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AN EQUILIBRIUM MODEL FOR ELECTRICITY AUCTIONS

Abstract. This work discusses the process of price formation for electri-
cal energy within an auction-like trading environment. Calculating optimal
bid strategies of power producers by equilibrium arguments, we obtain the
corresponding electricity price and estimate its tail behavior.

1. Introduction. The introduction of competitive wholesale electricity
market is a key aspect of liberalization of energy production and trading,
which has recently been effected around the world. Up to now, all experi-
ences with deregulated electricity markets show that the electricity trading
incorporates high risk resulting from volatile and “spiky” prices. This issue
is intrinsic to electricity as a flow commodity, which cannot be econom-
ically stored. In our approach, we examine by equilibrium arguments an
economical mechanism effecting price peaks. Let us mention some related
work. In [2], questions of electricity pricing are presented and it is explained
that the non-storability requires modeling the electricity production process.
The economical mechanism of one-period-ahead price formation is discussed
in [1], and in a different context in [5]. The concept of equilibrium asset pric-
ing is widely used by economists; see, for example, [8], [6] and the references
therein. A survey of the theory of auctions is found in [7].

Since electrical energy is not economically storable, a deregulated elec-
tricity market is different from the usual commodity markets. In general, it
includes two parts: the real-time market for contracts on immediate produc-
tion and the electricity exchange for those on future delivery of electricity.
While the electricity exchange is similar to the usual forward market, the
trading rules at the real-time market are designed to continuously match
demand and supply to maintain network electrical equilibrium. This re-
quirement is satisfied by auction-like trading subjected to several technical
restrictions.
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Let us simplify the methods for price settlement applied at the real-time
markets to explain two procedures: the pay-as-bid (PAB) and the system-
marginal price (SMP) auctions. They work as follows: Each electricity pro-
ducer submits for each hour of the next day his schedule consisting of a
bid quantity and a bid price for power which he is willing to sell at least
at this price. The system operator arranges the bids for each hour in the
increasing price order. The system price set for the current hour equals the
bid price of the last generator needed to meet the demand. Those producers
who are in merit (i.e. whose bid price was below or equal to the system
price) supply power and obtain a payment. Other producers suffer a loss
since they have to pay fixed costs for their idle production units. For the
PAB-auction, each producer who is in merit obtains his own bid price, while
for the SMP-auction he obtains the system price. In this work, we restrict
ourselves to the PAB-auction.

Denote by Q the electricity demand within one hour and agree that Q is
a non-negative random variable on a probability space (Ω,F , P ) such that

F : [0,∞[→ R, q 7→ P (Q ≤ q), is continuous, strictly increasing.(1)

We suppose that the distribution F of Q is known to all producers.
Let J ⊆ [0,∞[ be the set of all bid prices which are acceptable by

the system operator. Note that J may be a proper subset of [0,∞[ due to
a possible price cap and/or discrete price levels. After all producers have
submitted their schedules, the system operator determines the production
capacity I(p) installed at the price p ∈ J by summing up all amounts of
bids with bid price at most p. The non-decreasing right-continuous installed
capacity I : J → [0,∞[ is saturated for an additional producer if it does
not matter whether he does nothing or rents a small production unit and
submits his order at an arbitrary price p ∈ J . The idea here is that in the real
market, the installed capacity must always be saturated since otherwise some
additional producers will install capacities until the saturation is reached.
Let us make this concept more precise.

2. The equilibrium. Denote by c > 0 (MWh) the capacity amount of
a small rentable production unit with full production costs pfv = pf + pv,
where pf > 0 (USD/MWh) are fixed and pv > 0 (USD/MWh) are variable
costs. Then, for the installed capacity I, the income of the additional pro-
ducer depends on his strategy to rent the capacity and to submit a schedule
at the price p ∈ J , which yields a random gain

GI(p) := c(p− pv)1{Q>I(p)} − cpf for all p ∈ J,
or to be idle, which gives a non-random zero gain: GI(idle) = 0. Suppose
that the risk aversion of the additional producer is described by a strictly
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increasing concave utility function U ∈ C(R), giving the utility functional
UI which evaluates the producer’s strategies by

UI(p) = E(U(GI(p))) for all p ∈ J
for the case when a schedule is submitted, and UI(idle) = E(U(GI(idle)))
= U(0) otherwise.

Definition 1. A non-decreasing right-continuous installed capacity I :
J → [0,∞[ is called saturated for the additional producer with c, pf , pv, U
as above if

UI(p) ≤ U(0) for all p ∈ J with I(p) = 0,(2)

UI(p) = U(0) for all p ∈ J with I(p) > 0.(3)

Intuitively, this definition says that for a saturated installed capacity,
the best strategy is to be idle, since either the price is too low to cover the
production costs or there is already a sufficient amount of installed capacity.

Given the installed capacity I, the system price pS depends on demand
and is set by the system operator as explained above to be

pS(ω) = inf{p ∈ J : I(p) ≥ Q(ω)}, ω ∈ Ω,(4)

with the usual agreement pS(ω) := supJ if {p ∈ J : I(p) ≥ Q(ω)} is empty.
Let us use the following notations:

Î(p) = F−1
(

U(cp− cpfv)− U(0)
U(cp− cpfv)− U(−cpf )

1]pfv ,∞[(p)
)

for all p ≥ 0,(5)

% = pfv + c−1U−1
(
U(0)− F (Q)U(−cpf )

1− F (Q)

)
,(6)

to calculate the system price for the saturated installed capacity.

Proposition 1. Suppose that the demand distribution satisfies (1).

(i) For the additional producer with c, pf , pv, U as above there exists a
unique saturated installed capacity I : J → [0,∞[ given by

I(p) = Î(p) for all p ∈ J.(7)

(ii) For the saturated installed capacity I from (i), the system price pS

from (4) satisfies

pS1{Q≥supp∈J I(p)} = supJ 1{Q≥supp∈J I(p)},(8)

pS1{Q<supp∈J I(p)} ≥ %1{Q<supp∈J I(p)},(9)

almost surely.

Proof. (i) We show that (7) indeed defines a saturated installed capacity.
First, we point out that I(p) > 0 holds for p ∈ J if and only if p > pfv: The
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if-part holds since U is strictly increasing: U(cp− cpfv) > U(0) > U(−cpf ),
ensuring that

U(cp− cpfv)− U(0)
U(cp− cpfv)− U(−cpf )

> 0,

which implies I(p) > 0 since F−1 is strictly increasing on [0,∞[ with
F−1(0) = 0. The only-if-part follows from the definition of I: let p ∈ J ;
then I(p) > 0 implies p > pfv. Now we shall see that Definition 1 in fact
applies to (7). If I(p) = 0 then p ≤ pfv as shown above, hence

GI(p) = c(p− pv)1{Q>I(p)} − cpf ≤ 0,

which yields UI(p) = E(U(GI(p))) ≤ U(0). If I(p) > 0, then p > pfv as
shown above, and

UI(p) = U(cp− cpfv)(1− F (I(p))) + U(−cpf )F (I(p))

equals U(0) by the definition of I.
Let us show the uniqueness. Suppose that Ĩ is some saturated installed

capacity and p̃ ∈ [0, pfv] ∩ J . Then Ĩ(p̃) = 0 since Ĩ(p̃) > 0 would yield

U Ĩ(p̃) = U(cp̃− cpfv)P (Q > Ĩ(p̃)) + U(−cpf )P (Q ≤ Ĩ(p̃)) < U(0),

which contradicts (3). Now suppose that p̃ ∈ ]pfv,∞[ ∩ J . Then Ĩ(p̃) > 0
since otherwise Ĩ(p̃) = 0 and we would obtain

U Ĩ(p̃) = U(cp̃− cpfv)P (Q > Ĩ(p̃)) + U(−cpf )P (Q ≤ Ĩ(p̃)) > U(0),

contrary to (2). That is, for p̃ ∈ ]pfv,∞[ ∩ J we have

U Ĩ(p̃) = U(cp̃− cpfv)P (Q > Ĩ(p̃)) + U(−cpf )P (Q ≤ Ĩ(p̃)) = U(0),

which is equivalently rewritten as

Ĩ(p̃) = F−1
(

U(cp̃− cpfv)− U(0)
U(cp̃− cpfv)− U(−cpf )

)
for all p̃ ∈ ]pfv,∞[ ∩ J .

Hence, Ĩ coincides with the I from (7), giving the uniqueness.
(ii) In the case Q(ω) ≥ supp∈J I(p) we obtain pS(ω) = supJ by defini-

tion. Since (ii) should hold for almost all ω ∈ {Q < supp∈J I(p)}, it suffices
to prove it for all ω with 0 < Q(ω) < supp∈J I(p) due to P (Q = 0) = 0. By
definition (4) and from the right-continuity of I, we deduce that

I(pS(ω)) ≥ Q(ω) > 0.(10)

The positivity of I(pS(ω)) yields

I(pS(ω)) = F−1
(

U(cpS(ω)− cpfv)− U(0)
U(cpS(ω)− cpfv)− U(−cpf )

)
.(11)

Applying the non-decreasing function F to (10) and to (11) we obtain
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F (I(pS))(ω) ≥ F (Q)(ω),(12)

F (I(pS))(ω) =
U(cpS(ω)− cpfv)− U(0)

U(cpS(ω)− cpfv)− U(−cpf )
,(13)

which gives
U(cpS(ω)− cpfv)− U(0)

U(cpS(ω)− cpfv)− U(−cpf )
≥ F (Q)(ω).

This inequality implies

pS(ω) ≥ pfv + c−1U−1
(
U(0)− F (Q(ω))U(−cpf )

1− F (Q(ω))

)

finishing the proof.

3. System price distribution. The assertion (ii) of the previous pro-
position allows an interpretation of the system price distribution. An inter-
esting feature here is that the tail p 7→ P (pS > p) admits an estimation
from below which does not involve the distribution of Q. This shows that
the PAB-auction procedure will produce system prices with a “fat tail” dis-
tribution. To give a precise statement, we need

Proposition 2. With the above notations we have:

(i) {% < supJ} = {Q < supp∈J I(p)} almost surely.
(ii) If p ≤ supJ then % ≥ p implies that pS ≥ p almost surely.

(iii) For each p ≤ supJ , the probability that the system price pS reaches
or exceeds the price p is estimated from below by

P (pS ≥ p) ≥ U(0)− U(−cpf )
U(cp− cpfv)− U(−cpf )

for all p ∈ [pfv, supJ ].(14)

Proof. (i) Again, since the statement is to hold almost surely, we suppose
Q(ω) > 0. From the definition of %, it follows that %(ω) > pfv, hence

Î(%(ω)) = F−1
(

U(c%(ω)− cpfv)− U(0)
U(c%(ω)− cpfv)− U(−cpf )

)
.

Using the definition of %, we verify

U(c%(ω)− cpfv) =
U(0)− F (Q(ω))U(−cpfv)

1− F (Q(ω))
,

which gives, together with the previous equation,

Î(%(ω)) = F (F−1(Q(ω))) = Q(ω).(15)

If %(ω) < supJ , then there exists p̃ ∈ J with %(ω) < p̃. On the other hand
Î is strictly increasing on [pfv,∞[, giving, with (15), Q(ω) = Î(%(ω)) <
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Î(p̃) = I(p̃) ≤ supp∈J I(p), which implies that

{% < supJ} ⊆ {Q < sup
p∈J
I(p)}.(16)

Vice versa, if %(ω) ≥ sup J , then by the same arguments Q(ω) = Î(%(ω)) ≥
Î(supJ) ≥ I(p̃) for all p̃ ∈ J . Consequently,

{% ≥ supJ} ⊆ {Q ≥ sup
p∈J
I(p)},(17)

and the assertion follows by (16) and (17).
(ii) Suppose that %(ω) ≥ p with p ≤ supJ . If %(ω) ≥ supJ , then (i)

implies that Q(ω) ≥ supp∈J I(p) and from (8) we obtain pS(ω) = supJ ≥ p.
If %(ω) < supJ , then (ii) implies that Q(ω) < supp∈J I(p), and (9) yields
again pS(ω) ≥ %(ω) ≥ p.

(iii) Let p ≤ supJ . Then (ii) is interpreted as an almost sure inclusion

{pS ≥ p} ⊇ {% ≥ p}
and for p ∈ [pfv, supJ ] we have to calculate the probability of the event

{% ≥ p} =
{
pfv + c−1U−1

(
U(0) +

F (Q)
1− F (Q)

(U(0)− U(−cpf ))
)
≥ p
}

=
{

F (Q)
1− F (Q)

≥ U(cp− cpfv)− U(0)
U(0)− U(−cpf )

}
,

which does not depend on the distribution of Q since F (Q) is uniformly
distributed on ]0, 1[. In other words, we can use the formula

P

(
F (Q)

1− F (Q)
≥ y
)

= P

(
F (Q) ≥ y

1 + y

)
= (1 + y)−1 for all y ∈ [0,∞[,

and the proof is completed by concluding for each p ∈ [pfv, supJ ] that

P (pS ≥ p) ≥ P (% ≥ p) =
(

1 +
U(cp− cpfv)− U(0)
U(0)− U(−cpf )

)−1

≥ U(0)− U(−cpf )
U(cp− cpfv)− U(−cpf )

.

The estimate (14) shows that the tail p 7→ P (pS ≥ p) of the system price
distribution decreases rather slowly. Assigning the system price distribution
to a class of known “fat tail” distributions seems impossible at this level
of generality, since the distribution depends heavily on the set J and on
the utility function U ; furthermore, we have to take production costs into
account. The impact of the risk aversion is hard to evaluate exactly since
in a real market the utility function is not observed explicitly. We give a
rough quantitative estimate of the tail decrease which applies to each utility
function and involves merely the production costs.
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Proposition 3. Under the assumptions of Proposition 2, for p ∈
[pfv, supJ ],

P (pS ≥ p) ≥ 1
1 + (p− pfv)/pf .

Proof. For each h > 0 the concavity of U yields

U(h) ≤ U(0) + h(U(0)− U(−cpf ))(cpf )−1.

Subtracting U(−cpf ) on both sides, we obtain

U(h)− U(−cpf ) ≤ U(0)− U(−cpf ) + h(U(0)− U(−cpf ))(cpf )−1.

This inequality yields the estimate

U(0)− U(−cpf )
U(h)− U(−cpf )

≥ U(0)− U(−cpf )
U(0)− U(−cpf ) + h(U(0)− U(−cpf ))(cpf )−1

≥ 1
1 + h(cpf )−1 .

The assertion follows by putting h = cp−cpfv and using Proposition 2(iii).
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