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HEDGING IN COMPLETE MARKETS
DRIVEN BY NORMAL MARTINGALES

Abstract. This paper aims at a unified treatment of hedging in market
models driven by martingales with deterministic bracket 〈M,M〉t, including
Brownian motion and the Poisson process as particular cases. Replicating
hedging strategies for European, Asian and Lookback options are explicitly
computed using either the Clark–Ocone formula or an extension of the delta
hedging method, depending on which is most appropriate.

1. Introduction. The Clark formula [Cla70] allows in principle the cal-
culation of replicating hedging strategies in complete markets [KO91], but
explicit computations are in general difficult to perform via this formula. For
markets driven by Brownian motion a proof of the classical Black–Scholes
formula via the Clark–Ocone formula can be found in [Øks96, Ch. 5, p. 13].
This method has recently been extended to markets driven by a Poisson
process in [AOPU00]. Brownian motion and the compensated Poisson pro-
cess share the important chaos representation property which is crucial for
market completeness.

In this paper we consider a larger family (Mt)t∈[0,T ] of martingales sat-
isfying the following two conditions:

(a) the chaotic representation property (with respect to market complete-
ness), i.e. every square-integrable functional, measurable with respect to the
filtration generated by (Mt)t∈[0,T ], can be expanded into a series of multiple
stochastic integrals of deterministic functions with respect to (Mt)t∈[0,T ],

(b) the condition d〈M,M〉t = α2
tdt, where (αt)t∈[0,T ] is a square inte-

grable deterministic function.
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Hypothesis (b) implies that ([M,M ]t −
� t
0 α

2
s ds)t∈[0,T ] is a martingale,

hence from (a) there exists a process (φt)t∈[0,T ] such that (Mt)t∈[0,T ] satisfies
the structure equation

d[M,M ]t = α2
tdt+ φtdMt, t ∈ [0, T ](1.0.1)

(cf. [É90]). This equation can be viewed as a decomposition of d[M,M ]t by
projection on dt and dMt, which yields a closed Itô type change of variable
formula (see Prop. 2.3).

Brownian motion is obtained for αt = 1 and φt = 0 for all t ∈ [0, T ],
and the Poisson process corresponds to non-zero constant φt, t ∈ [0, T ]. The
choice φt = βMt, −2 ≤ β < 0, considered in [DP99], corresponds to the
Azéma martingale and yields another complete market model with jumps.
Choosing (φt)t∈[0,T ] to be a deterministic function allows the driving process
to be alternatively Brownian or Poisson, depending on the vanishing of φt
(see [JP02] for the corresponding market model).

The Clark–Ocone formula states the predictable representation of a ran-
dom variable F as

F = E[F ] +
T�

0

E[DtF | Ft] dMt,

where (Ft)t∈[0,T ] is the filtration generated by (Mt)t∈[0,T ] and Dt is the
gradient operator that lowers the degree of multiple stochastic integrals
with respect to (Mt)t∈[0,T ]. One of the goals of this paper is to compute the
process t 7→ E[DtF | Ft] in several situations. We obtain explicit hedging
formulas for European calls in the mixed Brownian–Poisson model of [JP02]
and in the Azéma martingale model of [DP99] and for Asian and Lookback
options.

More precisely, let (Sxt,T )t∈[0,T ] denote the stock price process driven
by (Mt)t∈[0,T ], starting from x at time t, with volatility (σt)t∈[0,T ], and let
it = 1{φt=0}, jt = 1 − it, St = S1

0,t for t ∈ [0, T ]. In a model with determin-
istic structure equation, i.e. d[M,M ]t = α2

t dt + φtdMt with deterministic
(φt)t∈[0,T ], the replicating hedging strategy of a European call with payoff
(ST −K)+ is given by

t 7→ e− � Tt rs ds
σtSt

E

[
itσtS

x
t,T 1{Sxt,T≥K}

+
jt
φt

(σtφtSxt,T − (K − Sxt,T )+)1{Sxt,T≥K/(1+σt)}

]

x=St

(cf. (4.1.6) and Prop. 4.1). This formula extends both the classical Black–
Scholes hedging formula in the Brownian case (φt = 0 for all t ∈ [0, T ]),
and the hedging formula of [AOPU00, Th. 6.1] in the Poissonian jump case
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(φt = 1 for all t ∈ [0, T ]). It can be obtained both from the Clark formula
and from martingale methods. The above conditional expectation can also
be explicitly computed (see Prop. 4.2). The case of Asian options is treated in
Proposition 4.3 in the deterministic structure equation model, and Lookback
options are considered in Proposition 4.5 in a market driven by Brownian
motion. In the Azéma martingale model of [DP99], i.e. d[M,M ]t = dt +
βMt−dMt, −2 ≤ β < 0, we obtain

t 7→ e− � Tt rs ds
βMtσtSt

E
[
σtβ(y +MT −Mt)Sxt,T 1[ K

1+σtβ(y+MT−Mt)
,∞[(S

x
t,T )

+ (Sxt,T −K)1[ K
1+σtβ(y+MT−Mt)

,K](S
x
t,T )
]y=Mt

x=St

(see Prop. 4.4).
We proceed as follows. In Section 2 we introduce the notation of chaotic

calculus, the solutions of structure equations and the Clark–Ocone formula
which gives the predictable representation of the random variable F . We
also state the change of variable formula and Girsanov theorem, which hold
in a particular form for solutions of structure equations. In Section 3 we de-
scribe different methods for the computation of predictable representations
for the general class of normal martingales having the chaos representation
property. The intrinsic expression of the gradient D is completely known if
(φt)t∈[0,T ] is deterministic, i.e. for the Brownian, Poisson and deterministic
structure equation models (Section 3.2). In the Markovian case (Section 3.3)
it is possible to combine the Clark–Ocone and Itô formulas to obtain the
explicit predictable representation of F . Section 4 is devoted to the compu-
tation of replicating portfolios. In Section 4.2 we hedge European calls using
the Clark formula, extending the method applied in the Brownian case in
[Øks96, Ch. 5, pp. 13–15]. In Sections 4.3–4.5 we deal with Asian, European
and Lookback options, in particular we use the delta hedging approach to
recover some results obtained in [Ber98] from the Clark formula.

2. Notation and preliminaries

2.1. Chaotic calculus. Let (Mt)t∈[0,T ] be a martingale on the space Ω
of càdlàg functions from [0, T ] to R, having the chaos representation prop-
erty. Let (αt)t∈[0,T ] ∈ L2([0, T ]) be a positive deterministic non-vanishing
square-integrable function, and assume that (Mt)t∈[0,T ] has deterministic
angle bracket d〈M,M〉t = α2

t dt. We denote by (Ft)t∈[0,T ] the filtration
generated by (Mt)t∈[0,T ], and by L2

α([0, T ])◦n the space L2([0, T ], α2
tdt)

◦n

of α2
t1 . . . α

2
tndt1 . . . dtn square-integrable symmetric functions. The multiple

stochastic integral In(fn) is defined as
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In(fn) = n!
T�

0

tn�

0

. . .

t2�

0

fn(t1, . . . , tn) dMt1 . . . dMtn , n ≥ 1,

for fn ∈ L2
α([0, T ])◦n, with

E[In(fn)Im(gm)] = n!1{n=m}〈fn, gm〉L2
α([0,T ])◦n.(2.1.1)

The chaos representation property for (Mt)t∈[0,T ] states that every F ∈
L2(Ω) has a decomposition as F =

∑∞
n=0 In(fn). Let D : Dom(D) →

L2(Ω× [0, T ], dP ×α2
t dt) denote the closable, unbounded gradient operator

defined as

DtF =
∞∑

n=1

nIn−1(fn(∗, t)) dP × dt-a.e.,

with F =
∑∞

n=0 In(fn) in Dom(D), i.e.
∞∑

n=1

nn!‖fn‖2L2(Rn+) <∞.

2.2. Structure equations. Let L∞ad(Ω × [0, T ]) be the space of bounded,
(Ft)t∈R+-adapted stochastic processes. We assume that (Mt)t∈[0,T ] is a so-
lution of the structure equation

d[M,M ]t = α2
t dt+ φtdMt, t ∈ [0, T ],(2.2.1)

where φt = ϕ(t,Mt−) is a deterministic function of t and Mt. Existence and
uniqueness of solutions are guaranteed when φt is a deterministic function
[É90]. Existence is proved when φt = ϕ(Mt−) and ϕ is a continuous function
[Mey89], and the solution is unique when ϕ(x) = βx with β ∈ [−2, 0)
(cf. [É90]). See also [Pha00], [Tav99] for recent results on structure equations.
Let it = 1{φt=0} and jt = 1{φt 6=0} = 1− it for t ∈ [0, T ]. The continuous part
of (Mt)t∈[0,T ] is given by dM c

t = itdMt and the possible jump of (Mt)t∈[0,T ]

at time t ∈ [0, T ] is ∆Mt = φt (see [É90, p. 77]).

(a) If (φt)t∈[0,T ] is deterministic, let λt = jtα
2
t /φ

2
t for t ∈ [0, T ]. Then

(Mt)t∈[0,T ] can be represented as

dMt = itαtdBt + φt(dNt − λtdt), t ∈ [0, T ], M0 = 0,(2.2.2)

where (Bt)t∈[0,T ] is a standard Brownian motion, and (Nt)t∈[0,T ] a Poisson
process independent of (Bt)t∈[0,T ], with intensity νt =

� t
0 λs ds for t ∈ [0, T ]

(cf. [É90, Prop. 4] and [JP02]).
(b) If φt = βMt, β ∈ R, then (2.2.1) has a unique solution called the

Azéma martingale (cf. [É90]). If −2 ≤ β < 0, this solution has the chaos
representation property and it has been used to model a complete market
with jumps in [DP99].
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Figure 1 shows a sample path of (St)t∈[0,T ] and the corresponding func-
tion (it)t∈[0,T ] chosen to be a simple indicator function, with S0 = 4, σt = 1,
α2
t = 50, φt = 1.6it, for t ∈ [0, T ].
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Fig. 1. Sample trajectory of (St)t∈[0,T ] (vertical lines represent jumps)
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Fig. 2. Sample path of an Azéma martingale

Figure 2 is a simulation of an Azéma martingale with β 6= −1, from a
discretization of the structure equation (2.2.1):
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∆Xt =
βXt−

2
±
√

(βXt−/2)2 +∆t,

with probabilities

p =
1
2
∓ βXt−√

(βXt−/2)2 +∆t
.

In all cases of interest in this paper we have (φt)t∈[0,T ] ∈ L∞ad(Ω× [0, T ]),
since if (φt)t∈[0,T ] = (βMt)t∈[0,T ] then supt∈[0,T ] |Mt| ≤ (−2/β)1/2 (see [É90,
p. 83]). Given (ut)t∈[0,T ] ∈ L∞ad(Ω × [0, T ]), we denote by (ξt(u))t∈[0,T ] the
solution of the equation

Zt = 1 +
t�

0

Zs−us dMs, t ∈ [0, T ],(2.2.3)

which can be written as ([Pro90, Th. 36, p. 77])

ξt(u) = exp
( t�

0

us dMs −
1
2

t�

0

u2
sα

2
sis ds

) ∏

s∈JtM

(1 + usφs)e−usφs ,(2.2.4)

where J tM denotes the set of jump times of (Ms)s∈[0,t] for t ∈ [0, T ], and let
ξ(u) = ξT (u). If u ∈ L∞([0, T ]) then ξt(u) can be represented as

ξt(u) =
∞∑

n=0

1
n!
In((u1[0,t])

⊗n),

and we have Dsξt(u) = 1[0,t](s)usξt(u) for s, t ∈ [0, T ].

Definition 2.1. Let S denote the linear space generated by exponential
vectors of the form ξ(u), where u ∈ L∞([0, T ]).

The space S is dense in L2(Ω), and by the lemma below, S is an algebra
for the pointwise multiplication of random variables if (φt)t∈[0,T ] is deter-
ministic. The following is a version of Yor’s formula [Yor76] or Theorem 37
of [Pro90, p. 79], for martingales with deterministic bracket 〈M,M〉t.

Lemma 2.2. For any u, v ∈ L∞([0, T ]),

ξ(u)ξ(v) = exp(〈u, v〉L2
α([0,T ]))ξ(u+ v + φuv).(2.2.5)

Proof. For u, v ∈ L∞([0, T ]) we have

d(ξt(u)ξt(v)) = utξt−(u)ξt−(v)dMt + vtξt−(v)ξt−(u)dMt

+ vtutξt−(v)ξt−(u)d[M,M ]t

= utξt−(u)ξt−(v)dMt+vtξt−(v)ξt−(u)dMt+vtutξt(v)ξt(u)α2
tdt

+ φtutvtξt−(v)ξt−(u)dMt

= vtutξt(v)ξt(u)α2
t dt+ ξt−(v)ξt−(u)(ut + vt + φtutvt)dMt.
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Hence

d(e− � t0 usvsα2
sdsξt(u)ξt(v)) = e− � t0 usvsα2

sdsξt−(v)ξt−(u)(ut + vt + φtutvt)dMt,

which shows that exp(−〈u, v〉L2
α([0,T ]))ξ(u)ξ(v) = ξ(u + v + φuv). Relation

(2.2.5) follows then by comparison with (2.2.3).

2.3. Change of variable formula. We recall the following change of vari-
able formula, which follows from Proposition 2 of [É90] after addition of an
absolutely continuous drift term.

Proposition 2.3. Let X = (Xt)t∈[0,T ] be an Rn-valued process satisfy-
ing

dXt = Rtdt+KtdMt, X0 > 0,

where R = (Rt)t∈[0,T ] and K = (Kt)t∈[0,T ] are two predictable square-
integrable Rn-valued processes. For any function R+ × Rn 3 (t, x) 7→ ft(x)
in C2

b(R+ × Rn;R) we have

ft(Xt) = f0(X0) +
t�

0

Lsfs(Xs) dMs+
t�

0

Usfs(Xs) ds+
t�

0

∂fs
∂s

(Xs) ds,(2.3.1)

where

Lsfs(Xs) = is〈Ks,∇fs(Xs)〉+
js
φs

(fs(Xs− + φsKs−)− fs(Xs−))

and

Usfs(Xs) = Rs∇fs(Xs) + α2
s

(
1
2
is〈Hess fs(Xs),Ks ⊗Ks〉

+
js
φ2
s

(fs(Xs− + φsKs−)− fs(Xs−)− φs〈Ks,∇fs(Xs)〉)
)
,

with the convention 0/0 = 0.

2.4. Girsanov theorem. The Girsanov theorem holds in a particular form
when (Mt)t∈[0,T ] is the solution of a structure equation (1.0.1). Let (ψt)t∈[0,T ]
be a bounded predictable process such that 1 + φtψt > 0 for all t ∈ [0, T ],
let (lt)t∈[0,T ] denote the solution of the equation

dlt = lt−ψtdMt, t ∈ [0, T ], l0 = 1,

and let Q be the probability defined by

lt = E

[
dQ

dP

∣∣∣∣ Ft
]
, t ∈ [0, T ].(2.4.1)

Proposition 2.4. Under the probability Q, the process

Zt = Mt −
t�

0

α2
sψs ds, t ∈ [0, T ],(2.4.2)
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is a local martingale which satisfies the structure equation

d[Z,Z]t = α2
t (1 + φtψt)dt+ φtdZt, t ∈ [0, T ].(2.4.3)

Proof. From the Girsanov theorem,

dZt = dMt −
1
lt−

d〈L,M〉t = dMt − α2
tψtdt

is a local martingale under Q, with d〈L,M〉t = lt−α
2
tψtdt, and

d[Z,Z]t = d[M,M ]t = α2
t dt+ φtdMt = α2

t (1 + φtψt)dt+ φtdZt.

If (ψt)t∈[0,T ] and (φt)t∈[0,T ] are deterministic, then (Zt)t∈[0,T ] has the
chaos representation property under Q, since (2.4.3) is a deterministic struc-
ture equation.

3. Computations of predictable representations

3.1. Clark formula. The Clark–Ocone formula (cf. [Cla70], [KO91]) is a
consequence of the chaos representation property for (Mt)t∈[0,T ], and states
that any F ∈ Dom(D) ⊂ L2(Ω,FT , P ) has a representation

F = E[F ] +
T�

0

E[DtF | Ft] dMt.(3.1.1)

It can be proved as follows:

F = E[F ] +
∞∑

n=1

n!
T�

0

tn�

0

. . .

t2�

0

fn(t1, . . . , tn) dMt1 . . . dMtn

= E[F ] +
∞∑

n=1

n

T�

0

In−1(fn(∗, t)1{∗≤t}) dMt

= E[F ] +
T�

0

E[DtF | Ft] dMt.

Although D : L2(Ω,FT , P )→ L2(Ω × [0, T ], dP × α2
t dt) is unbounded, the

representation formula (3.1.1) can be extended to F ∈ L2(Ω,FT , P ).

Proposition 3.1. The operator F 7→ E[D·F | F·] taking its values in
the space of square-integrable adapted processes has a continuous extension
from Dom(D) to L2(Ω,FT , P ).

Proof. We use the bound

‖E[D·F | F·]‖2L2(Ω×[0,T ]) = ‖E[F ]− F‖2L2(Ω) = var(F )

≤ ‖F‖2L2(Ω), F ∈ Dom(D).
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Instead of the adapted projection (E[DtF | Ft])t∈[0,T ] one may also use
the predictable projection (E[DtF | Ft− ])t∈[0,T ]. Here this leads to the same
representation since both processes coincide in L2(Ω × [0, T ], dP × α2

t dt).

3.2. Deterministic structure equation. In this subsection we consider
the case where (φt)t∈[0,T ] ∈ L∞([0, T ]) is a deterministic function. In this
case, the probabilistic interpretation of Dt is known and DtF is explicitly
computable. We define the operator DB : S → L2(Ω × R+, dP × α2

t dt)
on S as

〈DBF, u〉L2
α([0,T ]) =

d

dε
F
(
ω(·) + ε

·�

0

isus ds
)∣∣∣∣
ε=0

, F ∈ S.

For F = ξ(u) and g ∈ L2
α([0, T ]) we have

〈DBF, g〉L2
α([0,T ]) =

d

dε
exp

(
ε

T�

0

gsusαsis ds
)
ξ(u)

∣∣∣∣
ε=0

=
T�

0

gsusαsis ds ξ(u),

hence DB
t ξ(u) = itutξ(u) for t ∈ [0, T ], where

ξ(u) = exp
( T�

0

us dMs −
1
2

T�

0

u2
sα

2
sis ds

) ∏

s∈JTM

(1 + usφs)e−usφs .(3.2.1)

Note that the definition of DBF by duality in L2
α([0, T ]) implies

DB
t

T�

0

usαs dBs = ut, t ∈ [0, T ].

We define a linear transformation T φt of exponential vectors, and more gen-
erally of elements of S, as

Tφt ξ(u) = (1 + utφt)ξ(u), u ∈ L∞([0, T ]).

The transformation T φt is well defined on S because ξ(u1), . . . , ξ(un) are
linearly independent if u1, . . . , un are distinct elements of L2(R+). Since
∆Mt = 0 dt× dP -a.e., T φt ξ(u) coincides dt× dP -a.e. with the value at time
T of the solution of the equation

Zts = 1 +
s�

0

Ztτ−uτ dM
t
τ , s ∈ [0, T ],(3.2.2)

where (M t
s)s∈[0,T ] is defined as

M t
s = Ms + φt1[t,T ](s), s ∈ [0, T ].
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In order to see this we check that Zts = ξs(u) for s < t,

Ztt = (1 + φtut)Ztt− = (1 + φtut)ξt−(u) = (1 + φtut)ξt(u)

(since ξt−(u) = ξt(u) a.s. for fixed t), and for s > t,

Zts = Ztt +
s�

t

Ztτ−uτ dMτ = (1 + φtut)ξt(u) +
s�

t

Ztτ−uτ dMτ ,

hence
Zts

1 + φtut
= ξt(u) +

s�

t

Ztτ−

1 + φtut
uτ dMτ , s > t,

which implies, from (2.2.3),

Zts
1 + φtut

= ξs(u), s > t,

and ZtT = (1 + φtut)ξ(u) = T φt ξ(u) P -a.s. for t ∈ [0, T ].

In other terms, T φt F , F ∈ S, can be interpreted as the evaluation of F
on the trajectories of (Ms)s∈[0,T ] perturbed by addition of a jump of height
φt at time t.

Proposition 3.2. The transformation T φt is multiplicative, i.e.

Tφt (FG) = (T φt F )(T φt G), F,G ∈ S.
Moreover ,

DtF = DB
t F +

jt
φt

(Tφt F − F ), t ∈ [0, T ], F ∈ S,(3.2.3)

and

Dt(FG) = FDtG+GDtF + φtDtFDtG, t ∈ [0, T ], F,G ∈ S.(3.2.4)

Proof. For the multiplicativity we note that

Tφt (ξ(u)ξ(v)) = exp(〈u, v〉L2
α([0,T ]))T

φ
t ξ(u+ v + φuv)

= exp(〈u, v〉L2
α([0,T ]))(1 + φt(ut + vt + φtutvt))ξ(u+ v + φuv)

= (1 + φtut)(1 + φtvt)ξ(u)ξ(v)

= Tφt ξ(u)Tφt ξ(v).

When φt = 0 we have DB
t F = itutξ(u) = itDtF , hence

Dtξ(u) = itDtξ(u) + jtDtξ(u) = itutξ(u) + jtutξ(u)

= DB
t ξ(u) +

jt
φt

(Tφt ξ(u)− ξ(u)) t ∈ [0, T ].
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Concerning the product rule we have, from Lemma 2.2,

Dt(ξ(u)ξ(v)) = exp
( T�

0

usvsα
2
s ds

)
Dtξ(u+ v + φuv)

= exp
( T�

0

usvsα
2
s ds

)
(ut + vt + φtutvt)ξ(u+ v + φuv)

= (ut + vt + φtutvt)ξ(u)ξ(v)

= ξ(u)Dtξ(v) + ξ(v)Dtξ(u) + φtDtξ(u)Dtξ(v)

for u, v ∈ L∞([0, T ]) (see also [Pri96, (6)].

If (φt)t∈[0,T ] is random the probabilistic interpretation of D is unknown,
but we have the product rule

E[Dt(FG) | Ft] = E[FDtG | Ft] + E[GDtF | Ft](3.2.5)

+ φtE[DtFDtG | Ft]
for F,G ∈ S and t ∈ [0, T ] (cf. [PSV00, Prop. 5]).

3.3. Markovian case. This section presents a representation method
which is based on the Itô formula and the Markov property (see also [Pro01]
in the continuous case). Let (Xt)t∈[0,T ] be an Rn-valued Markov (not nec-
essarily time homogeneous) process defined on Ω, satisfying a change of
variable formula of the form

f(Xt) = f(X0) +
t�

0

Lsf(Xs) dMs +
t�

0

Usf(Xs) ds, t ∈ [0, T ],(3.3.1)

where Ls, Us are operators defined on C2 functions. We assume that the
semigroup (Ps,t)0≤s≤t≤T associated to (Xt)t∈[0,T ], i.e.

Ps,tf(Xs) = E[f(Xt) | Fs] = E[f(Xt) |Xs], 0 ≤ s ≤ t ≤ T,
acts on C2

b(Rn) functions, with Ps,t ◦ Pt,u = Ps,u for 0 ≤ s ≤ t ≤ u ≤ T .
Although the probabilistic interpretation of D is not known when (φt)t∈[0,T ]
is random, it is still possible to compute the explicit predictable representa-
tion of f(XT ) using the Itô formula and the Markov property.

Lemma 3.3. Let f ∈ C2
b(Rn). Then

E[Dtf(XT ) | Ft] = (Lt(Pt,T f))(Xt), t ∈ [0, T ].(3.3.2)

Proof. We apply the change of variable formula (3.3.1) to t 7→ Pt,T f(Xt)
= E[f(XT ) | Ft], since Pt,T f is C2. Using the fact that the finite variation
term vanishes since t 7→ Pt,T f(Xt) is a martingale (see e.g. [Pro90, Cor. 1,
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p. 64]), we obtain

Pt,T f(Xt) = P0,T f(X0) +
t�

0

(Ls(Ps,T f))(Xs) dMs, t ∈ [0, T ],

with P0,T f(X0) = E[f(XT )]. Letting t = T , we obtain (3.3.2) by uniqueness
of the representation (3.1.1) applied to F = f(XT ).

In practice, we will use Proposition 3.1 to extend (E[Dtf(XT ) | Ft])t∈[0,T ]
to a less regular function f : Rn → R. As an example, if φt is written as φt =
ϕ(t,Mt), and dSt = σ(t, St)dMt + µ(t, St)dt, we can apply Proposition 2.3
with (Xt)t∈[0,T ] = ((St,Mt))t∈[0,T ] and

Ltf(St,Mt) = itσ(t, St)∂1f(St,Mt) + it∂2f(St,Mt)

+
jt

ϕ(t,Mt)
(f(St + ϕ(t,Mt)σ(t, St),Mt + ϕ(t,Mt))− f(St,Mt)),

since the possible jump of (Mt)t∈[0,T ] at time t is ϕ(t,Mt). Here ∂1, resp. ∂2,
denotes the partial derivative with respect to the first, resp. second, variable.
Hence

E[Dtf(ST ,MT ) | Ft]
= itσ(t, St)(∂1Pt,T f)((St,Mt)) + it(∂2Pt,T f)((St,Mt))

+
jt

ϕ(t,Mt)
(Pt,T f)((St + ϕ(t,Mt)σ(t, St),Mt + ϕ(t,Mt)))

− jt
ϕ(t,Mt)

(Pt,T f)((St,Mt)).

If (Mt)t∈[0,T ] is an Azéma martingale (φt = βMt for t ∈ [0, T ]), then it = 0
dP × dt a.s.

4. Computations of hedging strategies

4.1. Market model. In this subsection we introduce the price process
which will be considered in what follows. Let µ : [0, T ]→ R and σ : [0, T ]→
]0,∞[ be deterministic bounded functions. Let (rt)t∈[0,T ] be a deterministic
non-negative function which models a riskless asset, and let (ψt)t∈[0,T ] be
defined as

ψt =
rt − µt
σtα2

t

, t ∈ [0, T ].

We assume that 1 + φtψt > 0 for t ∈ [0, T ]. If (φt)t∈[0,T ] is not deterministic
this choice is still possible due to the boundedness of (φt)t∈[0,T ] or from
[DP99, Th. 2.1(iii)]. Let Q denote the probability defined by E

[dQ
dP

∣∣Ft
]

= lt
for t ∈ [0, T ], where dlt = lt−ψtdMt for t ∈ [0, T ], with l0 = 1. From
Proposition 2.4,
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Zt = Mt −
t�

0

α2
sψs ds, t ∈ [0, T ],

is a local martingale under Q with angle bracket d〈Z,Z〉t = α2
t (1 + φtψt)dt.

If (φt)t∈[0,T ] is deterministic then (Zt)t∈[0,T ] is a true martingale under Q.
This also holds if

(φt)t∈[0,T ] = (βMt)t∈[0,T ],

from the boundedness of (Mt)t∈[0,T ]. If (φt)t∈[0,T ] is deterministic, we may
start from the data of (α̃t)t∈[0,T ], take d[Z,Z]t = α̃2

t dt + φtdZt and define
(αt)t∈[0,T ] by α2

t = α̃2
t /(1 + φtψt) for t ∈ [0, T ]. Let the price (St)t∈[0,T ] of a

risky asset satisfy the equation

dSt = µtStdt+ σtSt−dZt, t ∈ [0, T ], S0 = 1.(4.1.1)

We have
dSt = rtStdt+ σtSt−dMt, t ∈ [0, T ],(4.1.2)

and under P , (Ste− � t0 rs ds)t∈[0,T ] is a martingale, i.e. the market is arbitrage
free. Let ηt and ζt denote the number of units invested at time t in the risky
and riskless assets respectively. Thus the value Vt of the portfolio at time t
is given by

Vt = ζtAt + ηtSt, t ∈ [0, T ],(4.1.3)

where

dAt = rtAtdt, A0 = 1, t ∈ [0, T ].(4.1.4)

We assume that the portfolio is self-financing, i.e.

dVt = ζtdAt + ηtdSt, t ∈ [0, T ],

therefore
dVt = rtVtdt+ σtηtSt−dMt, t ∈ [0, T ],

and

VT e
− � T0 rt dt = V0 +

T�

0

σtηtSt−e
− � t0 rs ds dMt,(4.1.5)

Suppose that we are required to find a portfolio (ζt, ηt)t∈[0,T ] which leads to
a given value VT = F . By the Clark–Ocone formula,

F = E[F ] +
T�

0

E[DtF | Ft] dMt,

and comparing with (4.1.5) we obtain

V0 = e− � T0 rs dsE[F ],

ηt = σ−1
t S−1

t E[DtF | Ft]e− � Tt rs ds, t ∈ [0, T ].(4.1.6)
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Next we consider different models with explicit computations of hedging
strategies.

4.2. European options and deterministic structure. In this section we
hedge European calls using the Clark formula. Let (Mt)t∈[0,T ] be the martin-
gale described in Section 2.2(a), with deterministic (φt)t∈[0,T ], i.e. (Mt)t∈[0,T ]
is alternatively Brownian or Poisson depending on the vanishing of (φt)t∈[0,T ].
We assume that 1 + σtφt > 0 for all t ∈ [0, T ]. We have

St = exp
( t�

0

σsαsis dBs +
t�

0

(rs − φsλsσs −
1
2
isσ

2
sα

2
s) ds

) Nt∏

k=1

(1 + σTkφTk)

for 0 ≤ t ≤ T , where (Tk)k≥1 denotes the jump times of (Nt)t∈R+ . We will
denote by (Sxt,u)u∈[t,T ] the process defined as

dSxt,u = rtS
x
t,udu+ σuS

x
t,u−dMu, u ∈ [t, T ], Sxt,t = x.

We have

Sxt,T = x exp
( T�

t

σuαuiu dBu +
T�

t

(
ru − φuλuσu −

1
2
iuσ

2
uα

2
u

)
du

)

×
NT∏

k=1+Nt

(1 + σTkφTk)

for 0 ≤ t ≤ T , with St = S1
0,t for t ∈ [0, T ].

Proposition 4.1. Assume that φt ≥ 0 for all t ∈ [0, T ]. Then for 0 ≤
t ≤ T we have

E[Dt(ST −K)+ | Ft] = E

[
itσtS

x
t,T 1[K,∞[(S

x
t,T )

+
jt
φt

(σtφtSxt,T − (K − Sxt,T )+)1[ K
1+σt

,∞[(S
x
t,T )
]

x=St

.

Proof. By Proposition 3.2, for any F ∈ S we have

DtF = DB
t F +

jt
φt

(Tφt F − F ), t ∈ [0, T ].(4.2.1)

We have T φt ST = (1 + σtφt)ST for t ∈ [0, T ], and the chain rule DBf(F ) =
f ′(F )DBF holds for F ∈ S and f ∈ C2

b(R). Since S is an algebra for de-
terministic (φt)t∈[0,T ], we may approach x 7→ (x −K)+ by polynomials on
compact intervals and proceed e.g. as in [Øks96, pp. 5–13]. By dominated
convergence, (ST −K)+ ∈ Dom(D) and (4.2.1) becomes

Dt(ST −K)+ = itσtST 1[K,∞[(ST ) +
jt
φt

((1 + σtφt)ST −K)+ − (ST −K)+)
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for 0 ≤ t ≤ T . The Markov property of (St)t∈[0,T ] implies

E[DB
t (ST −K)+ | Ft] = itσtE[Sxt,T 1[K,∞[(S

x
t,T )]x=St ,

and
jt
φt
E[(Tφt ST −K)+ − (ST −K)+ | Ft]

=
jt
φt
E[((1 + σtφt)Sxt,T −K)+ − (Sxt,T −K)+]x=St

=
jt
φt
E[((1 + σtφt)Sxt,T −K)1[ K

1+σtφt
,∞[(S

x
t,T )]x=St

− jt
φt
E[(Sxt,T −K)+1[K,∞[(S

x
t,T )]x=St

=
jt
φt
E[σtφtSxt,T 1[ K

1+σtφt
,∞[(S

x
t,T ) + (Sxt,T −K)1[ K

1+σtφt
,K](S

x
t,T )]x=St

=
jt
φt
E[σtφtSxt,T 1[ K

1+σtφt
,∞[(S

x
t,T )− (K − Sxt,T )+1[ K

1+σtφt
,∞](S

x
t,T )]x=St

=
jt
φt
E[(σtφtSxt,T − (K − Sxt,T )+)1[ K

1+σtφt
,∞[(S

x
t,T )]x=St .

If (φt)t∈[0,T ] is not constrained to be positive then

E[Dt(ST −K)+ | Ft] = itσtE[Sxt,T 1[K,∞[(S
x
t,T )]x=St

+
jt
φt
E[σtφtSxt,T 1[ K

1+σtφt
,∞[(S

x
t,T ) + (Sxt,T −K)1[ K

1+σtφt
,K](S

x
t,T )]x=St,

with the convention 1[b,a] = −1[a,b] for 0 ≤ a < b ≤ T . Proposition 4.1 can
also be proved using Lemma 3.3 and the Itô formula (2.3.1). In the deter-
ministic case, the semigroup Pt,T can be explicitly computed. Let Γ σt,T =� T
t isα

2
sσ

2
s ds denote the variance of

� T
t isαsσs dBs for t ∈ [0, T ], and let

Γt,T =
� T
t γsds, t ∈ [0, T ], denote the intensity of NT − Nt under Q, where

γt = λt(1 + φtψt) for t ∈ [0, T ].

Proposition 4.2. For f ∈ Cb(R) we have

Pt,T f(x) =
∞∑

k=0

e−Γt,T

k!

∞�

−∞
νt0

�

[t,T ]k

γt1 . . . γtk

×f
(
xe−Γ

σ
t,T /2+(Γσt,T )1/2t0− � Tt φsγsσs ds

k∏

i=1

(1+σtiφti)
)
dt1 . . . dtk dt0,

where ν denotes the standard Gaussian density.
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Proof. We have Pt,T f(x) = E[f(ST ) |St = x] = E[f(Sxt,T )], and

Pt,T f(x) =
∞∑

k=0

E[f(Sxt,T ) |NT −Nt = k] exp(−Γt,T )
Γ kt,T
k!

.

For k ∈ N, since (NΓ−1
t,s
− Nt)s∈[t,T ] is a standard Poisson process, condi-

tionally on {NT −Nt = k}, the first n jump times (T1, . . . , Tn) of (Ns)s∈[t,T ]
have the law

k!
(Γt,T )k

1{t<t1<...<tk<T}γt1 . . . γtkdt1 . . . dtk,

and conditionally on {NT −Nt = k}, the jump times (Γt,T1 , . . . , Γt,Tk) have
a uniform law on [0, Γt,T ]k. We then use the identity in law between Sxt,T
and

xXt,T exp
(
−
T�

t

φsλs(1 + φsψs)σs ds
) NT∏

k=1+Nt

(1 + σTkφTk),

where
Xt,T = exp(−Γ σt,T /2 + (Γ σt,T )1/2W ),

and W a standard Gaussian random variable, independent of (Nt)t∈[0,T ].
This identity holds because (Bt)t∈[0,T ] is a standard Brownian motion, in-
dependent of (Nt)t∈[0,T ].

See Proposition 8 of [JP02] for a computation of

E
[

exp
(
−
T�

0

rs ds
)

(ST −K)+
]

in terms of the classical Black–Scholes function

BS(x, T ; r, σ2;K) = E[e−rT (xerT−σ
2T/2+σWt −K)+],

where Wt is a centered Gaussian random variable with variance t.

4.3. Asian options and deterministic structure. The price at time t of
such an option is

E

[
e− � Tt rs ds

(
1
T

T�

0

Su du−K
)+ ∣∣∣∣ Ft

]
.

The next proposition gives us a replicating hedging strategy for Asian op-
tions in the case of a deterministic structure equation model. Following
[LL96, p. 91], we define the auxiliary process

Yt =
1
St

(
1
T

t�

0

Su du−K
)
, t ∈ [0, T ].
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Proposition 4.3. There exists a measurable function C̃ on R+×R such
that C̃(t, ·) is C1 for all t ∈ R+, and

StC̃(t, Yt) = E

[(
1
T

T�

0

Su du−K
)+ ∣∣∣∣ Ft

]
.

Moreover , the replicating portfolio for an Asian option with payoff
(

1
T

T�

0

Su du−K
)+

is given by (4.1.3) and

(4.3.1) ηt =
1
σt
e− � Tt rs ds

[
C̃(t, Yt)σt

+ (1 + σtφt)
(
jt
φt

(
C̃

(
t,

Yt
1 + σtφt

)
− C̃(t, Yt)

)
− itσtYt∂2C̃(t, Yt)

)]
.

Proof. With the above notation, the price of the Asian option at time t
becomes

E[e− � Tt rs dsST (YT )+ | Ft].
For 0 ≤ s ≤ t ≤ T , we have

d(StYt) =
1
T
d
( t�

0

Su du−K
)

=
St
T
dt,

hence
StYt
Ss

= Ys +
1
T

t�

s

Su
Ss

du.

Let H ∈ C2
b(R). We have

E[H(STYT ) | Ft] = E

[
H

(
StYt +

1
T

T�

t

Su du

) ∣∣∣∣ Ft
]

= E

[
H

(
xy +

x

T

T�

t

Su
St

du

)]

y=Yt, x=St

.

Let C ∈ C2
b(R+ × R2) be defined as

C(t, x, y) = E

[
H

(
xy +

x

T

T�

t

Su
St

du

)]
,

i.e.
C(t, St, Yt) = E[H(STYT ) | Ft].
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When H(x) = x+, since for any t ∈ [0, T ], St is positive and Ft-measurable,
and Su/St is independent of Ft for u ≥ t, we have

E[H(STYT ) | Ft] = E[ST (YT )+ | Ft] = StE

[(
ST
St

YT

)+ ∣∣∣∣Ft
]

= StE

[(
Yt +

1
T

T�

t

Su
St

du

)+ ∣∣∣∣Ft
]

= StE

[(
y +

1
T

T�

t

Su
St
du

)+ ∣∣∣∣
]

y=Yt

= StC̃(t, Yt)

with
C̃(t, y) = E

[(
y +

1
T

T�

t

Su
St

du

)+]
.

We now proceed as in [Bel99], which deals with the sum of a Brownian
motion and a Poisson process. From the expression for 1/St we have

d

(
1
St

)
=

1
St−

[(
−rt +

α2
tσ

2
t

1 + σtφt

)
dt− σt

1 + σtφt
dMt

]
,

hence by (2.3.1),

dYt = Yt

(
−rt +

α2
tσ

2
t

1 + σtφt

)
dt+

1
T
dt− Yt−σt

1 + σtφt
dMt.

Applying Lemma 3.3 we get

(4.3.2) E[DtH(STYT ) | Ft] = LtC(t, St, Yt)

= it

(
σtSt−∂2C(t, St, Yt)−

Ytσt
1 + σtφt

∂3C(t, St, Yt)
)

+
jt
φt

(
C

(
t, St− + σtSt− , Yt− −

Ytσt
1 + σtφt

)
− C(t, St− , Yt−)

)
.

Given a family (Hn)n∈N of C2
b functions such that |Hn(x)| ≤ x+ and |H ′n(x)|

≤ 2 for x ∈ R and n ∈ N, and converging pointwise to x 7→ x+, by dominated
convergence (4.3.2) holds for C(t, x, y) = xC̃(t, y) and we obtain

E

[
Dt

(
1
T

T�

0

Su du−K
)+ ∣∣∣∣Ft

]

= itC̃(t, Yt)σtSt

+ St

(
jt
φt

(
C̃

(
t,

Yt
1 + σtφt

)
− C̃(t, Yt)

)
− itσtYt∂2C̃(t, Yt)

)

+ Stσtφt

(
jt
φt

(
C̃

(
t,

Yt
1 + σtφt

)
− C̃(t, Yt)

)
− itσtYt∂2C̃(t, Yt)

)
.
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As a particular case we consider the Brownian motion model, i.e. φt = 0
for all t ∈ [0, T ], so it = 1, jt = 0 for all t ∈ [0, T ]. In this case we have

ηt = e− � Tt rs ds(−Yt∂2C̃(t, Yt) + C̃(t, Yt))

= e− � Tt rs ds
(
St

∂

∂x
C̃

(
t,

1
x

(
1
T

t�

0

Su du−K
)) ∣∣∣∣

x=St

+ C̃(t, Yt)
)

=
∂

∂x

(
xe− � Tt rsdsC̃

(
t,

1
x

(
1
T

t�

0

Su du−K
))) ∣∣∣∣

x=St

, t ∈ [0, T ],

which can be denoted informally as a partial derivative with respect to St.

4.4. European options and Azéma martingales. Let −2 ≤ β < 0, and let
(Mt)t∈[0,T ] be the unique solution of the structure equation

d[M,M ]t = dt+ βMt−dMt, t ∈ [0, T ].(4.4.1)

This process has the chaos representation property, hence the results of
Section 3 apply. This allows us to obtain an explicit hedging formula for the
model of [DP99]. We use the convention 1[b,a] = −1[a,b] for 0 ≤ a < b ≤ T .

Proposition 4.4. We have

E[Dt(ST −K)+ | Ft]
=

1
βMt

E
[
σtβ(y +MT −Mt)Sxt,T 1[ K

1+σtβ(y+MT−Mt)
,∞[(S

x
t,T )

+ (Sxt,T −K)1[ K
1+σtβ(y+MT−Mt)

,K](S
x
t,T )
]y=Mt

x=St
.

Proof. Let (Xt)t∈[0,T ] = ((St,Mt))t∈[0,T ], (Rt)t∈[0,T ] = ((rtSt, 0))t∈[0,T ],
(Kt)t∈[0,T ] = ((σtSt, 1))t∈[0,T ], and X0 = (1, 0). By Lemma 3.3, for f ∈
C2

b(R2) we have

E[Dtf(XT ) | Ft] = (Lt(Pt,T f))(Xt)

=
1

βMt
((Pt,T f)(Xt + βMtKt)− (Pt,T f)(Xt))

=
1

βMt
((Pt,T f)((1 + βMtσt)St, (1 + β)Mt)− (Pt,T f)(St,Mt))

=
1

βMt
E[f((1 + σtβ(y +MT −Mt))Sxt,T ,

(1 + β(y +MT −Mt)))]
y=Mt

x=St

− 1
βMt

E[f(Sxt,T , y +MT −Mt)]
y=Mt

x=St .
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In particular if f(x, y) = f(x) depends only on the first variable we have

E[Dtf(ST ) | Ft]
=

1
βMt

E[f((1 + σtβ(y +MT −Mt))Sxt,T )− f(Sxt,T )]y=Mt

x=St .

Approaching the function x 7→ (x − K)+ with a sequence (fn)n∈N of C2
b

functions converging pointwise with |fn(x)| ≤ (x−K)+ and |f ′n(x)| ≤ 2 for
x ∈ R and n ∈ N, we obtain

E[Dt(ST −K)+ | Ft]
=

1
βMt

E[((1 + σtβ(y +MT −Mt))Sxt,T −K)+ − (Sxt,T −K)+]y=Mt

x=St

=
1

βMt
E
[
((1 + σtβ(y +MT −Mt))Sxt,T −K)1[ K

1+σtβ(y+MT−Mt)
,∞[(S

x
t,T )

− (Sxt,T −K)1[K,∞[(S
x
t,T )
]y=Mt

x=St

=
1

βMt
E
[
σtβ(y +MT −Mt)Sxt,T 1[ K

1+σtβ(y+MT−Mt)
,∞[(S

x
t,T )

+ (Sxt,T −K)1[ K
1+σtβ(y+MT−Mt)

,K](S
x
t,T )
]y=Mt

x=St
.

4.5. Lookback options. Hedging strategies for Lookback options have
been computed in [Ber98] using the Clark–Ocone formula. In this section
we show that classical martingale methods also apply in this case. We assume
that (Mt)t∈[0,T ] = (Bt)t∈[0,T ] is a standard Brownian motion, i.e. αt = 1 and
φt = 0 for every t ∈ [0, T ], and take rt = r ≥ 0 and σt = σ ≥ 0 for every
t ∈ [0, T ]. Under the risk-free probability P the asset price (St)t∈[0,T ] has
the dynamics

dSt = rStdt+ σStdBt, t ∈ [0, T ],

so (4.1.5) becomes

VT e
−rT = V0 +

T�

0

σηtSte
−rt dBt, t ∈ [0, T ].

Let mt
s = infu∈[s,t] Su and M t

s = supu∈[s,t] Su for 0 ≤ s ≤ t ≤ T , and let
Mt

s be either mt
s or M t

s. In the Lookback option case the payoff H(ST ,MT
0 )

depends not only on the price of the underlying asset at maturity but also
on all prices of the asset from the initial time to maturity. Let Lookt be the
price of the Lookback option given by

Lookt = e−r(T−t)E[H(ST ,MT
0 ) | Ft], H ∈ C2

b(R2), t ∈ [0, T ].

Proposition 4.5. There exists a C1 function f such that

f(St,Mt
0, t) = E[H(ST ,MT

0 ) | Ft], 0 ≤ t ≤ T.
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The replicating portfolio of a Lookback option with payoff H(ST ,MT
0 ) and

price Lookt = f(St,Mt
0, t) at time t is given by (4.1.3), and

ηt = e−r(T−t)∂1f(St,Mt
0, t), t ∈ [0, T ].(4.5.1)

Proof. It suffices to deal with the case Mt
s = mt

s. The existence of f
follows from the Markov property, more precisely

f(x, y, t) = E[H(Sxt,T , y ∧MT
t )].

Applying the change of variable formula, for t ∈ [0, T ] we have

df(St,Mt
0, t) =

[
∂3f + rSt∂1f +

1
2
σ2S2

t ∂
2
1f

]
(St,Mt

0, t)dt

+ ∂2f(St,Mt
0, t)dMt

0 + σSt∂1f(St,Mt
0, t)dBt.

Since (E[H(ST ,MT
0 ) | Ft])t∈[0,T ] is a P -martingale, we have

df(St,Mt
0, t) = σSt∂1f(St,Mt

0, t)dBt, t ∈ [0, T ].

Then

e−rTF = e−rTE[F ] +
T�

0

e−rTσSt
∂

∂x
f(x,Mt

0, t)

∣∣∣∣
x=St

dBt, t ∈ [0, T ],

which shows (4.5.1).

It is stated in Bermin [Ber98] that we should have
t�

0

∂2f(Ss,Ms
0, s) dMs

0 = 0(4.5.2)

for the delta hedging method to work. We showed in Proposition 4.5 that
the delta hedging approach can be applied without having to verify (4.5.2),
since (Mt

0)t∈[0,T ] is a monotone process with finite variation.
Relation (4.5.1) can be written informally as

ηt =
∂

∂St
Lookt, t ∈ [0, T ].

Let

dTt (y) =
log St

y +
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

, N (y) =
1√
2π

y�

−∞
e−

1
2u

2
du.

A standard Lookback call option is the right to buy the underlying asset at
the historically lowest price. In this case the strike is mT

0 and the payoff is

G = ST −mT
0 .

From [DJ98, Prop. 4, p. 271], the price Lookt at time t is given by

(4.5.3) Lookt = EQ[e−r(T−t)(ST −mT
0 ) | Ft]

= StN (dTt (mt
0))− e−r(T−t)mt

0N (dTt (mt
0)− σ

√
T − t)
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+ e−r(T−t)
Stσ

2

2r

[(
St
mt

0

)−2r/σ2

N
(
−dTt (mt

0) +
2r
√
T− t
σ

)

− er(T−t)N (−dTt (mt
0))
]
.

In the following proposition we recover the result of [Ber98, §2.6.1, p. 29],
using the delta hedging approach instead of the Clark formula, as an appli-
cation of Proposition 4.5.

Proposition 4.6. The hedging strategy for a standard Lookback call op-
tion is given by

ηt = N (dTt (mt
0))− σ2

2r
N (−dTt (mt

0))(4.5.4)

+ e−r(T−t)
(
St
mt

0

)−2r/σ2(
σ2

2r
− 1
)
N
(
−dTt (mt

0) +
2r
√
T−t
σ

)
.

Proof. We need to compute the following derivatives:
∂

∂St
(N (dTt (mt

0)))

=
∂

∂St

(
1√
2π

dTt (mt0)�

−∞
e−

1
2u

2
du

)

=
1√
2π

[
∂

∂St
(dTt (mt

0))
]

exp
(
−1

2
(dTt (mt

0))
2
)

=
1√
2π

[
∂

∂St

( log St
mt0

+
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

)]
exp
(
−1

2
(dTt (mt

0))2
)

=
1

Stσ
√

2π(T − t)
exp
(
−1

2
(dTt (mt

0))2
)
,

and
∂

∂St
(N (dTt (mt

0)− σ
√
T − t))

=
1

Stσ
√

2π(T − t)
exp
(
−1

2
(dTt (mt

0)− σ
√
T − t)2

)
.

Similarly we have

∂

∂St

(
N
(
−dTt (mt

0) +
2r
√
T − t
σ

))

= − 1

Stσ
√

2π(T − t)
exp
(
−1

2

(
−dTt (mt

0) +
2r
√
T − t
σ

)2)
,
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and
∂

∂St
(N (−dTt (mt

0))) = − 1

Stσ
√

2π(T − t)
exp
(
−1

2
(dTt (mt

0))2
)
.

Finally,

∂

∂St

(
St
mt

0

)−2r/σ2

=
−2r
mt

0σ
2

(
St
mt

0

)−2r/σ2−1

.

The above expressions can be combined to compute the derivative of Lookt
in (4.5.3), and to obtain

ηt = N (dTt (mt
0)) +

1

σ
√

2π(T − t)
exp
(
−1

2
(dTt (mt

0))2
)

− e−r(T−t)mt
0

1

Stσ
√

2π(T − t)
exp
(
−1

2
(dTt (mt

0)− σ
√
T − t)2

)

+ e−r(T−t)
σ2

2r

[(
St
mt

0

)−2r/σ2

N
(
−dTt (mt

0) +
2r
√
T − t
σ

)

− er(T−t)N (−dTt (mt
0))
]

+ e−r(T−t)
Stσ

2

2r

[ −2r
mt

0σ
2

(
St
mt

0

)−2r/σ2−1

N
(
−dTt (mt

0) +
2r
√
T − t
σ

)

−
(
St
mt

0

)−2r/σ2
1

Stσ
√

2π(T − t)
exp
(
−1

2

(
−dTt (mt

0) +
2r
√
T − t
σ

)2)

+ er(T−t)
1

Stσ
√

2π(T − t)
exp
(
−1

2
(dTt (mt

0))2
)]

= N
(
−dTt (mt

0) +
2r
√
T − t
σ

)[
e−r(T−t)

σ2

2r

(
St
mt

0

)−2r/σ2

+ e−r(T−t)
Stσ

2

2r

× −2r
mt

0σ
2

(
St
mt

0

)−2r/σ2−1]
+N (dTt (mt

0))

−N (−dTt (mt
0))
[
−e−r(T−t) σ

2

2r
· er(T−t)

]

+
1

σ
√

2π(T − t)

{
exp
(
−1

2
(dTt (mt

0))2
)[

1 + e−r(T−t)
Stσ

2

2r
· e

r(T−t)

St

]

− e−r(T−t)
[
mt

0

St
exp
(
−1

2
(dTt (mt

0)− σ
√
T − t)2

)

+
σ2

2r

(
St
mt

0

)−2r/σ2

exp
(
−1

2

(
−dTt (mt

0) +
2r
√
T − t
σ

)2)]}
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= e−r(T−t)
(
St
mt

0

)−2r/σ2(
σ2

2r
− 1
)
N
(
−dTt (mt

0) +
2r
√
T − t
σ

)

+N (dTt (mt
0))− σ2

2r
N (−dTt (mt

0))

+
1

σ
√

2π(T − t)

{(
1 +

σ2

2r

)
exp
(
−1

2
dTt (mt

0)2
)

− e−r(T−t)
[
mt

0

St
exp
(
−1

2
(dTt (mt

0)− σ
√
T − t)2

)

+
σ2

2r

(
St
mt

0

)−2r/σ2

exp
(
−1

2

(
−dTt (mt

0) +
2r
√
T − t
σ

)2)]}
.

To obtain (4.5.4), it is sufficient to show that

0 =
(

1 +
σ2

2r

)
exp
(
−1

2
dTt (mt

0)2
)

− e−r(T−t)
[
mt

0

St
exp
(
−1

2
(dTt (mt

0)− σ
√
T − t)2

)

+
σ2

2r

(
St
mt

0

)−2r/σ2

exp
(
−1

2

(
−dTt (mt

0) +
2r
√
T − t
σ

)2)]
.

To see this, one can observe that

exp
(
−1

2
(dTt (y)− σ

√
T − t)2

)

= exp
(
−1

2
[(dTt (y))2 + σ2(T − t)− 2dTt (y)σ

√
T − t]

)

= exp
(
−1

2
(dTt (y))2

)

× exp
(
−1

2

[
σ2(T − t)− 2

(
log

St
y

+
(
r +

1
2
σ2
)

(T − t)
)])

= exp
(
−1

2

[
−2 log

St
y
− 2r(T − t)

]
− 1

2
(dTt (y))2

)

= er(T−t)
St
y

exp
(
−1

2
(dTt (y))2

)
,

and

exp
(
−1

2
(−dTt (y) + 2r

√
T − t/σ)2

)

= exp
(
−1

2
(dTt (y))2 − 1

2

[
4r2

σ2 (T − t)− 4r
σ
dTt (y)

√
T − t

])
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= exp
(
−1

2
(dTt (y))2

)

× exp
(
−1

2

[
4r2

σ2 (T − t)− 4r
σ2

(
log

St
y

+
(
r +

1
2
σ2
)

(T − t)
)])

= exp
(
−1

2
(dTt (y))2

)

× exp
(−2r2

σ2 (T − t) +
2r
σ2 log

St
y

+
2r2

σ2 (T − t) + r(T − t)
)

= er(T−t)
(
St
y

)2r/σ2

exp
(
−1

2
(dTt (y))2

)
.

Similar calculations using (4.5.1) are possible for other Lookback options,
such as options on extrema and partial Lookback options (cf. [Kha02]).
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