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1. Introduction. In this paper we deal with two questions which are
connected to a general principle in dynamical systems theory. This principle
is the asymptotics of hitting times. By this we mean the following. Given a
dynamical system f: M — M on some compact metric space M we specify
a point y € M. We are interested in the set of points which meet a shrink-
ing base of neighbourhoods C,(y) of this point with a given speed. More
precisely, let € be a finite sufficiently regular partition of M. We consider cyl-
inder sets C,(y) € \/Z;(l) —k¢ containing y. The first hitting time of z € M
is defined as 7,(x,y) := inf{k € N : f¥(x) € C,(y)}. The quantity we are
interested in is the lower asymptotics of the first hitting time when n tends
to infinity. Using results obtained earlier we are going to apply this setup
to two different questions. The first one is purely number-theoretical. The
approximation of a real number by rational numbers ordered with respect
to their denominator is a well-studied and important problem in number
theory. We are going to ask what happens if one does not allow all rationals
to approximate a real number but rather rationals with denominators being
powers of a given number. In this paper we choose this number to be 2. We
remark that there is nothing special in this case. The proofs and statements
will be the same for any other natural number. There is a major difference
in comparison to the standard Diophantine approximation. While the un-
derlying dynamical system (for a fixed irrational number) in the standard
case is an irrational rotation, the underlying case in the dyadic approxima-
tion is multiplication by 2. These dynamical systems exhibit a completely
different behaviour. Irrational rotations are uniquely ergodic and of zero en-
tropy while multiplication by 2 has a very rich space of invariant measures.
Moreover, it has positive topological entropy. Therefore one can expect a
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more complex and even irregular behaviour of the dyadic approximation
than of the standard approximation. These differences are discussed in the
corresponding sections.

The second question is more of a dynamical origin although it has a
clear interpretation in the expansions of a real number with respect to a
non-integer basis ([-expansions). To a real number 5 > 1 one can associate
the dynamical system z — [z (mod 1). If one considers the partition of
[0,1] corresponding to the different branches of this piecewise linear map
one obtains a coding space, the (3-shift Sg. For some f’s these shifts are
especially simple, namely subshifts of finite type. For most numbers these
shifts are more complicated. In any case Katok’s horseshoe theorem [8] states
that these shifts can be approximated from inside by subshifts of finite type.
Here we want to make some remarks on this. First, the theory of subshifts
of finite type is well understood. In particular, one has control over the
statistics of most orbits. This control depends on the size of the transition
matrix defining this subshift. So one can expect to have a good control
over the statistics of general subshifts if one has control over the speed of
approximations by finite type subshifts. This is the question we address in
the second part of the paper.

From the methods used in this paper, we arrive at a general dimension
transference principle, that dimensions of subsets of arbitrary (-shifts can
be calculated as limits of subsets of 3-shifts of finite type. This is a useful
result, since dimensions are much easier to calculate in subshifts of finite
type than in arbitrary subshifts.

2. Preliminaries. For simpler notations and formulae we will only use
logarithms to base 2 throughout this paper.

2.1. Dimension. Let Y be a subset of R™. Let N(e) denote the minimal
number of ¢ balls needed to cover Y.

DEFINITION 1. For a subset Y of R™, the lower box dimension of Y,

denoted by dimy Y, is given by
lim inf w.
e—0 logl / 3

The upper box dimension dimygp is defined similarly, with the liminf re-
placed by limsup. If dimyg Y and dimpg Y both exist and are equal, we
define the box dimension of Y to be this value, and write dimg Y = dimyg Y
=dimigY.

For a subset U of R", we let diam(U) denote the diameter of U.

DEFINITION 2. Let s € [0,00]. The s-dimensional Hausdorff measure
H(Y) of a subset Y of R™ is defined by the following limit of covering
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sums:

HE(Y) = lim (inf { i(diam Ui)*:Y C G U;, sup diam U; < 5})
i=1 v

e—0
i=1
It is easy to see that there exists a unique so = so(Y") such that
) o) = {

DEFINITION 3. The unique number sy given by (1) is defined to be the
Hausdorff dimension of Y and is denoted by dimg Y.

oo for s < sgp,

0 for s > sg.

Standard arguments show that for a subset Y of R™,
dimH Y S dimLB Y S dimUB Y.

There are examples which show that these inequalities may be strict.

The box dimension can also be defined in terms of covering sums, the
only change being that the covering sets all have equal diameter. We note
that in order to estimate the box dimension, it suffices that the diameters
of the covering sets tend to 0 along a geometric sequence.

Lastly, we define the Hausdorff dimension of a measure:

DEFINITION 4. Let u be a Borel probability measure on X. Then the
Hausdorff dimension of the measure p is defined by

dimp p = il}q/f{dimH Y puY)=1}

We remark that the dimension of a measure is clearly always less than or
equal to the dimension of its (Borel) support. There is a well known method
of computing lower bounds on the dimension of a measure or a set. Let
U(z,7) denote the ball of radius r centred at x.

LEMMA 1. If for some finite measure p,

1 u
lim inf M > s on a set of u-positive measure,
r—0 logr

then the dimension of the measure is at least s.

A survey of the methods and results in dimension theory can be found
in [4, 11].

2.2. Entropy. The notion of topological entropy for non-compact sets
was introduced by Bowen in [2]. Later it was considered by Pesin and Pitskel’
in [12].

The main idea is to replace the diameter as a geometric measure by a
measurement based on the complexity. Roughly speaking, we are going to
measure our system with some finite precision. Then we measure n times.
This gives us “classes” of trajectories. We define the diameter of such a class
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as e~ . Now we ask: how many “classes” of trajectories can we distinguish?
The scaling of the number of different classes versus its diameter defines
a dimension-like quantity based on complexity arguments. This quantity is
the entropy.

In order to make the situation simpler we assume that R is a finite
generating partition.

For every set Z C M, and every real number J, we set

(2) N(Z,6,R) = hm 1nf Z exp(—om(U)),
UGFk

where the infimum is taken over all finite or countable collections

7j—1
LclJV =

j>kn=0

that cover Z, and m(U) = j if U € \/i;% R
When 6 goes from —oo to 400, the quantity in (2) jumps from 400 to 0
at a unique critical value. The number

h(f|Z) =inf{d : N(Z,§,R) = 0} =sup{d : N(Z,0,R) = +o0}

is called the topological entropy of Z.

If the set Z is compact and invariant then the above definitions of entropy
coincide with the classically defined topological entropies (see [10]).

The entropy with respect to the partition R is

h(f,R) := lim H (\/f "32) where Z,u &) logu(€

nmeen ceP

The entropy of the measure p is defined as
hy = sup h(f,R).
R

This supremum is attained for generating partitions R, i.e. h, = h(f,R) and
moreover n~H, (\/fl;% ~"R) decreases to h(f,R) (see [14]). Hence

1A
hy, = inf —H, ( \_/0 /7"R)

for any generating partition R. We can also define the entropy of a measure
[ as

hy = inf{h(f|Z) : p(Z) = 1}.

For ergodic measures it coincides with the standard definition, but it is not
an affine function on the space of measures!
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The very important theorem of Shannon—McMillan—Breiman asserts that
we can compute the entropy locally for an invariant ergodic measure:

n— 00 n

p-a.e.,

where C),(z) is the cylinder of length n containing z, that is, z € C,, €
\/Z;é ~“FR. Note that the limit does not have to exist for all points. How-
ever, for the dimension estimates we just need the lower limit

(3) hy(x) = lim inf —M.

n—oo n
REMARK 1. The Shannon—-McMillan—Breiman theorem has a very nice

and useful interpretation. Let us consider the generic points for an ergodic
measure u, i.e. all points x for which

. 1 n—1 N
Jim kz_%)é(f x) = ]§4¢du
for all continuous functions ¢. Since M is compact, by separability and
Birkhoff’s theorem this set has full measure. So its entropy is at least h,
(in fact, its entropy equals h, by the variational principle for non-compact
sets; see [10]). If n is sufficiently large then

(Cn(2)) ~ =",

and since the total mass of the cylinders covering the generic points is 1, we
find that the number of “generic” (for p) n-cylinders is at least (approxi-
mately) ™,

If Z is compact and f-invariant, then h(f|Z) = h(f~!|Z). This is not
true for non-invariant sets!

2.3. Linear expanding maps. We first consider the case when f(x) = 2z
(mod 1). From now on we will drop the notation (mod1) since this will
cause no confusion.

Multiplication by 2 yields a natural Markov partition

S'=R/Z=1,U 1,

where I = [0,1/2) and I; = [1/2,1). We can code a point = € S! by its
orbit
T X=29T1..-Tp ..,

where
{ 0 if 2"z € Iy,
Ty =

1 if2"zx e L.
This coding corresponds to the binary coding of a real number in the unit
interval. It is one-to-one except for a countable set where it is two-to-one.
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Since the measures we are going to consider are non-atomic we can neglect
this ambiguity and work in the coding space ¥ = {0, 1} equipped with
the product topology. We denote the coding ¢: X5 — S' by o(z) = 2. We
define the metric

d*(z,y) := inf{l/Qk SXO = Y0y, Tk = Yk}

Pushing this metric forward to the circle we obtain a metric equivalent to the
standard metric (if we neglect the points with non-unique coding). Hence
we can work in the coding space endowed with the metric d*. Moreover, the
shift operator

o(ToT1 .. X)) =T1 ... Ty ...
commutes with the map f(z) =2z, i.e. fop=ypoo.
A crucial role will be played by cylinder sets
Cr(z) ={y € Xo:yo=wm0,...,yr = T}

Then such a cylinder has diameter 1/2%+1,
We can define a metric dy on S! as the unique metric with

diam I,,(y) = diam Cy,(y).

2.4. Measures on S'. Let ¢: S' — R be Holder continuous. We may
assume that P(¢) = 0. The corresponding Gibbs state is the unique measure
ftg With

L uel(Caly)
= s, b)) =

for some C' > 0 and any n. Gibbs states are invariant and ergodic.
Let ¢ depend only on the first coordinate: ¢(z) = ¢(xp), and set

o(i) =: ¢y, €% =:p;.

Then P(¢) = 0 implies p; + p2 = 1. The corresponding Gibbs state is called
a Bernoulli measure.

REMARK 2. Gibbs states with respect to Holder continuous potentials
have approximately similar computation rules as Bernoulli measures. In the
following section we will restrict our arguments to Bernoulli measures and
Holder functions which depend only on the first coordinate. In particular,
we assume that the expansion rate of f is constant on the intervals Iy
and [o—i.e. the map is piecewise linear.

All results are valid for Gibbs states with arbitrary Hoélder potential
and for maps which are C'*® on I;. Also the results can be generalised to
higher-dimensional conformal systems.
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2.5. Hitting times. Let f(x) = 2z (mod 1) and let p, be a Gibbs state
with respect to a Holder potential ¢. Put ¢ = 1/N”. The associated cylin-
der of length ¢y in base 2 is Cy(y) with n ~ vlog N. We want to study
the first hit time when iterates of = first hit C),(y). The first hit time of the
cylinder Cy,(y) is

Tn(z,y) := min{k : fk(x) € Cn(y)}

Since
f"(@) € Culy) & o"(x) € Chiogn(y) = Cn(x),
we need
To(z,y) < N ~ on/v log 7w (2, y) < l
n v

to have f™(x) hitting Cy,(y) infinitely often. We want to study 7,(x,y). The
main problem is that there is no “nice” asymptotics in general for hitting
times. The case of Gibbs states is much better.

THEOREM 1 (Chazottes, [3]). Let p be an ergodic measure and s a
Gibbs measure. For g X pi a.e. (x,y),

lim 0BT oy iy 108 He(Cn)

n—oo n n—oo n

3. Standard Diophantine approximation and
Diophantine classes

DEFINITION 5. An irrational number « is of Diophantine class v =
v(a) € RYif
(4) lgel <1/4¢"
has infinitely many solutions in integers ¢ for p© < v and at most finitely
many for p > v.

If o is not of any Diophantine class v € R* then « is said to be a Liouwville
number.

If « is of Diophantine class v, we write € Dioph(v). In a slight abuse
of terminology, we say that a Liouville number o € (0, 1) has infinite Dio-
phantine class and write o € Dioph(o0).

4. Approximation by dyadic numbers. The original motivation of
this question was to find the exact speed of approximation of arbitrary
(-shifts by subshifts of finite type. We will deal with a simpler case first.

By using the correspondence between the shift space and the circle with
multiplication by 2 we address the question in the symbolic space. If no
confusion can arise we will omit the correspondence and identify numbers
on the circle with their dyadic expansions. Since only dyadic numbers have
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two different expansions (01°° = 10°°) we can ignore this ambiguity. We will

use the metric
oo
Z Tn — Yn
2n

n=1
This metric is equivalent to the metric on the circle. We consider a point
T =x122... € Yo and ask about the speed of convergence

z(n)” i=x1...2,0° s z20... or z(n)T i=a.. . 2,1° = 219 ...

This means we have to study the occurrence of blocks of 0’s or 1’s in the
symbolic sequence x. The faster such blocks occur, the better the approxi-
mation will be. Since the numbers z; ...z,0* and z; ...x,1° correspond
to dyadic numbers with denominator 2" we deal with approximations of
numbers by dyadic numbers. The situation here is different from the usual
Diophantine approximation.

4.1. Badly approximable numbers. The numbers

J .
Q—n(modl), j=0,...,2" -1,
are equally spaced on S! with distance 1/2". Therefore for all € R and all
n € N, min; |z —j/2"| < 1/2"*1] which gives an upper bound on the dyadic
approximation.

The worst approximable numbers are

1 2
I =3= 01010101..., a2y = 3= 101010101....
They satisfy

() = minfd(a, ()", 2,), ()20} = 3 s = 5o
k=1

In these two numbers neither a block of two consecutive zeros nor of two
consecutive ones occurs. On the other hand, if a number x contains infinitely
many blocks of NV > 1 consecutive zeros or ones then

1 1
2ntN < 3.2n

min
J

= | =m0 20, da ) ) =

infinitely often (with equality if z = z1 .. .2, _110V1%°). These are examples
of numbers where the speed of convergence is not faster than 27". A result
of Fan and Schmeling [5] yields
THEOREM 2.
dimp{z : 3¢ > 0 such that rp(x) > 27", Vn € N} = 1.
Proof. Let
BAN := {z : 3¢ > 0 such that r,(z) > 27", Vn € N}
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be the set of badly approximable numbers. We start by remarking that those
numbers correspond to numbers which have bounded strings of 0’s and 1’s.
Let = be such that there are at most N consecutive zeros or ones in its
dyadic expansion. Then

o
(z) = min Ttk Z L —Zpyp 1
L) = ontk’ on+k = 2n+N+1’
k=1

where we have used the fact that the remainder is minimised by having

a block of N consecutive zeros (or ones) starting at place n + 1, i.e. z =
c= 2N+1‘

Z1...p110M1 . orz =a1...2,-101V0.... This gives
Clearly, if N is unbounded, i.e. we have arbitrarily long blocks of zeros
or ones, we cannot find such a ¢ > 0.
Now the set

{z : ¢ > 0 such that r,(x) > 27", Vn € N} = U SN,
neN
where Sy is the subshift of finite type where blocks of N + 1 consecutive

zeros and ones are forbidden. If N — oo the dimension of Sy clearly tends
tol. m

REMARK 3. One can “normalise” the approximation by considering the
distances ||2™z|| on the circle. By Dirichlet’s theorem, for standard continued
fraction approximations and any irrational z € (0,1) we have

i <1 d h lim inf ||gz|| = 0.
min flpz| <1/g, and hence liminf gz

The above numbers show that this is not the case for dyadic approximations.
Actually the numbers in Theorem 2 are those where

liminf ||2"z| = ¢ > 0.
neN

This fact can be explained by noting that irrational rotations are uniquely
ergodic and the invariant measure is Lebesgue measure independent of the
irrational number x. This means that the orbit (¢z (mod 1)), is uniformly
distributed in S'. This is no longer true for multiplication by 2: then we
have uncountably many different ergodic measures with completely different
asymptotics.

4.2. The “Liouville” case. In this section we consider those numbers
which have an arbitrary speed of approximation. In standard Diophantine
approximation those numbers are called Liouville numbers. They form a
residual subset of the real line no matter what the speed of approximation
is. We are going to show that a similar statement holds for dyadic approxi-
mations.
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THEOREM 3. Let ®(n) — 0 be an arbitrary function. Then the set
1
Le = {:L’ ER:ry(x) < P(n) on infinitely often}

1s residual in R.

Proof. The proof is similar to the one for standard Diophantine approx-
imations and is included for completeness. We note that x € Lg if and only
if there is a subsequence nj of the naturals such that

Tt 1+ T toga(mny) = 07 B or @ 1w g, = 17 O8T0),
Clearly for each n € N the sets
Ov= U om0 U e

(z1,...yzn)€{0,1}7 (z1,...,xn)€{0,1}7

are open. Moreover, the sets Gy = |J,,~ y On are dense in R for all N € N.
Hence, the set R =) ~en GN = Lg is a dense G set, and hence is residual. m

REMARK 4. As can be seen from the proof, the set of points having
arbitrarily good approximations from the left (respectively from the right),
i.e. with arbitrarily long sequences of zeros (respectively ones), also forms a
residual set.

Let X4 be a subshift of finite type. If we code X9 with words of length
n instead of just the digits 0 and 1 (which are words of length one), then if
n is sufficiently large we can represent X4 by a transition matrix A of size
not larger than 2™ x 2™,

The subshift ¥4 is a closed subset of X5 ~ [0,1] and hence a Baire
space. A slight modification of the above proof (just choose the cylinders
[z1...2,0°8%M)] and [z ...2,1°8%()] in I,) gives:

THEOREM 4. If X4 is a subshift of finite type that is not contained in
{z : Jc > 0 such that rn(x) > 27", Vn € N}, i.e. arbitrarily long blocks of
zeros or ones are allowed for points in X4, then Ly N X4 is residual in X 4
and hence uncountable.

4.3. The “almost Liouville” case. In this section we want to investigate
those numbers which have a dyadic approximation of the order of a power
of the denominator. This corresponds to the case of Diophantine numbers
in the standard continued fraction approximation.

A number z € R is called Diophantine if there is a number § > 1 such
that

lgz|| < 1/¢°
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has infinitely many solutions in integers ¢. Jarnik’s theorem [7] states that
for 8 > 1,

1 2
dimyg {x € R : ||gz|| < — has infinitely many solutions ¢ € N } EESE
q°
or equivalently for v > 2,
: _ P 1 o P _
dimgsz eR: |z —=| < — has infinitely many solutions = € Q » = —
q q q
Therefore for any 8 > 1 or v > 2 the set
1
{:c eR:|gz| < 5 has only finitely many solutions ¢ € N}
q
or equivalently
, p 1 : .op
reR:|lz—=| < — has only finitely many solutions = € Q
q q q

has full Lebesgue measure.
Let X4 be a mixing subshift of finite type. We define

LA = {z € ¥x:ry(z) < 27°" infinitely often}
z— =

1

In contrast, for dyadic approximations we have

p

THEOREM 5. Let o > 1 and X4 be a mixing subshift of finite type not
contained in BAN. Then
dimy X4

dimp{z € X4 : rp(z) < 27" infinitely often} =
a

REMARK 5. We emphasise that in contrast to the standard Diophantine
approximation we loose the 2 in the numerator, i.e. we get only half of the
dimension.

Proof. We note first that since (X2 \ BAN) N X'y # 0, arbitrarily long
sequences of zeros or ones are allowed in ¥'4. Let T > 0 be such that A7 > 0.
A number z is in the set L2 if and only if there is a sequence ny(z) such that
Tng(2) < 279 de. Tpyq1 = 0,00, %y, 4 (a—1)n, = 0 (or ones respectively).
Let us fix a sequence (ny)x such that
k—1
Z(QT + (a — 1)n;) < logny.
i=0

We consider the following map ¢ from

LA(ng) == {z € Ya : 1, (x) < 279 Vk € N}
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into Y. For z € LA(ng) we will collapse the sequence of zeros (or ones)
occurring at the places ni. More precisely, the point

a—1)n
T=T1...Tpn—T-1Tpy—T--- xnkO( ) kﬂ?nk+(a—1)nk+1 ...

< Tt (a—Dng+T—-18np4-(a—D)ng+T - - -

is sent by g to

g(g) =T1... xnk_Txnk+(a_1)nk+T+1 e

This point does not have to belong to X 4 since transition from 1 ... 2y, —7-1
t0 Ty, 4 (a—1)ny+T - - - might be forbidden in X'4. However, if

Y=Yl Ynp—T—1--- S
then
_ (a—1)ng LA
T=Y1...Yn,21-..270 Wi ... WTYng41 - - - € L (ng)
for suitably chosen zj ...z7r and w; ... wp. Hence,
Fa Cg(Lg(m)).

We are going to estimate the Holder exponent of g. For simplicity we
will use the metric d* which has equivalent diameters of cylinder sets. Let
z,y € L2 (ng). Then their distance d*(z,y) is determined by the first digit
where these sequences differ; say @, # ym (2; = y; for 1 < i < m) and let k
be such that any < m < ngy; (m cannot be in the intervals (ng,ang)
since there both sequences are 0). Then for g(z) and g(y) we erase at
most Zf:_ol(2T + (o — 1)n;) < logng symbols before ny — T < m and
at most 2T + (o — 1)ny symbols between ny — T and m. Thus for some
m’ > m — (logng + 2T + (o — 1)ng) we have g(z); = g(y); for 1 <i <m’

and g(z)m # 9(y)m’- This yields, for sufficiently large k,
d*(g(@),g(y)) _ Qfm’ < 27m+(lognk+2T+(a71)nk) < 2fm+(a71+5)nk

< 2—m+(a—1+a)m/a < (Q—m)(l—s)/a_

Since a Holder continuous map with Holder exponent x can increase the
dimension at most by a factor of 1/k, we get
dimy 54 < —— dimy LA (ny,) < —— dimy LA
1—e¢ 1—¢
Letting € — 0 gives the right lower bound.

For the upper bound we remark that L2 = Ut LA (ng) and LA (ny)
can be covered by cylinders of length an for each k¥ € N. The number of
those cylinders is at most the number of cylinders of length ny intersecting
2/ 4. But for each € > 0 and k sufficiently large this number is bounded by
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o(dimy La+e)ny Hence, for those covering sums we get
Z diam Ci(dimH Xa)/ote < Z Z diam C-(dimH Xa)/ate

7

Cilﬁng#@ neN CmLﬁ;é@
dimy Y4)/a+e
< Z2<dima Sate)n( L (i £a)/
- eN 2an
n
< Z 2(1—a)an < 00.
neN

This shows that H*(L2) < oo, where s = (dimg X4)/a + . (Actually we
estimated the upper box-counting measure). By Definition 3 it follows that
dimyg L4 < (dimg Y4)/a + €. Since € > 0 is arbitrary we conclude that
dimyg L7 < (dimg £4)/c. =
REMARK 6. Those numbers have the property that infinitely often
Tp,=0,...,20n=0 or z,=1,...,24n = 1.
Therefore no invariant measure besides the delta measure on the sequence 0
respectively 1°°, can sit on this set. To see this, we remark that by Birkhoft’s
ergodic theorem the frequencies
) . #H1<n<N:z,=1i}
F(z,i):= 1
(& ,L) Ninoo N
for ¢ = 0,1 have to exist for an invariant measure p and for p-a.e. z. We

claim that the frequency of 0’s (or 1’s) must be 1.
Assume that p is an invariant measure on the set of points with

Tp=0,...,24n =0

infinitely often. Then for u-a.e. z, F(z,0) exists. If ny is an infinite sequence
such that z,, ...Zan, = 0 then

F, 0 -1
chk(£7 O) — gLy, (Qv ) + (a )nk’
ang
where F'(z, i)y = #{1 <n < N :z, = i}/N. Hence we have
aFan, (2,0) — Fan, (2,0) = o — 1.

Since Fy(z,0) converges to F'(z,0) we must have F(z,0) = 1. Now dp is
the only invariant measure having frequency one of the digit 0.
A similar argument holds for long blocks of ones.

4.4. The “Diophantine case”. By Chazotte’s theorem (Theorem 1), we
know that for equilibrium measures j4 the hitting times have the following
asymptotics (in logarithmic scale):

100

T(x,0%) ~ 2Mus Ok and T (2, 1°°) ~ 9ftuy 170k
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for yi4-a.e. x, where hy,,(0°°) and hy,, (1°°) are defined by (3). So we expect,

for a point z typical with respect to pg, to have a block of k consecutive
. hy, (0%°)k

zeros (or ones) at place approximately 27#¢

h;j logn consecutive zeros at n = 9hus Ok This means that we should

expect (with 0 < 8= 1/min{h,,(0°), h,, (1)} < 1)

, or equivalently a block of

ro(z) <

o infinitely often.
n

Clearly according to the previous theorem these sets have full dimension.
For 8 > 0 we are interested when this approximation speed is the best
possible. This is, we are interested in the set

Dy {x € 5 ro(z) 1 finitely often for any £ > 0 and}

-
2"nB+e  infinitely often for any € < 0

= {x : limsup—ilog2 rn(2) = ﬂ}

n—oo log n

This corresponds to the Diophantine classes for standard Diophantine ap-
proximation (see Sections 3 and 4.3).
For dyadic approximations we have the following

THEOREM 6. For any 0 < 8 < 1,

dimyg {a: : limsup—M = ﬁ} =1.
n—oo logn
Proof. This proof follows the methods developed in [5, Theorem 4.1].

Let us consider the set
BAN = {z € X5 : 3¢ > 0 such that r,(z) > 27", Vn € N}.

Then by Theorem 2 this set has full dimension. Also this set consists of
sequences z having bounded sequences of both zeros and ones.

Now let ny, = 25/8. We are going to modify the sequences in BAN. Let
z € BAN. For k € N we insert a block of k£ consecutive zeros between z,,,
and p, 11, i.e.

k
Tl Ty Tppglee- > T Ty, 07T 1. -

By the proof of Theorem 4.1 in [5] (k < ny) this procedure does not decrease
the dimension. Therefore the resulting set BANy,odifeqa has dimension 1.

Clearly the fastest approximation is obtained exactly at the places ni. Hence

_ log2"rn(z) _ /8 .

for ,0dified € BANmodified We have lim sup,, Togn

REMARK 7. This means that we have uncountably many disjoint sets of
full dimension with different approximation speed.
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4.5. The “reqular Diophantine case”. The dynamical system underlying
the standard Diophantine approximation is the rotation. For an irrational
number z, rotation by angle x: z +— nz (mod 1) has a unique invariant
measure, the Lebesgue measure on S'. By Birkhoff’s ergodic theorem

1 1 2
lim #{O§k<n: |k || <q}:q'

n—oo n
Hence, we can “regularise” the approximation by setting
log lim,, 00 %#{O <k<n:|kz|] < %}
o —logq

s

and

T(x) = qli_)rgo 7q().

This number gives the average approximation rate over the orbit of x. From
the discussion above it follows that 7(x) = 1 for all irrational z. This equals
the Diophantine approximation rate if the Diophantine class §(z) is 1. It
is well known that the set of numbers for which g(z) = 7(z) = 1 has full
Lebesgue measure. In general, we have

1=r71(x) < pB(x).
The situation in dyadic Diophantine approximation is different. Here we
define
logliminfy oo y#{0 <k <N :[|2%z] < 5}

—m

To8(z)

and

7' () 1= inf 7,8 (x).

In symbolic language this is

_ logliminfy_o max{Fy(z,0™), Fnx(z,1™)}

T (2) =

-m
We are interested in the size of the set of points

Dy® = {z € Xy : 7" (z) =log 3} for 3 >2.

Let x € D/rgeg. Then for each m € N there is a sequence (n,(cm))k such that

log limy,—, 0o max{F (m)(z,0™), F o) (z,1™)}
k

Ny

:logﬁm
—m

and inf,, 8,, = (. By using a diagonal argument we can choose a universal
sequence (ny)r along which all the limits exist. Consider the set

1 ne—1
Vo(z) := {,u inv. : 3(ng)g such that lim — Z Ogiy = b }
0

k—oo N “
=
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By using subsequences of the universal sequence (ny ) from above we derive
that there is a measure p € V,(z) with

p(0™]) = B, or u(1™]) = B,

Therefore,

maX{—nlllogM([Om])? —;logu([lm])} > log 3.

We are going to use the following result of Bowen [2].

THEOREM 7 (Bowen).
hiopiz € Yo 2 3 € Vo (z) with hy, <t} < t.

As observed above, if z € Dgeg then there exists a pu € V,(x) such

that max{—2L logx([0™]), =L log £([1™])} > log B for all m. This shows
that

sup {inf{h, : p € Vo(2)}}

reg

gEDﬁ
1 1
<S:= sup {inf{hu : max{—logu([om])a —log,u([lm})}
£ED;eg m m

> log 03, Vm}}
Then Di® C {z : 3pu € V() with hy, < S}. Now Teorem 7 implies

PrRoOPOSITION 1. Let B> 2. Then
dimpyg Dg’g

< sup{ . s wae{ o (7). ~ Lo (1) |

> log g3, Vm}.

The next step is to evaluate the supremum over those measures.

THEOREM 8. Let 3> 2. Then
1 1
h, inv. : ——1 0™, ——1 1m
sup{ . maed = L tog (07, ~ L tog (7))
> log 8, ¥im

1 1 1 1
- —gons = (1-5) e (1-5)

This means that the dimension is carried by a Bernoulli measure.
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Proof. Clearly,
1 1
sup{hu inv. : max{m log ([0™]), - log ,u([lm])} > log 3, Vm}

< sup{h,, inv. : max{—log x([0]), —log u([1])} > log 5}

— sup{y inv. : min{ua([0]), p((1])} < 571}
But u([0]) = 1 — p([1]). Without loss of generality we may assume that
) < 7 < 12. Then

b < B0 11 <~ tog 5 — (1 5 )1ox(1- 5 )

The lower bound is obtained by considering the (1/8,1 — 1/3)-Bernoulli
measure (g which sits on the set in question since pg([0™]) = /7™ and

pa(1m])) =1 =671 u

REMARK 8. In the definition of 7% we cannot replace inf by liminf.
Consider the set BAN. There liminf, .o Tm>(z) = oo, implying that

—% log & — (1 — %) log(l — %) = 0 but the dimension of BAN is 1.

REMARK 9. We have proved that a maximal ergodic measure is sitting
on the sets with regular approximation. Therefore for a.e. point with respect

to this measure, we can actually replace lim inf and inf in the definitions of

o8 and 778 with limits.

REMARK 10. The Lebesgue measure on the circle is obtained by pulling
back the (1/2,1/2)-Bernoulli measure. Therefore

Leb(D5®) = dimp{z € S* : 77°8(x) = log 2} = 1.
REMARK 11. If we have an ergodic measure p then
77 (z) = max{h,(0>),h, (1)} p-ae. z,
where
hu(y) = liminf —log 4(Ca(y)).
In [6] it was proved (as a slight modification of Chazotte’s theorem) that for

an equilibrium state p with respect to a Holder continuous potential,

lim e logmin{n > 1:0"(z) € Cn(y)} = huly) p-ae. z.

m—oo M,

Therefore for 5 > 2,

dimH{x e S':r(n) ~ 2 o (legm)/B 2”%/57 n > no(a?)}

——llo 1—(1—1>lo (1—1>
T B33 3) %\ " 8)
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Moreover, we have a maximising ergodic measure sitting on these sets. In

particular, )

Leb{:c esSt:r(n) ~ Sy

, > ng(z )}:1.

5. Approximation by finite f-expansions. Let 1 < # < 2 and let
T3:[0,1] — [0,1) be the 3-expansion defined by

T3: x — Bz mod 1.
Denote by i(x, 3) = {in(z,8)}32, € {0, 1} the sequence defined by
in(z, B) =[BT (2)].

This sequence is called the expansian of x in base (3. It satisfies
in(x, )
- Z gn+t -

The set Sg = closure{i(x, ) : « € [0,1)} together with the left shift
o {in}olg — {int1}toe is called the (-shift. Sz can be characterised by

Sp = {{intnio € {0,137 : 0" {jin} <i(1,8), Vk > 0},

where < denotes the lexicographical ordering. Let = be the map (§ +— i(1, 3).
A sequence {i,} is an expansion of 1 in some base [ if and only if {i,}
satisfies 0%{i,, } < {i,} for any k > 0. Sequences that satisfies o*{i, } < {i,}
for any k > 0 will be called admissible. Moreover, 31 < 32 if and only if
i(1, 1) < i(1, Ba2).

The subshift Sg is of finite type if and only if the sequence i(1,3) is
either periodic or terminates with zeros.

For more details on the (-expansion, see for example [1, 9, 13].

REMARK 12. We can interpret the forthcoming estimates for the Dio-
phantine approximation in Sg as the “speed of convergence” of subshifts of
finite type Sg to Sp. Namely, we investigate the approximation of (1, 5) =
i0%1 - - - inint1 - .. by sequences i(1,3) = igiy...ip—10°. The latter corre-
sponds to a Sg of finite type inside Sg, so the approximation speed de-
termines how closely Sg is approximated by subshifts of finite type with a
given size of the transition matrix. (For //, the transition matrix A can be
chosen to be of size at most (n + 1) x (n + 1).) This is an important issue
since the size of A is responsible for the bounding constants appearing in
many statistical properties of a subshift of finite type. (Since Sz C S, the
eponential growth rates are bounded by those of Sg3.)

5.1. Extension of theorems to the 3-expansion. If in Section 4 we replace
the full two-shift X5 with the (-shift we can state theorems similar to those
in Section 4. Since for 8 < 2 the maximal number of consecutive 1’s in Sg
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is bounded we will get
rp(x) :=d(z(n)”,x).
The following theorems are analogous to those in Section 4, hence we state
them without proof.
THEOREM 9.
dimg{x : 3¢ > 0 such that rp(z) > ™", Vn € N} = 1.

THEOREM 10. Let @(n) — 0 be an arbitrary function. Then the set

Ly = {:1: eR:rp(z) < P(n) ﬁln infinitely oﬁen}

is residual in R.

THEOREM 11. Let oo > 1 and X4 C Sg be a subshift of finite type not
contained in BAN. Then

i X
dimp{z € X4 : rp(z) < 7" infinitely often} = %

THEOREM 12. For any 0 < a < 1,

log ™1y,
dimH{SC : limsup—oglﬁogr @) = a}
n mn

THEOREM 13. Let a > 2. Then

1
sup{hu inv. : - log 1([0™]) > loga}

1 1 1 1
=——log— — (1—) log<1—).
a o o o

5.2. Diophantine approzimation with B-expansions. A cylinder, denoted
by Cn([i0- .. in—1],3), is the set
Cn([lo .. .in_l],ﬂ) = {a: S [0, 1] : zk(az,ﬂ) =i, k=0,...,n— 1}.
The collection of all cylinders of length n is denoted C,. A cylinder in the
parameter space is the set
CP(lig...in—1])) ={0 € (1,00) 1 ix(1,8) =ig, k=0,...,n— 1}.
The collection of all cylinders of length n in the parameter space is de-
noted Ch.
Let > 0 and fix By < (1 € (1,2). We are going to calculate the
dimension of the set
Dalfi, 1) = {6 € (6o, 1) : d(0™ = (8), {0}") < 5" infinitely often}
={B € (Bo, £1) : in(1,8) - - i(14a)n(L, B) = 0...0 infinitely often}.

For this purpose we will need the following lemmata. We start by bounding
the dimension of D, (0, 1) from above.
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LEMMA 2. dimH(Da(/Boaﬁl)) < 1/(1 + Oé).

Proof. Let Kpg, be the set of € [0,1] such that i(x,81) = =(8) for
some 3 € (1,51). Let g, : K, — (1,2) be the map = — (3. We estimate the
dimension of lel(Da) from above.

The set
o
Ba= () |J o in10...0] C Sp
N=1n>N 1 an

satisfies 0g, (K3, N Ba) D Da(Bo, B1). It follows that dimp(Da(0o, 51)) <
dimy 03, (Kﬂ1 N Ba).

There are constants cg,c; > 1 such that the number of cylinders of
length n in S, is bounded by co7 and the length of a cylinder of length
n is bounded by ¢;8;". We use this to bound the Hausdorff dimension of
B, from above by 1/(1 + «). The set B, is covered by the collection of all
cylinders of the form Ciyyayn([io- - in-10...0], 1) where n is larger than
some number ng. For any € > 0,

lim inf Z Z IC14a)n(lioi1 - - - in—10...0], By)|(1Fe)/ (Ate)

N—o0 -
n>N 1

< Jim 37 cofp (e g TOm AT/t g,
n>N

This implies that dimp(Ba) < (14¢)/(1+ ). Hence dimp(B,) <1/(1+ ).
The estimate of the Holder exponent of the map gg, in [13] implies that

' log B1 .. 1 log
d By)) < dimp(Ba) <
img (05, (Ba)) < log o imp(Ba) < 377 log (o
and so dimg (D4 (Bo, 51)) < ﬁ}gggé

Given any ¢ > 0 we can decompose the interval ((y,31) into finitely
many intervals (5o, 51) = Uy (Bok, B1,k) with log £y i /log Box < 1+ . Then

1+¢

dimy (Da(5Bo, £1)) = max dimyg (Do (Bok, Bik)) < T

We conclude that dimy(Dy (B0, 51)) <1/(14+ ). =

It remains to bound the dimension of D, (o, 51) from below. A diffi-
culty in doing this is that even though most cylinders of size n in C}, have
diameter approximately 57", where 3 is in the cylinder, there are some
cylinders of size n that have much smaller diameter. It is important that
these small cylinders do not accumulate too much. The following lemma
gives us sufficient control over the small cylinders.

LEMMA 3. Among any n consecutive cylinders in Ch, there is at least
one Ch with |Ch| > 37", where 3 = sup Cf.
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Proof. Fix a natural number n and take any n consecutive cylinders in Cp,.
Denote by Ch([ig...in—1]) the cylinder, among the n consecutive cylin-
ders, containing the smallest numbers. Then the sequence ig...%,-100...
is admissible and it is contained in the cylinder C%([ig...i,—1]). If the
sequence ig...7,_1100... is admissible then we are done, since then, if
io ceiln—100... = Z(l, ﬁo) and ig e in_1100 el = Z(l, ﬁl), we have

(5) Bl — By = Z(%(Lﬂl) ik(l,ﬂo))

A %
> i(ik(l,kﬁl) B ik(l,kﬁ0)> > g
k=0 /31 ﬂl

and 31 and f are in C}([ig...4n—1]). Hence the diameter of the cylinder
Ch([ig . - . in—1]) is at least 31 — By > B ™

We now assume that the sequence ig...4,_1100... is not admissible.
Then there must exist maximal k1 < n such that

Uy - =10 =10 .. .ip_k,,
as otherwise the sequence i . .. %,-1100... would be admissible. By the max-
imality of k1, the sequence

(i0 - i) (G0 - - - int,) .-

is admissible and so ig...%,—%,—1100... is admissible as well, since
00 - n—ky—11 =90 .. In—p,
and g ...%,_j, is admissible. The two cylinders
CP([ig...in—1]) and CP([ig...in—k,—110...0])

are neighbours and therefore they are among the n consecutive cylinders.
We will now argue for the sequence ig ... 4%,_x,—1100... just as above for
i0...1,—100.... The sequence ig...%,_,—1100... is admissible, and if the
sequence
10 .- -lp—k;—1100...0100...,

where the last 1 is in place n, is admissible then we are done, by the same
argument as in (5).

If the sequence ig...%,_%_1100...0100... is not admissible then we let
i@ = %0...%n—k;—100... and proceed with i@ as above with 1; there is a

maximal ko < n such that 1,222) . iff_)l(] = z'(()z) . zg ko and the two cylinders

C’E([iéz) . 1512_)1]) and CE([@'(()Q) : ..i1(12_)k2_110...0]) are both non-empty and
neighbours.

This process is continued until we get an i) with both i(()j) o 2'7(210 o

and iéj)...igzllo()... admissible. Note that 0 < k1 < ko < --- < m, so
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after at most n steps we end up with a cylinder CE([i(()j )zgﬁl]) with
CR(lig i ) = o7 m
COROLLARY 1. For any ( € (1,00) and € > 0 there is a number n =

n(B,e) and a set VP D B(f,¢) such that VP can be written as a union of
n cylinders of length n and |B(B3,¢)| > (B +¢) " L.

Proof. Let 8 € (1,00) and € > 0 be fixed. Put 8/ = 8 + ¢ and let
n = max{k € N : 37% > 2¢}. Take VP to be a union of n consecutive
cylinders of length n,

n
P _ p
ve=Uan,
i=1

where ' € Ch, and o; < a4 if o; € C’f;i and «a; € CS,iH' Lemma 3
implies that |[VP| > /7" > 2e = |B(f,¢)| and so VP D B(,¢).

Since n = max{k € N : 7% > 2¢} we have g/""! < g1 < 2 =
|B(B,¢)]. =

It is easier to work in a subshift than in the parameter space of which
D (Bo, 1) is a subset. Any subshift Sg, of finite type has the property that

the quantities
the number of cylinders of length n

By
the diameter of a cylinder in C,

By
are bounded and bounded away from zero, uniformly over n. This makes the
subshifts of finite type particularly easy to work with. Therefore we map the
set Do (B0, 81) into a subshift of finite type Sg, and estimate the dimension
of the image. This is done in the following lemma. We will then transfer the
estimate of the dimension of the image to an estimate on the dimension of

D, (ﬁOa ﬁl)
LEMMA 4. Let By < 1 < (2 be such that Z(B2) terminates with zeros.

Then 1 logf
. _ 0og P1
dim (05, (Da(5o, £1))) > It alosts

Proof. Let i = Z(f1) and take n so large that 8y ¢ U,, where U, =
C¥([ig - - -in-1]) and (ig...ip—1)> € Z(Uy). Let B, € (Bo, 1) \ Uy, be such
that =(f,) terminates with zeros. Then the subshift Sg, is of finite type
(see [9]). Since 31 € Uy, we have fy < 3, < fi.

We will denote by 0=*S5, the sets of sequences in Sy = Xy = {0, 1}
such that their kth shift is in Sg,. That is,

U_kSgn = {1 € 5y : O'k(@) € S,@n}‘

and
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Then Z(U,) No~" 185, C Kg,, where Kg, is the set of sequences z € Sg,
such that g = Z(fB) for some (. Since (ig...in—1)*° € =Z(U,) we have
EUn)No 18, #0.

Let 62 > (31 be such that j = Z(/2) terminates with zeros. Then Sg, is
of finite type.

Take m so large that o™ (Z(Uy)) D Sp, and let {k(1)};°, be a sparse
sequence such that k(0) > m. Let K C Sg, be the set of sequences z €
E(Uy) No 18 with Tr() - T(4a)k(@) = 0...0 for every [ € N.

We construct a measure p on Sg, with support in K7 in the following
way. For any [ € N define

Sl(g) = C(1+a)k(1)([.1‘0$1 < Th()-1 0...0 ], ﬁg)

ak(l) zeros

Define the measure of S;(z) by
u(Solz)) = { (#4080 SN KS £ 017 if Sola) N KG £,

0 otherwise.
For | > 0 we define u(S;) recursively:

p(Sp-1 () | )
w(Si@) = { FEG CSia@ : Snke 207 L H@ 0K £0,

0 otherwise.
Since Sg, is a subshift of finite type there is a constant co > 0 such that

o #HSY) © Sieafz) : SN Ky # 0}

€2 = GEO-(Fa)R(=T)

<c

and since S, is of finite type there is a constant c3 such that
—1 p—(1+a)k(l —(1+a)k(
C3152( a)()§|5l’§03ﬂ2( O‘)()

This implies that

(S1-1)
log 14(.S;) - log Bk(llf—(ﬁi)w—l)
log |S)| — log 5 5 (I4+a)k(l)

_ log u(Si—1) —logca — k(1) log By + (1 + a)k(l — 1) log 3,
B —loges — (1 + a)k(l) log B2

1 logpfn
-
1+« log B ’
as k(1)/k(l — 1) — oo. This shows that
: - L logf
1 n
D >
dlmH(052 (Da(Bo, £1))) > dimp p > 1+a log By

Let ﬁn — ﬂl. | ]
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We are now ready to calculate the dimension of D, (8, 51)-

THEOREM 14. dimy(Dy (5o, 41)) = 1/(1 + «).

Proof. Fix (3 > f31 such that Sg, is of finite type. Let {U;} be a d-cover
of Do (B0, $1). By Corollary 1 we can, for each k, find a set V¥ © U} such that

[UP| > (supUP)™*)~1 and V} is a union of n(k) cylinders of length n(k),

Vkp - U n(k),i

To each Vkp there is a corresponding set Vi, C Sg,, defined in a natural way as
the union of the corresponding cylinders in Sg,. There is a constant ¢; such

that cm(kz)ﬂ;n(k) > |\ V| > cl_ln(k:)ﬁ;n(k). Since {V’} covers Dy (o, £1), it
follows that {V}} covers QEQI(Da(ﬁOa $1))- Since (33 > (31 there is a constant ¢y

such that |U}| > ﬁ,’g_”(k)_l > CQn(k‘)ﬁ;n(k) > cocy M |Vi|, where B, = sup UF.
This implies that

D IURE = (e2er ') Y Vil
> (CQCfl)Sinf{Z |UL|* : {Uy} is a (c1cy '6)-cover of
05, (Dalf0, 1)) }.
But {U}} is an arbitrary d-cover of Dy (0o, 1) so this proves that
inf{z [UP|* : {UP} is a 6-cover of Da(ﬂo,ﬂl)}
> (CQCl_l)sinf{Z |UL|* - {Uy} is a (c1cy '6)-cover of

052 (Da(Bo: B1)) }-
We conclude that

dimg(Da(Bo, 61)) > dimu(eg, (Da(Bo, £1))) >

and let By — (1. =

1 log (1
~ 14 « log B

5.3. Conwvergence of dimensions in [(3-shifts. The technique from the
proof of Lemma 4 can be used to obtain the following theorem of con-
vergence of dimensions for a general set.

THEOREM 15 (Dimension Transference Principle). Let Gy > 1. If
E C Sg, is such that for any B < By and any cylinder C,, of length n there
exists an m = m(Cy,) such that dimy(E N Sg) = dimp(Cp, No™™(E N Sp))
and Kpg, is the set of x € Sg, such that x = Z(B) for some § < [,
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then
dimy(E N Kg,) = ,BHHBI dimy(E N Sp),
— 0

where the dimensions are the dimensions as subsets of Sg,.

Proof. We will first prove that dimp(ENKg,) < limg_,5, dimy(E N Sg).
It is clear that Kg, C g g, S Hence, if {3,}72; is an increasing sequence
with 8, < By and G, — (o, then

dimy (E N Kg,) < dimg | J (E N Sp,)
n=1
= supdimp (£ N Ss,) = lim dimp(E£ N Sgs,).
nzl n—oo

It remains to show that dimp(E N Kg,) > limg_,5, dimp(E N Sg). Fix
B < Bo. We proceed as in the proof of Lemma 4 and take n so large that
B EU, = Cg(ﬂo) = Cg([’lo - in—l]) and (i() .. ',in_l)oo € U,. Then E(Un) N
o~ EWUn)(S5) is a non-empty subset of Kp,, if we assume that m(Z(U,))
> n. The required estimate follows from

dimH(E N Kﬁo) > dimH(E N (E(Un) N U_m(Sﬁ)))
= dlmH(E(Un) N O'_m(E N Sﬂ)) = dimH(E N S/g) [
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