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HEDGING IN COMPLETE MARKETS
DRIVEN BY NORMAL MARTINGALES

Abstract. This paper aims at a unified treatment of hedging in market
models driven by martingales with deterministic bracket (M, M), including
Brownian motion and the Poisson process as particular cases. Replicating
hedging strategies for European, Asian and Lookback options are explicitly
computed using either the Clark—Ocone formula or an extension of the delta
hedging method, depending on which is most appropriate.

1. Introduction. The Clark formula [Cla70] allows in principle the cal-
culation of replicating hedging strategies in complete markets [KO91], but
explicit computations are in general difficult to perform via this formula. For
markets driven by Brownian motion a proof of the classical Black—Scholes
formula via the Clark—Ocone formula can be found in [@ks96, Ch. 5, p. 13].
This method has recently been extended to markets driven by a Poisson
process in [AOPUO00]. Brownian motion and the compensated Poisson pro-
cess share the important chaos representation property which is crucial for
market completeness.

In this paper we consider a larger family (M;);cjor) of martingales sat-
isfying the following two conditions:

(a) the chaotic representation property (with respect to market complete-
ness), i.e. every square-integrable functional, measurable with respect to the
filiration generated by (My).e(o,77, can be expanded into a series of multiple
stochastic integrals of deterministic functions with respect to (Mt)tE[O,T]a

(b) the condition d(M, M), = afdt, where (o)seor] i a square inte-
grable deterministic function.
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Hypothesis (b) implies that ([M, M]; — Sg o2 ds)ieo) is a martingale,
hence from (a) there exists a process (¢t ).e(o,r) such that (M;),c(o 1] satisfies
the structure equation

(1.0.1) d[M, M); = aidt + ¢edMy, t € [0,T]

(cf. [E90]). This equation can be viewed as a decomposition of d[M, M]; by
projection on dt and dMy, which yields a closed It6 type change of variable
formula (see Prop. 2.3).

Brownian motion is obtained for ay = 1 and ¢; = 0 for all ¢ € [0,7],
and the Poisson process corresponds to non-zero constant ¢, t € [0, 7]. The
choice ¢y = M;, —2 < 8 < 0, considered in [DP99], corresponds to the
Azéma martingale and yields another complete market model with jumps.
Choosing (¢t)te[07T] to be a deterministic function allows the driving process
to be alternatively Brownian or Poisson, depending on the vanishing of ¢;
(see [JP02] for the corresponding market model).

The Clark—Ocone formula states the predictable representation of a ran-
dom variable F' as

T

F = E[F)+ \ E[D\F | 7] dM;,

0
where (Ft);cjo,7) is the filtration generated by (M;)cor) and Dy is the
gradient operator that lowers the degree of multiple stochastic integrals
with respect to (Mt)te[o,T]- One of the goals of this paper is to compute the
process t — E[D.F | F;] in several situations. We obtain explicit hedging
formulas for European calls in the mixed Brownian—Poisson model of [JP02]
and in the Azéma martingale model of [DP99] and for Asian and Lookback
options.

More precisely, let (SZC,T)te[O,T] denote the stock price process driven
by (M¢)ejo,r), starting from x at time ¢, with volatility (o¢)ejo,7), and let
it = 1yp,—0y, Jt = 1 — ¢, St = Sé’t for t € [0,T]. In a model with determin-
istic structure equation, i.e. d[M, M]; = aidt + ¢:dM; with deterministic
(¢t)te[o,T}> the replicating hedging strategy of a European call with payoff
(St — K)™ is given by

e StT resds

oS, tOt01, T H{SE 2K}

J . ac
+ ¢Ti (0e0eStr — (K — Str) ) sz, >k /(1400))
=25

(cf. (4.1.6) and Prop. 4.1). This formula extends both the classical Black—
Scholes hedging formula in the Brownian case (¢ = 0 for all ¢ € [0,7]),
and the hedging formula of [AOPU00, Th. 6.1] in the Poissonian jump case
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(¢r = 1 for all t € [0,T7]). It can be obtained both from the Clark formula
and from martingale methods. The above conditional expectation can also
be explicitly computed (see Prop. 4.2). The case of Asian options is treated in
Proposition 4.3 in the deterministic structure equation model, and Lookback
options are considered in Proposition 4.5 in a market driven by Brownian
motion. In the Azéma martingale model of [DP99], i.e. d[M, M|, = dt +
BM;-dM;, —2 < 3 < 0, we obtain

e~ StT rsds

trs ——
/BMtJtSt

E[atﬁ(y + My — My)SPp1 o((8E1)

e Ty ey
1o Byt Mp—3y)
y=DM;

1 K ST
[1+0t5(?/+MT—1\/1t) ’K} ( t’T) =25}

+ (Sir — K)

(see Prop. 4.4).

We proceed as follows. In Section 2 we introduce the notation of chaotic
calculus, the solutions of structure equations and the Clark—Ocone formula
which gives the predictable representation of the random variable F'. We
also state the change of variable formula and Girsanov theorem, which hold
in a particular form for solutions of structure equations. In Section 3 we de-
scribe different methods for the computation of predictable representations
for the general class of normal martingales having the chaos representation
property. The intrinsic expression of the gradient D is completely known if
(#t)te[o,r] is deterministic, i.e. for the Brownian, Poisson and deterministic
structure equation models (Section 3.2). In the Markovian case (Section 3.3)
it is possible to combine the Clark—Ocone and It6 formulas to obtain the
explicit predictable representation of F'. Section 4 is devoted to the compu-
tation of replicating portfolios. In Section 4.2 we hedge European calls using
the Clark formula, extending the method applied in the Brownian case in
[@ks96, Ch. 5, pp. 13-15]. In Sections 4.3-4.5 we deal with Asian, European
and Lookback options, in particular we use the delta hedging approach to
recover some results obtained in [Ber98] from the Clark formula.

2. Notation and preliminaries

2.1. Chaotic calculus. Let (Mp)cjo,) be a martingale on the space {2
of cadlag functions from [0,7] to R, having the chaos representation prop-
erty. Let (at)icor) € L?([0,T]) be a positive deterministic non-vanishing
square-integrable function, and assume that (M;).cor) has deterministic
angle bracket d(M,M); = afdt. We denote by (F)cpo,r] the filtration
generated by (M;);c(o,77, and by L2([0,T])°™ the space L2([0,T], adt)°"
of afl e afn dty ...dt, square-integrable symmetric functions. The multiple
stochastic integral I,,(f,) is defined as
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T tn to
L(fa) =nt{ oo\ e, tn) dMy, o dM,, n>1,
00 0
for f, € L2((0,T))°", with
(2.1.1) ElLy(fa)Im(9m)] = 2! fn_my(frs 9m) £2 (0,17)0m -

The chaos representation property for (Mt)te[o,T] states that every F €
L%(£2) has a decomposition as F = > °° I,(f,). Let D : Dom(D) —
L2(02 x [0,T],dP x a2dt) denote the closable, unbounded gradient operator
defined as

D,F = annq(fn(*,t)) dP x dt-a.e.,

n=1

with F =" I,(fn) in Dom(D), i.e.

(o]
Z ”n!anH%?(Ri) < 0.
n=1

2.2. Structure equations. Let L3G(£2 x [0,T]) be the space of bounded,
(Ft)ter, -adapted stochastic processes. We assume that (M;).cjo,r is a so-
lution of the structure equation

(2.2.1) d[M, M); = aidt + ¢dMy, t € [0,T),

where ¢y = (t, M;-) is a deterministic function of ¢t and M. Existence and
uniqueness of solutions are guaranteed when ¢; is a deterministic function
[£90]. Existence is proved when ¢; = ¢(M,-) and ¢ is a continuous function
[Mey89], and the solution is unique when ¢(z) = [z with § € [-2,0)
(cf. [E90]). See also [Pha00], [Tav99] for recent results on structure equations.
Let i¢ = 1{4,—0} and j; = 1y4, 201 = 1 —1; for t € [0,T]. The continuous part
of (My)¢epo,r) is given by dMf = i;dM; and the possible jump of (M;)ycpo 1]
at time ¢t € [0,7T] is AM; = ¢; (see [E90, p. 77)).

(a) If (¢¢)seo,r] is deterministic, let A\, = jiaf /@7 for ¢t € [0,T]. Then
(M¢)¢epo,r) can be represented as

(2.2.2)  dM; = iyoqdB; + ¢y (AN, — \dt), te€[0,T], My=0,

where (Bt).e(o,r) is a standard Brownian motion, and (Nt)yecpo,7] a Poisson
process independent of (By);c(o,r], With intensity vy = Sf) As ds for t € [0,T]
(cf. [E90, Prop. 4] and [JP02]).

(b) If ¢ = My, 3 € R, then (2.2.1) has a unique solution called the
Azéma martingale (cf. [E90]). If —2 < B < 0, this solution has the chaos
representation property and it has been used to model a complete market
with jumps in [DP99].
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Figure 1 shows a sample path of (St)te[o,T} and the corresponding func-
tion (i¢)ie[o,r] chosen to be a simple indicator function, with Sp = 4, oy = 1,
a? =50, ¢y = 1.6iy, for t € [0,T].

14+
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Fig. 1. Sample trajectory of (St);c[o,] (vertical lines represent jumps)
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Fig. 2. Sample path of an Azéma martingale

Figure 2 is a simulation of an Azéma martingale with 3 # —1, from a
discretization of the structure equation (2.2.1):
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AXy = ﬁ);t_ +/(BX-/2)% + At
with probabilities
1 - BX;-
p=; ~
2" X, 22 + At

In all cases of interest in this paper we have (¢1).cj0,1] € Liq(£2 % [0,T1),

since if (¢¢)sepo,r) = (BMi)refo.r) then sup,cpo gy [Mi] < (—2/B8)1/? (see [E90,
p. 83]). Given (u¢)epo,r) € Lgq(§2 x [0,T1]), we denote by (§¢(u))scio,r the
solution of the equation

t
(2.2.3) Zy =14\ Z,usdM,, t€(0,T),

0
which can be written as ([Pro90, Th. 36, p. 77])

t t
1 2 2. *’U«s(bs
(2.24)  &(u) =exp (Sus dM — 5 (S)usaszs d5> H (14 usops)e ,

0 seJi,

where J}, denotes the set of jump times of (Mj)sepoy for ¢ € [0,T], and let
§(u) = &r(u). If w € L*®(]0,T]) then & (u) can be represented as

o0

() = D — Il )",

n=0
and we have D& (u) = 1jg 4(s)usé&i(u) for s,t € [0, T7.

DEFINITION 2.1. Let & denote the linear space generated by exponential
vectors of the form &(u), where u € L*°([0,T]).

The space S is dense in L?(£2), and by the lemma below, S is an algebra
for the pointwise multiplication of random variables if (¢);c(o, ) s deter-
ministic. The following is a version of Yor’s formula [Yor76] or Theorem 37
of [Pro90, p. 79|, for martingales with deterministic bracket (M, M),.

LEMMA 2.2. For any u,v € L*([0,T]),
(2.2.5) §(u)§(v) = exp({u, v) £z (jo,17))&(u + v + Puv).
Proof. For u,v € L*([0,T]) we have
d(&(w)&(v)) = - (W& (V)dMy + ve&i- (V)& (u)dM,
+ vy (v) & (w)d[M, M];
= ur&p- (w)&p- (v)dMe+vi&- (V)€ (u)d My +Utut§t(v)§t(u)a?dt
+ Grupvréy- (v)&- (w)dM;
= vy (0)&r (w)ag dt + & (0)€— (u) (ur + ve + Grugvy)dM.
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Hence
d(e S0 v 025 g ()€, () = e Yo v 02dsg, (0)€,— (u) (ur + vi + rugvy)dMy,

which shows that exp(—(u,v) 2 jo,77))€(w)§(v) = &(u + v + guv). Relation
(2.2.5) follows then by comparison with (2.2.3). m

2.3. Change of variable formula. We recall the following change of vari-
able formula, which follows from Proposition 2 of [E90] after addition of an
absolutely continuous drift term.

PROPOSITION 2.3. Let X = (Xy)iejo,r) be an R"-valued process satisfy-
mng
dX; = Rydt + KidM:,  Xo > 0,
where R = (Ri)icpor) and K = (K)o, are two predictable square-

integrable R™-valued processes. For any function Ry x R" 3 (t,z) — fi(z)
in C2(R4 x R™;R) we have

t t t
(23.1)  fi(Xe) = fo(Xo) + | L fo(Xs) dM, + | U, £o(X,) ds + %l;s (X,)ds,
0 0 0

where
LX) = 1(Ka VAKX + 22 (X + 60) = 1.(X0)
and
UL 0) = RV + 02 (it £,(X0), K )

2 (X + ) = [ ) = (K st“‘s)”)’

with the convention 0/0 = 0.

2.4. Girsanov theorem. The Girsanov theorem holds in a particular form
when (M),c[o,7) is the solution of a structure equation (1.0.1). Let (¢t):c(0,7]
be a bounded predictable process such that 1 + ¢41p; > 0 for all ¢ € [0,T],
let (It)e[o,r) denote the solution of the equation

dly = l—ed My, t e [O,T], lp =1,
and let @) be the probability defined by

dQ
2.4.1 i =F|—
(241) N E:
PROPOSITION 2.4. Under the probability QQ, the process
¢
(2.4.2) Zy =My —\o2¢sds, te[0,T],
0

}"t], t€[0,T].
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is a local martingale which satisfies the structure equation
(2.4.3) d[Z,Z); = o} (1 + ¢pty)dt + ¢ydZy,  t € [0, T).
Proof. From the Girsanov theorem,
dZ; = dM; — % d(L, M)y = dM; — oZ1ydt
is a local martingale under Q, with d(L, M); = l,- a2y dt, and
d[Z, Z]; = dIM, My = ofdt + ¢pd My = of (1 + deipy)dt + ¢rdZ;. m

If (Yi)iepor) and (é¢)icpo,r) are deterministic, then (Z)icpo, 7 has the
chaos representation property under @, since (2.4.3) is a deterministic struc-
ture equation.

3. Computations of predictable representations

3.1. Clark formula. The Clark—Ocone formula (cf. [Cla70], [KO91]) is a
consequence of the chaos representation property for (Mt)te[O,T]v and states
that any F' € Dom(D) C L?(f2, Fr, P) has a representation

T
(3.1.1) F = E[F]+ \ E[D\F | 7] dM,.
0
It can be proved as follows:
[e%¢] T tn to
F=E[F+> | ...\ fults,... . tn)dM,, ... dM,
n=1 00 0
00 T
=E[F]+> 0\ Li1(fal, )l {ezy) dM,
n=1 0

Although D : L?(£2, Fr, P) — L*(§2 x [0,T],dP x o?dt) is unbounded, the
representation formula (3.1.1) can be extended to F' € L?(02, Fr, P).

PROPOSITION 3.1. The operator F — E[D.F |F] taking its values in
the space of square-integrable adapted processes has a continuous extension
from Dom(D) to L*($2, Fr, P).

Proof. We use the bound
IBID.F | FllZ2(0x oy = | E[F] = Fll2(q) = var(F)
<||F|}2¢0), F €Dom(D).
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Instead of the adapted projection (E[D¢F | F]);cjo,r] one may also use
the predictable projection (E[DiF' | Fi-])scjo,r- Here this leads to the same
representation since both processes coincide in L2(£2 x [0, T],dP x aZdt).

3.2. Deterministic structure equation. In this subsection we consider
the case where (¢¢)icjo,r) € L*([0,7T]) is a deterministic function. In this
case, the probabilistic interpretation of D; is known and D;F' is explicitly

computable. We define the operator D? : & — L2(£2 x Ry, dP x a?dt)
on S as

] .
B .
(DPFou) g oy = - F(w0) + 6§zsus ds)

e=0
For F' = £(u) and g € L2([0,T]) we have
d T
(DPF,9) 2 o)) = 72 &XP (6 | gsusosis dS)f(U)
0

e=0
T
= S gsusasis ds&(u)a
0
hence DP¢(u) = iyus&(u) for t € [0,T], where
T 17
_ - 2 2. —Ushs
(3.2.1)  &(u) =exp ( S us dM; 5 S uiasis ds) H (1 + usos)e .
0 0 seJT
Note that the definition of DB F by duality in L2(]0,7]) implies
T
DP \usosdB, =y,  t€0,T).
0

We define a linear transformation 7, t¢ of exponential vectors, and more gen-
erally of elements of S, as

TPE(u) = (1+wen)é(u),  ue L([0,T)).

The transformation Ttd) is well defined on S because &(uy),...,&(uy,) are
linearly independent if u1,...,u, are distinct elements of L?(R,). Since
AM; =0 dt x dP-a.e., Tf’{(u) coincides dt x dP-a.e. with the value at time
T of the solution of the equation

S
(3.2.2) Zt =142zl u.dMl,  se0,T],

0
where (M), is defined as

Ml =M+ ¢l p(s), s€[0,T).
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In order to see this we check that Z! = &;(u) for s < t,

Zf = (14 drur) Zy- = (14 drur)ép-(u) = (1 + prur)é(u)
(since & (u) = &(u) a.s. for fixed t), and for s > ¢,

S S
7= ZE +\ 2L ur dMy = (14 ¢pun)&i(u) + | ZEur dM,
t t

hence
zt AR
—— =&(u) +\ ———u, dM,, s>t
1 + (btut ft( ) S 1 + qf)tut T T

which implies, from (2.2.3),
2
1+ drup

and Zb = (14 ¢rug)€(u) = TPE(u) P-ass. for ¢ € [0, 7).

In other terms, Tt¢F, F € S, can be interpreted as the evaluation of F

on the trajectories of (Ms) sefo,7] perturbed by addition of a jump of height
¢; at time t.

=&(u), s>t

PRrOPOSITION 3.2. The transformation Tfs is multiplicative, i.e.
TY(FG) = (T F)(TYG), F,GeS.

Moreover,

(3.2.3)  DF = DPF + ;;—t (TYF—F), te[0,T], FeS,
t

and
(3.2.4) D«(FG)=FDG+GD:F + ¢ D:FD:G, te]|0,T], F,GeS.
Proof. For the multiplicativity we note that
T (§()E()) = exp({u, v) 13 (0,1 T € + v + puv)
= exp((u, v) 12 (jo,17)) (1 + @e(ue + v + drugvr))§(u + v + duv)
= (1 + grue) (1 + prve)§(w)€(v)
= T E()T{€(v).
When ¢; = 0 we have DPF = iyu;&(u) = i, D F, hence
Di&(u) = iz D& (u) + jeDi&(u) = irue§(u) + jruré(u)

= DP() + 21 (TPE(w) ~ €w) ¢ € 0.7].
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Concerning the product rule we have, from Lemma 2.2,

Dy (§(u)é(v)) = exp ( UsVs Ol ds) Dié(u+ v + ¢puv)

S
0
T

= exp ( S U vsag ds) (ug + v + prurvy)E(u + v + duw)
0

= (ug + v + dpugvy)§(u)€(v)

= §(u)Di&(v) + E(v) D& (u) + ¢ D& (u) D& (v)

for u,v € L*°([0,T]) (see also [Pri96, (6)]. =

If (¢t)iecfo,7] is random the probabilistic interpretation of D is unknown,
but we have the product rule

(3.2.5) E[D(FG)|F] = E[FD,G| Fi] + E[GD.F | F]
+ ¢ E[DiF DG | Fy]

for F,G € S and t € [0,T] (cf. [PSV00, Prop. 5]).

3.3. Markovian case. This section presents a representation method
which is based on the It6 formula and the Markov property (see also [Pro01]
in the continuous case). Let (X¢).cjo,7) be an R"-valued Markov (not nec-
essarily time homogeneous) process defined on (2, satisfying a change of
variable formula of the form

t t
(3.3.1)  f(Xy) = f(Xo) + | Lo f(Xs) dM, + \Usf(Xo) ds, t€0,T),
0 0

where Lg, U, are operators defined on C? functions. We assume that the
semigroup (Pst)o<s<i<T associated to (X¢).ejo,r), i-e.

Poif (Xs) = E[f (Xo) | Fs] = BE[f (X)) [ X, 0<s<t<T,

acts on Cg(R”) functions, with Py; o0 Py = Psy for 0 < s <t <u < T.
Although the probabilistic interpretation of D is not known when (¢t)te[O,T]
is random, it is still possible to compute the explicit predictable representa-
tion of f(Xr) using the Ito formula and the Markov property.

LEMMA 3.3. Let f € C3(R"™). Then
(3.3.2) E[Dif(X7) | F] = (Le(Perf))(Xe), t€][0,T].

Proof. We apply the change of variable formula (3.3.1) to t — P, 7 f(Xy)
= E[f(Xr)|F], since P,rf is C2. Using the fact that the finite variation
term vanishes since ¢ — P, 7 f(X;) is a martingale (see e.g. [Pro90, Cor. 1,
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p. 64]), we obtain
t
Porf(Xe) = Porf(Xo) + { (Ls(Porf))(Xs) dMs, ¢ € [0,T],
0
with Py 7 f(Xo) = E[f(X7)]. Letting t = T', we obtain (3.3.2) by uniqueness
of the representation (3.1.1) applied to F' = f(X7). =

In practice, we will use Proposition 3.1 to extend (E[D:f(Xr) | Ft])iejo,1]
to a less regular function f : R™ — R. As an example, if ¢, is written as ¢; =
o(t, My), and dSy = o(t, Sy)dMy + u(t, Sy)dt, we can apply Proposition 2.3
with (Xt)ie,r) = ((St; Mt))tejo,r) and
Ly f(St, My) = iro(t, St)01 f(St, My) + it0a f (S, M)

+ jit (f(St + SO(ZLW Mt)a(t7 St)7 Mt + So(t7 Mt)) - f(St7 Mt))7
So(ta Mt)

since the possible jump of (My)co,7] at time t is ¢(t, M;). Here 01, resp. Oz,
denotes the partial derivative with respect to the first, resp. second, variable.
Hence

E[Dyf (ST, M) | Fi]
=110 (t, St) (01 Per f)((St, My)) + 64 (O2 P f)((Se, My))

+ (t]Mt) (Prr f)((Se + o(t, My)o(t, Sp), My + ¢(t, My)))

(tj M) (P f)((St, My)).

If (My)eo,r) is an Azéma martingale (¢; = BM; for ¢ € [0,T7]), then iy =0
dP x dt a.s.

4. Computations of hedging strategies

4.1. Market model. In this subsection we introduce the price process
which will be considered in what follows. Let p : [0,7] — R and o : [0,T] —
10, 0o be deterministic bounded functions. Let (r¢)c[o,7) be a deterministic
non-negative function which models a riskless asset, and let (v¢).cjo,m be
defined as

Y=Lt e o).

We assume that 1+ ¢y > 0 for t € [0, T]. If (¢¢)sc(0,7) is not deterministic
this choice is still possible due to the boundedness of (¢t)icpo,7) or from
[DP99, Th. 2.1(iii)]. Let Q denote the probability defined by E[3% | 7] = I;
for t € [0,T], where dl; = l;-¢«dM; for t € [0,T], with I = 1. From
Proposition 2.4,
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t
Zy =My, —\o2ipeds, t€(0,T],
0
is a local martingale under @ with angle bracket d{Z, Z); = a?(1 + ¢4y )dt.
If (¢t)icjo,r) is deterministic then (Zt).ejo,7) is a true martingale under Q.
This also holds if
(bt)iejo,m = (BMt)scio,1)s

from the boundedness of (M).cjor)- If (¢1)ejo,r) is deterministic, we may
start from the data of (&t)epo,r), take d[Z, Z]; = &jdt + ¢1dZ; and define
(at)tefo,r) by a? = a? /(1 + ¢piy) for t € [0, T). Let the price (St)tefo,r) of a
risky asset satisfy the equation

(411) dS; = MtStdt + O'tSt— dZ;, t e [O,T], Sy = 1.
We have
(412) dS; = r¢Spdt + UtSt*thv te [07 T],

and under P, (St@—% T's ds)te[O,T] is a martingale, i.e. the market is arbitrage
free. Let 7y and (; denote the number of units invested at time ¢ in the risky
and riskless assets respectively. Thus the value V; of the portfolio at time ¢
is given by

(4.1.3) Vi = GAr + S, t€[0,T],
where
(414) dA; = T’tAtdt, Ay = 1, te [O,T]

We assume that the portfolio is self-financing, i.e.
dVy = Gd Ay + medSy,  t €[0,T7,

therefore
dVy = rVidt + oy Sy-dMy,  t € (0,77,
and
T T t
(4.1.5) VTe_SO redt — v 4 S JtntStfe_SO rsds M,
0

Suppose that we are required to find a portfolio ((t, Ut)te[o,T] which leads to
a given value Vp = F. By the Clark—Ocone formula,
T
F = E[F]+ | E[D\F | 7] dMy,
0
and comparing with (4.1.5) we obtain

Vo = e—SoTTstE[F],
(4.1.6) m = o, \STIE[DF | Fle VW et e (o, 7).
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Next we consider different models with explicit computations of hedging
strategies.

4.2. Furopean options and deterministic structure. In this section we
hedge European calls using the Clark formula. Let (M;);c[o,7] be the martin-
gale described in Section 2.2(a), with deterministic (¢¢)icpo, 77, i-€- (Me)efo,1]
is alternatively Brownian or Poisson depending on the vanishing of (¢¢)¢c[o,17-
We assume that 1 + o1¢¢ > 0 for all ¢ € [0,T]. We have

t t Ny

1

S; = exp <Sosasis dBg + S (rs — PpsAs0s — 3 isafag) ds) H(l + o1, ¢1,)
0 0 k=1

for 0 <t < T, where (T))r>1 denotes the jump times of (N;)ier, . We will
denote by (Sf,)uef, 1) the process defined as

dSt, = reS{udu+ 0y S ,~dMy, welt,T], S =uw
We have

T T
1
Ssz = T exp ( S TuQyly dBy + S (Tu - ¢u)\u0u - 5 iuaiaﬂi> du)
t t

Nt

X H (1+ o1, é1,)

k=1+Ny
for 0 <t < T, with S; = 5§, for ¢ € [0, T].

PROPOSITION 4.1. Assume that ¢y > 0 for all t € [0,T]. Then for 0 <
t <T we have

EDy(Sr— K)*|FR]=E [ito'tstx,Tl[K,oo[(StajT)

Jt x T \+ T
— — (K-8 1 S .
+ & (otdeSir — ( tr)") [%,m[( i) s,

Proof. By Proposition 3.2, for any F' € § we have

(4.2.1) D.F = DBF + ;—t (TPF — F), telo,T).

¢
We have TSt = (1 + o4¢;) Sy for t € [0,T), and the chain rule DB f(F) =
f'(F)DBF holds for F € S and f € C2(R). Since S is an algebra for de-
terministic (¢¢)secpo,r), we may approach z +— (z — K)* by polynomials on
compact intervals and proceed e.g. as in [Pks96, pp. 5-13]. By dominated
convergence, (St — K)* € Dom(D) and (4.2.1) becomes

Di(Sr = K)* = i1 ol (S1) + 5 (1 +0160) Sy — K)* = (Sp = K))
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for 0 <t <T. The Markov property of (St)c[o,r] implies
E[DtB<ST - K)+ ’Ft] = itUtE[SZTl[K,oo[(SgT)]m:St7

and

¢ E(T?Sr — K)* = (Sr — K)* | 7]
]t

=% E[((1+ 01¢)Sir — K)" = (Sip — K) Ja=s,

= L Bl(1+ o60)SPr — K (SEr)acs,
on [1+<’t¢t [

] x €
- gz E[(Sir — K) " Lk oo (SE7)]a=s,

= E[Ut¢t Sirlp_x oo (Str) + (S — K1,
¢t toror’

Jt x z @
= g [Jt¢t5t,T1[l+i¢t ,oo[(St,T) - (K - St,T)+1[

(577 s,

1+opde’

(ST Nes,

1+otde’

J . . i
— giE[(Utétht,T — (K — St,T)+)1[ OO[(SLT)]:E:SV -

K
1+oide’
If (¢t)eo, 7] is not constrained to be positive then

E[Dy(St — K)" | F] = 1104 B[SEp 1k 00 (ST7)|a=s5,

+ L BlowpuSirly s (i) + (S8 — K
(]3 140t

. K}(SZC,T)]Z’:Sw

1+orde’

with the convention 1y, = —1[,) for 0 < a < b < T. Proposition 4.1 can
also be proved using Lemma 3.3 and the It6 formula (2.3.1). In the deter-
ministic case, the semigroup P; 7 can be explicitly computed. Let I, =
Sth o202 ds denote the variance of S isasosdBg for t € [0,T], and let

L= St vsds, t € [0,T], denote the intensity of Ny — N; under @), where
Yt = )\t(]- + (ybtdjt) for t € [O,T]

PROPOSITION 4.2. For f € Ch(R) we have

[e.9] e_Ft T [e.o]
Py f(z) = X S Vio S M1 - Ny,
k=0 T oo i1k

k
X f<me T/2+( T)1/2t0 St ¢5'750's ds H(1+Utz¢tz)> dtl “ e dtk dt07
i=1

where v denotes the standard Gaussian density.
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Proof. We have P, rf(x) = E[f(St)|S: =z] = E[f(SfT)], and

k
tT

Prf(x ZE Sia) | Nt — Ne = Kl exp(—Iir)

For k£ € N, since (N = Ni)sep,m is a standard Poisson process, condi-
tionally on {Np — IV = k}, the first n jump times (71, ...,Ty) of (Ns)sefe,n)
have the law

k!
(pt )k = Lt <o<ty<Ty V- Y dbr - d,

and conditionally on { Nt — N; = k}, the jump times (I} 7y, ..., It 7,) have
a uniform law on [0, I} 7]¥. We then use the identity in law between Sir

and
T Ny

sXirexp (= § o001+ og0)osds) T[ (1+onom).

t k=14+N;

where
Xy = exp(— t?T/2 + (Ft(jT)l/QW)a

and W a standard Gaussian random variable, independent of (N¢):c(o1]-
This identity holds because (Bt)c[o,7] is a standard Brownian motion, in-
dependent of (N¢)se(o,7]- ®

See Proposition 8 of [JP02] for a computation of

E{exp(—grs ds) (St — K)ﬂ

in terms of the classical Black—Scholes function
BS(z,T;r, 0% K) = E[e_’”T(:Ue’"T_"QT/H"Wt - K)7'],
where W; is a centered Gaussian random variable with variance t.

4.3. Asian options and deterministic structure. The price at time t of

such an option is
T +
7 1
E[e §i rsds<f éSudu—K>

The next proposition gives us a replicating hedging strategy for Asian op-
tions in the case of a deterministic structure equation model. Following
[LL96, p. 91], we define the auxiliary process

Y; = ;t( SSdu ) t e [0,7).

7.
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PROPOSITION 4.3. There exists a measurable function C on R4+ xR such
that C(t,-) is C! for allt € Ry, and

T

S,C(t,Y;) = EK% | Sudu—K>+
0

]—‘t} |
Moreover, the replicating portfolio for an Asian option with payoff

17 *
0

is given by (4.1.3) and
1 ~
(4.3.1) n = el rads [C’(t,Yt)at

Ot
(1 + o) <% <5<t, - @) - 5(75,1@)) - itamaﬁ(um)]-

Proof. With the above notation, the price of the Asian option at time ¢
becomes

T
Ele= % " B80(vp) T | F.

For 0 <s <t <T, we have
t

1 Sy
d(SiY;) = Td(ésudu—f() = ZLat,
hence
A 1¢8,

Let H € C3(R). We have

E[H(SrYr)|F] = E [H (sth +

Let C € CE(Ry x R?) be defined as

¢S
C(t,z,y) :E[H<xy+TSEdu>],

l.e.

C(t, S, Yy) = E[H(SrYr) | Ftl-
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When H(z) =z, since for any ¢ € [0, 7], S; is positive and Fy-measurable,
and S,,/S; is independent of F; for u > t, we have

BlH(Srvr) | ) = BlSr ()" 1 7] = i (2 YT)+
sl 3150

178,  \* ~
= StEKy—F § du ) ] = $,C(t, Y1)
St y=Y;

with 5(t,y):E[< %?%du)*]

We now proceed as in [Bel99], which deals with the sum of a Brownian
motion and a Poisson process. From the expression for 1/S; we have

1 1 alo?
dl =) = — | =r; + —t7t ) at — dM; |,
<St> Stf |:< " 1 +Ut¢t> 1 +O’t¢t t:|

hence by (2.3.1),

2 2 1 Y.
dn:}ft(—rt—F kil )dt—f—?dt— t— 9t th

g

1+ oy 1+ oty
Applying Lemma 3.3 we get

(4.3.2)  E[D:H(SrYr)| Fi] = LiC(2, St,Yt)

=1 (Utst—aQC(tast,Y;t) 03C(t, St7Yt)>

1+ t¢t

It Yioq
_ Vo ———— | - - Y-) )
+ — d)t (C (t St + UtSt y Xp— 1 T Ut¢t> C(ta St s Lt )>

Given a family (Hy)nen of Cf functions such that |H, (z)| < 2* and |H, ()]
<2forx € Rand n € N, and converging pointwise to x — 2T, by dominated
convergence (4.3.2) holds for C(t,z,y) = zC(t,y) and we obtain

17 +
E[Dt< | Su du — )
0
= ité(t, Y;)O’tst

~ Y, _ . B
o <¢t <C <t’ 1+ gt¢t> - C(t, YZ)) — 110 Y;02C (1, Yt)>

+stat¢t<¢;t (5( - j:';t ¢t> - 6(t,Yt)> - z'tatY}agé(t,Yt)) .

¢
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As a particular case we consider the Brownian motion model, i.e. ¢ = 0
for all t € [0,T],s0 it =1, j: =0 for all ¢ € [0, T]. In this case we have

T ~ ~
e = eV T (=Y,30(t, V) + C(1, V)

T 0 ~ 1/1 ‘ ~
—e_St rsds St_c t,— _SSudU_K +C(t7Y1-5)
Ox z \T =5
0 T=ot
t
:g xe_szrsdsé t’l lSSudU_K ) tE[O’T]7
al‘ x T 0 =5}

which can be denoted informally as a partial derivative with respect to St.

4.4. European options and Azéma martingales. Let —2 < 8 < 0, and let
(Mt)scj0,m be the unique solution of the structure equation

(4.4.1) d[M, M), = dt + BM,—dM,, t € [0,T].

This process has the chaos representation property, hence the results of
Section 3 apply. This allows us to obtain an explicit hedging formula for the
model of [DP99]. We use the convention 1, o) = —1j4) for 0 <a < b <T.

PROPOSITION 4.4. We have
E[Dy(St — )+ | Fi]

ﬁM TTotBlyt+Mp—My)’
+ (S8 — K1 (sin)]"
- K .
&I [1+0tﬁ(y+MT*Mt)’K] &I =S¢

Proof. Let (Xi)icpor) = ((St; Mi))iepo,r)s (Be)eepo,r) = (145, 0))eeio,m)s
(Kt)iepor) = ((04St, 1) )ejo,r) and Xo = (1,0). By Lemma 3.3, for f €
C2(R?) we have

E[Df(Xt) | F] = (Le(Prrf))(X)

— g (Pard) X0+ BMEEG) = (Pur ) (X0)
= 31 (Pard)(L+ BMi0)S,, (14 )M = (Per ) (51, M)
— g B+ 08y + Mr = M)

(1+ By + Mr — Mt)))}iiéft

1 =M
" 3N, Elf(Sfr,y + My — Mp)]I—g "
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In particular if f(x,y) = f(z) depends only on the first variable we have

E[Dyf(57)| Fi)
1 T T =
= oz B+ ouBly + Mr = MD)STr) = F(SErliZs;"
Approaching the function z — (z — K)T with a sequence (f,,)nen of C?
functions converging pointwise with |f,(z)| < (z — K)* and |f} (x)| < 2 for
x € R and n € N, we obtain

E[Dy(ST — K)* | F]

= L B((1+ 0uBly + My — Mp)SEy — K)* — (527 — K)HI=Me
BM;

1
_ E[((l By + My~ M))STr KL (Sir)

GM; THo Bly+Mrp—M;

y=DM;
— (8% = K) 1 oe((SEr)]

x=_S%

K ST
[1+0'tﬁ<y+1WT*Mt)7oo[( t’T)

y=DM,
K5

4.5. Lookback options. Hedging strategies for Lookback options have
been computed in [Ber98] using the Clark—Ocone formula. In this section
we show that classical martingale methods also apply in this case. We assume
that (M¢).eo,r] = (Bt)iejo,r) is a standard Brownian motion, i.e. oz = 1 and
¢y = 0 for every t € [0,T], and take r, = r > 0 and o, = 0 > 0 for every
t € [0,7]. Under the risk-free probability P the asset price (St)icpo,7] has
the dynamics

1 X
= BM, E[atﬂ(y + My — My)Sir1

+(SPr = K1

K n
T¥oiB(y+Mp—My)’

dS; = rSydt + O'StdBt, t e [0, T],

so (4.1.5) becomes

T
Vre ™" =V + \omSie " dB,,  t€0,T).
0

Let mg = infue[s’t] S, and M;/ = SUDye[s4] Sy for 0 < s <t <T, and let
M be either m! or M!. In the Lookback option case the payoff H (S, M{)
depends not only on the price of the underlying asset at maturity but also
on all prices of the asset from the initial time to maturity. Let Look; be the
price of the Lookback option given by
Look; = e "TDE[H (S, MY) | F], H e CiR?), t e 0,T].
PROPOSITION 4.5. There exists a C' function f such that
F(Sp, M, t) = B[H(Sp, M{) | F], 0<t<T.
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The replicating portfolio of a Lookback option with payoff H(ST,Mg) and
price Look, = f(Sy, ME,t) at time t is given by (4.1.3), and

(4.5.1) ne = e "T0E, F(S, Mb, 1), te0,T).

Proof. 1t suffices to deal with the case M = ml. The existence of f
follows from the Markov property, more precisely

Applying the change of variable formula, for ¢ € [0, 7] we have

1
df (Sy, My, t) = |Osf + rSi01f + 3 02538%4 (Sg, MY, t)dt

+ 0o f (Sp, M, )M + 0.S:01 f(Sp, M, t)d By
Since (E[H(S7, M{) | Fi])iejo,r) is a P-martingale, we have
df (Sp, M§,t) = 08101 f(Sy, My, t)dBy,  t € [0,T).
Then

dB;,, tel0,T],

=St

T
e "TF=e"TE[F] + S e oS, %f(m, M. t)
0

which shows (4.5.1). =

It is stated in Bermin [Ber98] that we should have
t
(4.5.2) {02 £ (S, MG, 5) dM§ =0
0
for the delta hedging method to work. We showed in Proposition 4.5 that
the delta hedging approach can be applied without having to verify (4.5.2),
since (M§);ep0,7) is a monotone process with finite variation.
Relation (4.5.1) can be written informally as

iLookt, te[0,T].

N = 95,
Let
St
df (y) = log y + (r+ 37) (T 1) N(y) = - ij e~ 2% dy,
t = ) NG )
oVl —1 V2

A standard Lookback call option is the right to buy the underlying asset at
the historically lowest price. In this case the strike is mg and the payoff is

G=Sp—ml.
From [DJ98, Prop. 4, p. 271], the price Look; at time ¢ is given by
(45.3)  Look; = Egle " T D(Sy —ml) | 7]
— SN (b)) — T DN (] (mb) — VT —F)
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2 —2r /02 /7
4 @03t Ki> N(—dtT(mBH-L L t)

o mg o
DN (T <ma>>] .

In the following proposition we recover the result of [Ber98, §2.6.1, p. 29],
using the delta hedging approach instead of the Clark formula, as an appli-
cation of Proposition 4.5.

PRrROPOSITION 4.6. The hedging strategy for a standard Lookback call op-
tion is given by

0_2

(4.5.4) ne = N(df (mp)) — o= N(=di (mp))

2
—2r/0? 2 92 /_T_t
+ (Tt <ii> <J— — 1>N<—d$(m6) + T7>
my 2r o
Proof. We need to compute the following derivatives:
0
55 V(b))
9 1 df (mf) 1
= 8—& —27(— S)O e 2% du

— | )| exo (5 (aF )
1,2

[ (BTN )

= ! X _1 Tmt 2
_Sta\/mep( 5 (i ( o))>,

and

g N (mb) = oV T =)

= ! ex ! Tty — o/T — )2
 So\/2n(T — 1) P( (di (mo) Jﬁ))

Similarly we have

o ( (- 2=

N —

1
B ‘stam“p<"
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and
9 T

¢ = — ! ex —1 Tmt
gy (WA mt)) = — e~ (T nd)2)

Finally,
i i —2r/0? B _9p i —2r/o%—1
Sy \m}, -~ mbo? \'m}) '

The above expressions can be combined to compute the derivative of Look;
n (4.5.3), and to obtain

_ T (ot 1 ox Lo mi))2
=N ) + s o~ ()
— e Tt ! ex 1 (df(mb) — ov/T —t)?
OStO'\/Qﬂ'(T—t) PAg %o

2 —2r/0? /T
+e—r(T—t);_r|:<i> N(—df(m6)+2r T t)

t

- TN )
_T(T_t) St—O' |: _ < St )—27"/0-2—1'/\[ _dz(mt) n 27‘\/T — t)

2r | mbo? \'m <
—2r /02 7\ 2
- (i) . exp<—1<—dtT(m6)+ Al t) )
mg Sior/2m(T —t)

_ 1 1
b exp (@ ) )

Sior/2m(T —t) )
e t) [G_T(T—t) U—2< ) ) o —r(T—t) Sy0”

+e

_ Tt St
B N< di (mo) + o 2r \ mf, e 2r
2
_9 S, —2r/o®—1 .
mho? (@) + N (d; (mg))

— N [~ 70 0]

1 Lo 12 —r(T—t) Sio? e
- - _Z 1 o7
- QW(T_t){eXp< 5 (0l ) |1+ A

¢ 1
— eI [% exp <—§ (df(mb) — oV/T — t)2>

o2 (S \ ¥ 1/ 4, 2T —1\°
) (s (o= )
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—2r/0? 2 —
e (S (i £ 2T

my 2r o
2
+ N(d] (mh)) = 2 N (=df (m))

+ U\/ﬁ{ <1 + ;-i) exp (—% dtT(mé)2>

¢ 1
—e T [”;_to exp <—§ (df(mb) — ovVT — t)2>

o2 (S \ 2 1/ 4, 2T —1\°
) (s (o == )]

To obtain (4.5.4), it is sufficient to show that

o? 1
0= <1 + Z) exp<—§ dtT(mB)2>

t 1
—e T [ﬂ;—f exp<—§ (dF (mb) — oVT — t)2>

o) s =T

9. i
2r \'my o

To see this, one can observe that

exp (=5 (@ )~ VT 1?)
= oxp 5 (@ ) + (T~ 0) 20 (o T—1))

S,
y 2
0 S (1 W)
and
exp<—§ (= () + Wﬂ/@?)
— (-5 @2 - 3[4 -0 - Lariyv=i))



2
r 2r
xexp( > (T—t)—i-ﬁlog;

e'r(T
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St Q—’j(T—t)Jrr(T—t))

» (%>/ " exp (5 @ (1)) o

Similar calculations using (4.5.1) are possible for other Lookback options,
such as options on extrema and partial Lookback options (cf. [Kha02]).
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