretical physics. In this paper we consider the space
M2k of modular forms of weight 2k, and find a simple basis for M2k in terms
of Eisenstein series, which is different from the classically known standard
basis. A motivation for looking for a new basis will be explained below.

Throughout the paper, we use the following notation:

k is an integer greater than or equal to 1,
Γ := SL2(Z) (the full modular group),

M2k := the C-vector space of modular forms of weight 2k on Γ ,

S2k := the C-vector space of cusp forms of weight 2k on Γ ,

S∗2k := HomC(S2k,C) (the dual space of S2k),

dk :=
{ bk/6c − 1 if 2k ≡ 2 (mod 12),
bk/6c if 2k 6≡ 2 (mod 12),

where bxc denotes the greatest integer not exceeding x ∈ R. We note that
dimC S2k = dk and dimCM2k = dk + 1.

Let B2n be the 2nth Bernoulli number and σ2n−1(m) the (2n− 1)th divisor
function, that is,

σ2n−1(m) :=
∑

0<d|m

d2n−1 (n ≥ 1).

Then the Eisenstein series of weight 2n for Γ is defined by

E2n(z) := −B2n

4n
+
∞∑
m=1

σ2n−1(m)e2πimz

where z ∈ H := {z ∈ C | =(z) > 0}.
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The classically known basis for M2k is the following set (Serre [8, p. 89]):

{Eα4E
β
6 | α, β ∈ Z, α, β ≥ 0, 4α+ 6β = 2k}.

However, the Fourier coefficients of these forms are not so simple when
we write down the coefficients as sums of products of divisor functions.
This motivates us to look for a new simpler basis for M2k, consisting of
modular forms whose Fourier coefficients are convolution sums of two divisor
functions. Our result is formulated in the following theorem:

Theorem 1.1.

(1) If 2k ≡ 0 (mod 4) then

{E2k} ∪ {E4iE2k−4i | i = 1, . . . , dk}

is a basis for M2k.
(2) If 2k ≡ 2 (mod 4) then

{E2k} ∪ {E4i+2E2k−4i−2 | i = 1, . . . , dk}

is a basis for M2k.

Note that the nth Fourier coefficient of E4iE2k−4i is
n∑
l=0

σ4i−1(l)σ2k−4i−1(n− l)

where we set σ2n−1(0) := −B2n/(4n) by convention.
We will also find a new basis for the space of cusp forms on Γ

Theorem 1.2.

(1) If 2k ≡ 0 (mod 4) then{
E4iE2k−4i +

B4i

4i
B2k−4i

2k − 4i
k

B2k
E2k

∣∣∣∣ i = 1, . . . , dk

}
is a basis for S2k.

(2) If 2k ≡ 2 (mod 4) then{
E4i+2E2k−4i−2 +

B4i+2

4i+ 2
B2k−4i−2

2k − 4i− 2
k

B2k
E2k

∣∣∣∣ i = 1, 2, . . . , dk

}
is a basis for S2k.

We note that, for Γ = Γ0(2), similar but slightly different formulas were
given in [4, Theorem 1.6].

Example 1.3. For M36, we have the basis

{E36, E4E32, E8E28, E12E24},
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and for S36, we have the basis{
E4E32 −

1479565184909325423
286310154497221833818240

E36,

E8E28 −
651138973032093

122102860006168135010720
E36,

E12E24 −
114819293577343

1149451061437375891652640
E36

}
.

2. Preliminaries. Let f be an element of S2k. We write f as a Fourier
series

f(z) =
∞∑
l=1

ale
2πilz.

Let L(f, s) be the L-series of f , that is, the analytic continuation of
∞∑
l=1

al
ls

(<(s)� 0).

Then nth period of f , rn(f), is defined by

rn(f) :=
i∞�

0

f(z)zn dz =
n!

(−2πi)n+1
L(f, n+ 1) (n = 0, 1, . . . , w).

Each rn can be regarded as a linear map from S2k to C, that is,

rn ∈ S∗2k = HomC(S2k,C).

Here we recall the result of Eichler [2], Shimura [9] and Manin [6]:

Theorem 2.1 (Eichler–Shimura–Manin). The maps

r+ : S2k → Ck, f 7→ (r0(f), r2(f), . . . , r2k−2(f)),

and
r− : S2k → Ck−1, f 7→ (r1(f), r3(f), . . . , r2k−3(f)),

are both injective. In other words,

(1) the even periods r0, r2, . . . , r2k−2 span the vector space S∗2k;
(2) the odd periods r1, r3, . . . , r2k−3 also span S∗2k.

However, these periods are not linearly independent. A natural question
was raised in [3]: which periods form a basis for S∗2k? A satisfactory an-
swer was obtained in the same paper [3]. To state it, we need the following
notation and convention:

Definition 2.2. For an integer i such that 1 ≤ i ≤ dk, let

4i± 1 :=
{

4i+ 1 if 2k ≡ 2 (mod 4),
4i− 1 if 2k ≡ 0 (mod 4).
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Theorem 2.3 ([3]). The set {r4i±1 | i = 1, . . . , dk} is a basis for S∗2k.

Next we will display a basis for S2k. For f, g ∈ S2k, let (f, g) denote the
Petersson scalar product. Then there is a cusp form Rn which is character-
ized by the formula

rn(f) = (Rn, f) for any f ∈ S2k.

Passing to the dual space, we obtain a basis for S2k.

Theorem 2.4 ([3]). The set {R4i±1 | i = 1, . . . , dk} is a basis for S2k.

This theorem will be needed to prove Theorem 1.1. Finally some remarks
on the Petersson scalar product are in order.

Remark 2.5. Let f and g be modular forms in M2k, at least one of
them a cusp form. Then the Petersson scalar product (f, g) is defined by

(f, g) =
�

Γ/H

f(z)g(z)y2k−2 dx dy

where z = x+iy. We note that the Petersson scalar product of an Eisenstein
series and a cusp form is always zero (refer to [1, p. 183]).

However, there is a natural extension of the Petersson scalar product
from the space of cusp forms to the space of all modular forms (Zagier [10,
pp. 434–435]). This extended scalar product is always non-degenerate, and
it is positive definite if and only if 2k ≡ 2 (mod 4).

The Petersson scalar products considered in this article are those ex-
tended ones in the above sense.

3. Proofs of Theorems 1.1 and 1.2. We need the following standard
lemma:

Lemma 3.1. Let V be a C-vector space of dimension n and

B : V × V → C

be a non-degenerate bilinear (or sesquilinear) form. Let

{ui ∈ V | i = 1, . . . , n} and {vi ∈ V | i = 1, . . . , n}

be two sets of vectors in V . Then the determinant |B(ui, vj)|i,j=1,...,n is not
zero if and only if both the above sets are sets of linearly independent vectors.

The proof of this lemma is quite standard and we omit it.

Proof of Theorem 1.1. First we assume that 2k ≡ 0 (mod 4). We consider
two sets of modular forms:

{E2k} ∪ {E4iE2k−4i | i = 1, . . . , dk} and {E2k} ∪ {R4i−1 | i = 1, . . . , dk}.
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To verify that E2k, E4iE2k−4i (i = 1, . . . , dk) are linearly independent, by
Lemma 3.1 it is sufficient to show that

(3.1)∣∣∣∣∣∣∣∣∣∣
(E2k, E2k) (R4−1, E2k) · · · (R4dk−1, E2k)

(E2k, E4E2k−4) (R4−1, E4E2k−4) · · · (R4dk−1, E4E2k−4)
· · · · · · · · · · · ·

(E2k, E4dk
E2k−4dk

) (R4−1, E4dk
E2k−4dk

) · · · (R4dk−1, E4dk
E2k−4dk

)

∣∣∣∣∣∣∣∣∣∣
6=0.

Since (E2k, E2k) 6= 0 and (R4i−1, E2k) = 0 as mentioned in Remark 2.5,
(3.1) is equivalent to

(3.2)∣∣∣∣∣∣∣∣∣∣
(R4−1, E4E2k−4) (R8−1, E4E2k−4) · · · (R4dk−1, E4E2k−4)
(R4−1, E8E2k−8) (R8−1, E8E2k−8) · · · (R4dk−1, E8E2k−8)

· · · · · · · · · · · ·
(R4−1, E4dk

E2k−4dk
) (R8−1, E4dk

E2k−4dk
) · · · (R4dk−1, E4dk

E2k−4dk
)

∣∣∣∣∣∣∣∣∣∣
6=0.

Now let {fi | i = 1, . . . , dk} be a basis for S2k such that each fi is a
normalized Hecke eigenform. Then, since {R4i−1 | i = 1, . . . , dk} is also a
basis for S2k by Theorem 2.4, we know that (3.2) is equivalent to

(3.3)

∣∣∣∣∣∣∣∣∣∣
(f1, E4E2k−4) (f2, E4E2k−4) · · · (fdk

, E4E2k−4)
(f1, E8E2k−8) (f2, E8E2k−8) · · · (fdk

, E8E2k−8)
· · · · · · · · · · · ·

(f1, E4dk
E2k−4dk

) (f2, E4dk
E2k−4dk

) · · · (fdk
, E4dk

E2k−4dk
)

∣∣∣∣∣∣∣∣∣∣
6=0.

To show (3.3), we use the following Rankin identity ([7]; also refer to
Kohnen–Zagier [5] noting that their definition of rn(f) differs from ours by
a factor of in+1): for a normalized eigenform f in S2k,

(3.4) (f,E2nE2k−2n) =
1

(2i)2k−1
r2k−2(f)r2n−1(f)

where n = 2, . . . , k − 2. From this identity, (3.3) is equivalent to

(3.5)

r2k−2(f1)r2k−2(f2) · · · r2k−2(fdk
)

(2i)(2k−1)dk

∣∣∣∣∣∣∣∣∣∣
r4−1(f1) r4−1(f2) · · · r4−1(fdk

)
r8−1(f1) r8−1(f2) · · · r8−1(fdk

)
· · · · · · · · · · · ·

r4dk−1(f1) r4dk−1(f2) · · · r4dk−1(fdk
)

∣∣∣∣∣∣∣∣∣∣
6=0.
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Finally, (3.5) is equivalent to

(3.6)

∣∣∣∣∣∣∣∣∣∣
(R4−1, f1) (R4−1, f2) · · · (R4−1, fdk

)
(R8−1, f1) (R8−1, f2) · · · (R8−1, fdk

)
· · · · · · · · · · · ·

(R4dk−1, f1) (R4dk−1, f2) · · · (R4dk−1, fdk
)

∣∣∣∣∣∣∣∣∣∣
6= 0.

Now (3.6) holds, since both {fi | i = 1, . . . , dk} and {R4i−1 | i = 1, . . . , dk}
are bases for S2k. This implies assertion (1) of Theorem 1.1.

A similar argument proves assertion (2).

Proof of Theorem 1.2. In Theorem 1.1 we proved that the set

{E2k} ∪ {E4iE2k−4i | i = 1, . . . , dk}
is a basis for M2k and, in particular, its members are linearly independent.
Hence the elements of {E2k}∪{E4iE2k−4i+ B4i

4i
B2k−4i

2k−4i
k
B2k

E2k | i = 1, . . . , dk}
are linearly independent; in particular, E4iE2k−4i + B4i

4i
B2k−4i

2k−4i
k
B2k

E2k, i =
1, . . . , dk, are linearly independent. Moreover, since the latter elements are
all in S2k, they form a basis for S2k. This completes the proof.
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