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UNIQUE GLOBAL SOLVABILITY OF
1D FRIED-GURTIN MODEL

Abstract. We investigate a 1-dimensional simple version of the Fried—
Gurtin 3-dimensional model of isothermal phase transitions in solids. The
model uses an order parameter to study solid-solid phase transitions. The
free energy density has the Landau—Ginzburg form and depends on a strain,
an order parameter and its gradient.

The problem considered here has the form of a coupled system of one-
dimensional elasticity and a relaxation law for a scalar order parameter.
Under some physically justified assumptions on the strain energy and data
we prove the existence and uniqueness of a regular solution to the problem.
The proof is based on the Leray—Schauder fixed point theorem:.

1. Introduction. Fried and Gurtin [4] have proposed a theory for
isothermal phase transitions in solids in which the material phase is char-
acterized by an order parameter. This theory is based on balance laws of
linear momentum and microforce, with underlying free energy depending on
a strain, a multicomponent order parameter and its gradient.

The idea of an order parameter was applied in the well-known theories
of solid-solid transitions developed by Falk and Frémond (see e.g. [1]). In
these theories, the order parameter is identified with the strain tensor. In
the nonisothermal case the free energy density is postulated to be a function
of the strain, the strain gradient, and temperature.

In the Fried—Gurtin theory the order parameter represents a new quantity
that can have varying physical interpretation. Originally, in the Fried—Gurtin
theory the order parameter represents a characterization of the material
phase in the solid. Another possible interpretation of the order parameter
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is the density of the chemical component. The order parameter can also be
considered as an artifice that yields a regularization of mechanical equations.
The free energy density is constitutively dependent on a strain, the order
parameter and the gradient of the order parameter.

From the mathematical point of view it is important that in the Fried—
Gurtin theory the stress tensor is a linear function of the strain. The non-
linear effects are contained in the order parameter equation.

To the best of the author’s knowledge the well-posedness of the Fried—
Gurtin model in the one-dimensional case has not been examined so far.
Only in Sikora et al. [8] a special 1D case of the model and its stationary
(independent of time) solutions have been analyzed. A three-dimensional
problem with homogeneous Dirichlet boundary conditions has been investi-
gated in [5]. The existence of solutions was proved there with the help of the
maximal regularity theory for parabolic equations. A homogeneous Dirichlet
boundary condition for the order parameter was assumed in applications of
this theory.

The 1D approach to the problem allows the application of a simplified
method to prove the existence and uniqueness of the solution. It is important
to mention that in this case, in contrast to [5], we adopt the homogeneous
Neumann boundary condition for the order parameter, which is common in
phase transitions theories.

Let us consider an elastic bar which occupies the interval [0,1] in
the reference configuration. The motion of the bar is described by the map-
ping

y(x,t) =z +u(x,t).
The order parameter is described by a function ¢ : (0,1) x (0,7) — R.

We use the following notation:

z € (0,1)=(  position
S={0}u{1} boundary points
te 0,7 time

2T =2 x (0,T) space-time cylinder
ST =8 x(0,T) lateral boundary

u(z,t) displacement

y(z,t) placement in space

g(z,t) = ug(z,t) strain

o(z,t) order parameter

oz(z,t) gradient of the order parameter

b(z,t) distributed body force
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In this article we study the Fried—Gurtin model in a special case of small
strain approximation with the strain represented by the linearized strain
e = ¢(u) and an unconstrained scalar order parameter ¢ distinguishing be-
tween two phases, a and b, characterized by ¢ = 0 and ¢ = 1. The model
under consideration has the form of a coupled system of partial differential
equations. These equations represent the linear momentum balance for the
displacement and the relaxation law for the order parameter with prescribed
initial and boundary conditions:

Ut — [f,E(ev @, 90:1:)]1 =b n .QT,
(1.1) Ulp=0 = up, Utlt=0 =u1 in £2,

u=0 on ST,
and

59075 + f,s&(ga QO, QOZE) - [f#?z (67 @7 gpi)]x = 0 il’l 'QT’
(1.2) Plt=0 = o in £2,
Pz = 0 on ST.

Here [ is a positive constant, called the dumping modulus (in general 3
can depend on &, ¢, ., @), and f denotes the free energy density which is
constitutively given as a function of the strain, the order parameter and its
gradient,

f = f(57 ©s 90:(:)'

The functions wg,u1, o represent initial conditions for the displacement,
the velocity and the order parameter. For simplicity we consider the homo-
geneous Dirichlet boundary condition for the displacement and homogeneous
Neumann boundary condition for the order parameter. The inhomogeneous
boundary condition for u can always be reduced to the homogeneous one by
an appropriate translation of the variable w.

We assume that the free energy density f has the typical Landau—Ginz-
burg form:

(1.3) [ 0.02) = W(e,9) + 0(0) + 5 Lol

with the three terms representing the strain energy, the exchange energy
and the gradient energy respectively, with constant coefficient v > 0. The
exchange energy ¥(-) has the standard form of a double-well potential with
equal minima at ¢ =0 and p =1,

(14) W(p) = 520 o)

The sum of the last two terms in (1.3) represents the energy of the diffused
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phase interfaces. For this form of f the corresponding derivatives are:

fele,p,00) = Wele, @),
fole, 0,02) = We(e, ) + ¥ (p),
froo (€50, 02) = V-

The relevant expressions for the strain energy W (e, ¢) are given by the
following two examples (see e.g. [4], [3]):

EXAMPLE 1.

(1.5) W(e, @) = (1 = 2(9))Wale) + 2(0) Wi (e),

where

—_

Wi(e) = = A(e — Ei)Q, i=a,b,

[\)

is the strain energy of phase i, Z; is the natural strain (eigenstrain), assumed
to be constant, and A > 0 is the elasticity coefficient.

Furthermore, z(-) is a smooth, nondecreasing scalar interpolation func-
tion satisfying

(1.6) z(0)=0, =z(1)=1, 0<z(p)<1 forall p€R.
The inequality constraint is imposed to ensure the physical meaning of (1.5).

EXAMPLE 2.

(1.7 W(e,g) = 5 Ale ()%
where
elp) = z(v)E

is the natural strain depending on the order parameter, € is the constant
misfit tensor, and z(-) is a smooth scalar interpolation function satisfying

(1.8) z2(0)=0, =z(1)=1,
but here, not necessarily constrained by the inequality of (1.6). Furthermore,

A > 0 is the elasticity coefficient.

We point out that in the general case, the coefficient A in the above
examples may depend on the phase, i.e. A = A(p). In this paper we restrict
ourselves to the case of homogeneous elasticity assuming that A is constant
and for simplicity we set

(1.9) A=1.
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For the free energy (1.3) with ¥ () given by (1.4) and W (e, ¢) as in Ex-
amples 1 and 2, the problem (1,1), (1,2) takes the form

ug — Atgy = 2'(9)Bp, + b in 27 = (0,1) x (0,7),
(1.10) Upy—p = U,  Uj—0 = U1 in 2=1(0,1),
uw=0 on ST =5 % (0,T),

Bt = vpe = —W'(p) = 2(9)[Bua + h(p)]  in 27,
(1.11) Plt=0 = ¥0 in £2,
e =0 on ST.
where
e in Example 1: B = A(5, — &), h(p) = —1 A2 — &),
e in Example 2: B = — Az, h(p) = Az(p)z2.
AssuMPTIONS. The problem (1.1), (1.2) is studied under the following
assumptions:
(A1) 2=10,1] C R.
(A2) A = const; later we will set A = 1.
(A3) f(e, ¥, pz) is defined by (1.3) with ¥(-) given by (1.4) and W (e, )
specified in Examples 1 and 2, or more generally, h(¢) = Ez(¢)+F,
where FE, F' are constants.

(A4) The function z(-) € C? satisfies (1.6).
(A5) The data of the problem are such that:

be Li(0,T; L2(2)), wuo € Hy(2), w € La(2), o€ H'(Q),

and satisfy the compatibility condition

w0z =0 onS.

REMARK. System (1.10), (1.11) with the nonhomogeneous Dirichlet
boundary conditions for the displacement

(1.12) w(0,t) =0, u(l,t)=d,

where d denotes a constant elongation, can be reduced to the homogeneous
one by the translation of the variable u:

v(z,t) = u(x,t) — de.
Then the pair (v, @) satisfies
Vgt — Avgy = 2/ () By + b in 27,
V=g = up — dT, V=9 =1u1 in £,

v=20 on ST,
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Bt = Yuz = —¥'(p) — Z'(9)[Bus + 1 (9)]  in 027,
Plt=0 = ¥0 in {2,
e =0 on ST,

where h*(¢) = h(p) + Bd.

The above system has the same form as (1.10), (1.11), so the results can
be applied to this case as well.

The problem (1.10), (1.11) corresponding to the strain energy from Ex-
ample 2 with 2(¢) = k¢, k = const, and the boundary condition (1.12) has
been investigated numerically in [8].

We now state the main results of this paper.

THEOREM 1 (Global existence). Let assumptions (A1)—(Ab) be satisfied.
Then problem (1.10), (1.11) has a solution (u,p) € WQI’OIO(QT) x Wyt (027).
Moreover, any solution (u, ) satisfies the estimates

[ullz,00 + lutll2,00 + 1@ ll2,00 + [tall2,00 + l[#ll4,00 + lptll2,2 < C,
HSOHWZQJ(QT) < C(T),

where the constant C depends only on the data ugy,u1,po and b, and C(T)
depends on the data and time T.

(1.13)

THEOREM 2 (Uniqueness). Let assumptions (A1l)—(A5) be satisfied.
Then the solution (u, @) € WQIOIO(QT) x W2L(027T) of problem (1.10), (1.11)
18 unique.

NOTATION. We use the following notation:

Ly =Lp(2),  |-llp=1"llz, ()

Lpq = Le(0,T; Lp(62)), |- llpa = I Iz, 0,132,020
VVQI’1 = WQI’I(Q x (0,T)) Sobolev space,

VVQQ’1 = W22’1(Q x (0,T)) anisotropic Sobolev space,
H' = HY(0) = W}(9).

Throughout this paper, C denotes a generic, positive constant different in
various instances, even in the same expression, depending on the data of the
problem, domain {2 and the time horizon T'. Sometimes, when appropriate,
this dependence will be additionally expressed. When using the Young or
Cauchy inequalities we will use the symbol C(1/§) to emphasize that the
coefficients C'(1/d), § > 0, depend on § and C(1/§) — oo as § — 0.

2. Auxiliary results. For the reader’s convenience we now present the
most important theorems used in the proof of the main results.

We will use the following theorems on solvability of linear partial differ-
ential equations.
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THEOREM 2.1 (Global existence for the hyperbolic problem; see e.g.
[6, Chapter IV, Theorems 3.1, 3.2]). Let f € La1,up € HY(2),u1 € La(2).
Then the problem
Ut — Ugy = f7
(2.1) Ule=o = o
Ut’t:[) = uj,

u(0,t) =u(l,t) =0
has a unique solution u € W} (£27).

THEOREM 2.2 (Global existence for the parabolic problem; see e.g.
[6, Chapter IT1, Theorem 4.1]). Let 3,7 > 0 and f € Laa, wo € H'(02).
Then the problem

Bt =V =
(2.2) Plt=0 = o,
Qox(ovt) = @x(lvt) =0
has a unique solution @ € WQQ’I(QT).
The proof of Theorem 1 will be based on the classical Leray—Schauder

fixed point theorem. We recall it in one of its equivalent forms.

THEOREM 2.3 (Leray—Schauder; see e.g. [2]) Let X be a Banach space.
Assume that a map T : [0,1] x X — X has the following properties:

(i) for any fized T € [0,1] the map T(1,-) : X — X is completely
continuous (continuous and compact),
(i1) for every bounded subset Xp of X, the family of maps T (-, x) :
[0,1] — X, x € XB, is uniformly equicontinuous,
(iii) there is a bounded subset Xr of X such that any fized point in X
of the map T (1,-), 0 <7 <1, is contained in X,
(iv) 7(0,-) has precisely one fized point.
Then T (1,-) has at least one fized point in X .

For later use, we prepare the following lemmas providing estimates of
solutions to problems (2.1) and (2.2).

LEMMA 2.4 (Estimate for the hyperbolic problem). Let u be a solution
for problem (2.1). Then

(2.3) [ull2,00 + lluall2,00 + luell2.c0 < C([fll21 + luallz + lluo.zll2)-
Proof. Multiplying (2.1); by u; and integrating by parts with respect to
x (ut(z,t) = 0 for x = 0 and x = 1 because u(x,t) =0 for x = 0 and = = 1),
we get
SUtUtt dxr + Suxuxt dr = Sfut dx.
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By Schwarz’s inequality,
1d

> Sl + e 3) < 1 ol

thus we get
(lluell3 + luzl3 )1/2 2 (lull3 + Jluall3 D2 <1 Fll2(lluel3 + lluzl[3)2.

After dividing by (HutHQ + |Juz||2)*/? and integrating with respect to t, we
conclude that

(lue ()3 + llua (0)113)2 < I1F 112 dt + (Ju(O)I3 + [lus(0)[3)">.

Recalling the initial conditions u(0) = wg, u(0) = w1, it follows that for
t<T,
lue(®)ll2 + lua(®)]2 < C

In view of the boundary condition

u(x,t) =

[fllza + llutll2 + lJuozll2)-
0,t) =0,

ug(s,t) ds.

Ot g

Hence,
1

1 =z
a3 < § (Juels 1) ds) " de < [ Bz = Juae)]3,

0 0 0
which concludes the proof. =

LEMMA 2.5 (Estimate for the parabolic problem). Let ¢ be a solution
for problem (2.2). Then

(2.4)  [lell2,00 + [l9zll2,00 + l9zzll22 + ll@tl2,2
< (M) fll2.2 + llpoll2 + lleoxll2)-

Proof. Multiplying (2.2); by ¢ and integrating by parts with respect to
T (‘Px@’(l) = 0, because ¢, =0 for z = 0,1) we get

Bl ewpdr + 7\l de =\ foda.

x, we conclude that
ﬁ d

5 ZlP®15 = Blle@®)ll2 %Hsﬁ(t)llz < IF@®)ll2lle(@)l2-

After dividing by [|¢(t)||]2 and integrating with respect to ¢, it follows that

Omitting 7 { ¢2 d

t
Blle@)ll2 < § 11F ()12 ds + Blle(0)]l2,

0
so, for any t < T,

Blle@llz < l[fll2.1 + Bliwollz-
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Thus

(2.5) lell2.00 < C(lI fll21 + lloll2)-

Further, multiplying (2.2); by ¢; and integrating by parts with respect
to  (pzpt]y = 0, because ¢, = 0 for z = 0,1), we conclude that

B} dw + \ puiprr do =\ fopr da.
By Young’s inequality fg < %fz + §92, it follows that

v d

2
Bllellz + 5 at

1 B
el < 35 1£15 + 5 llel3

Reducing §||<pt\|% and integrating with respect to t, we get

p Y 1 Y
e+ 3 a1 < 35 1132+ 3 lea O}
which implies that for some C' > 0,

leel32 + a3 < CUIFIZ2 + lleol3)-
Thus for t <T', we have
letllz2 + [lez(®)ll2 < O fll22 + llvozll2)-
As a result,
letll2.2 + llpzll2.00 < O fll2:2 + llv0zl2)-
This inequality and inequality (2.5) imply (2.4). =
We will also use

LEMMA 2.6 (Interpolation inequality). Let 2 = [a,b] C R and ¢ €
Ly(2) N HY(2). Then
(2.6) lellF < Cllelzlellz + lezlls),
lelld < C1/0)llell3 + dllwxl3,

where:

e the constant C depends only on {2,
e for & > 0, the constant C(1/9) depends only on 6, £2.

Obviously, we also have

(2.7) lella < CA/0)[ell2 + dll@ella-

FEstimates of nonlinearity for the parabolic equation, We point out some
consequences of the assumptions on ¥, z and h. The derivative of the double-
well potential ¥ has the form

(2.8) V' (p) = (1 — @) (1 — 2p) = 2¢° — 3% + .
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The function z(-) € C%(R), with 2/(-) Lipschitz continuous, satisfies
0<z(p) <1,

@9 o) =22 < Clor—pals  |#(1) =2/ (9)] < Clior .
Let
(210) H(g) = U(g) + 2 22(¢) + F2(p).
Then
H'(¢) =W (p) + EZ (¢)z(¢) + F2'(¢),
() + 2'(¢)[Bug + h(p)] = H' (¢) + 2'(¢) Bug,
where:

e [ =0, F = const in Example 1,
e I = const, F' =0 in Example 2.

One can easily check the following inequalities:
Cp* —C < H(p) <Co*+C,
(2.11) Cy* — Cp® < H(p) < Cp* + Cp?,
H'(p1) — H'(p2) < [O(p1 +¢3) + O] (01 — p2).
Using (2.10), the problem (1.10), (1.11) can be rewritten as
Utt — Uz = B2'(0)pz + b,
(2.12) uli—o = ug € H(2),  ugli—o = u1 € La(£2),
w=0 onS7,
Bt = Vpaw + H'(p) = —BZ () ua,
(2.13) Pl—o = o € H'(£2),
0 =0 onST.

3. Proof of Theorem 1. The proof is a direct application of the Leray—
Schauder fixed point theorem. First, we choose a working space X. Secondly,
we construct a map 7 : [0,1] x X — X. Thirdly, we check the assumptions
of the Leray—Schauder theorem to show the existence of a solution to prob-

lem (1.10), (1.11) in simplified form (2.12), (2.13).
Working space. Let
X = Log(07) N Lo(0, T HY(D)) = {9 € Loo(27), s € Lo(27)}
with the norm
(3.1) lellx = llellpo @y + 1@l Loy
X is a Banach space and the imbedding W;’I(QT) — X is compact.
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Construction of the map. Let 7 : [0,1] x X — X be defined by the
following procedure: for any 7 € [0,1], p € X, b € L1(0,T; L2(S2)), we define
u as a solution of the linear equation
(32) Utt — Ugy = —TBZ/(@@: +b
with initial and boundary conditions

u|t:0 =Uug € HI(Q), Ut|t:0 =ui € LQ(.Q),
(3.3) .
u=0 onS".

By Theorem 2.1, the solution u exists, is unique and u € WQI(QT), in par-
ticular u, € Lo(027). Given u,, we define 7 (7,%) as a solution of the linear
equation

(3.4) Bt — Vpze = —TH' (9) — B2 (9)u,

with initial and boundary conditions

55) Pl—o = o € H'(12),

. 0, =0 onST.

By Theorem 2.2, the solution ¢ exists, is unique and ¢ € W;’l(QT) c X.
This shows that 7 (7, %) is well-defined.

Continuity and compactness of the map 7 (7,-). To show the continuity
we estimate the difference 7 (7,%;) — 7 (7,%5) in the norm of the space X.
First we estimate [|(u1 — u2)z|| 1,07y, and then [¢1 — g02HW22,1(QT).

LEMMA 3.1. Let 1,99 € X, and uy, uz be solutions of
ULy — Ul ae = TBZ (91)P1 4 + b,
U 4t — U gy = TBZ’(@Q)@&:): + b,
with the same initial conditions (3.3)1 and with boundary conditions
up =0, wup=0 onST.
Then the difference v = uy — uo satisfies the estimate
(3.6) ez llame < 7Clx
where p =91 — Py and C depends on P .
Proof. The difference v satisfies
Vi — Vaw = TBZ'($1)P1, — TBZ' ($2)Pa
=B (@1) = #(@2))P10 + 7B (%)%,
In view of the boundary conditions and estimate (2.3) we deduce that

[vz]l2,00 < 7||B2'(@1)@1 2 — B2 ($2) Pz ll2.15
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Using the estimate

1B('(%1) — 2/ (%2))P1..] < |B2" ()| 2] [B12] < CI] P14
where £ depends on @, Py, we get
IB(2' (1) — 2'(@2))@1 2ll21 < ClIDll 1 (2 181 2 ll2.1-
The estimate |Bz'(¢,)@,| < C|@,| implies that
1B (%2)@ll21 < Cl @, l2,1-
Hence,
1B2"(#1)%1,.— B (82)P2.2/l21 < ClIPl Loy (21 [P 2ll2.1 + Cl[@e]l21
< OB 2 ll2l[@ll 2o 27y + CD)[@e 12,2
< (Cl21,ell2a+CT) (1@ oo (2m) + @2 ll2,2)-
This yields inequality (3.6). m
LEMMA 3.2. Let 1, @2 be solutions of the equations
Bo1t — YP1ae = —TH (B1) — 7BZ (%1)ur
Bpat = Vp2a0 = —TH'(Gy) — 7B (Ba)uz,e
with initial and boundary conditions
P1lt=0 = @0, 2li=0 =0 in 2,
QOLI = 0, (,02733 =0 on ST,
where uy, ug are constructed in Lemma 3.1. Then
le1 = @2llyzr < 7C7] ¥
where p =Py — Py, and C' depends on Py ,.
Proof. The difference ¢ = @1 — @9 satisfies
Bt — Vpuw = —T[H'(P1) — H'(%2)] + 7B (B1) w10 — 2/ (Ba)u2,al,
¢li=0 =0, @z =0 on ST,
In view of (2.4) and the vanishing initial conditions, it is enough to estimate
(3.7)  |H' (1) — H'(#2) + B (?1)w1.0 — B2 (@2)uzall2,2
< |H' (1) — H'(@y)ll22 + 1B (@1)ure — B2 (B2)uzall22-
Let v = u1 — ug. Then
1H'(71) — H'(@)| < C@ + %5 + O)#1 — Bal,
|BZ (%1)ur,e — B2 (@y)ua| < [B(2' (%)) — 2'(#2))ura| + | B2 (@) val
< |B2"(§)u1.P| + | B2 (B3)va|
< Cilur gl [2] + Clug|
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where ¢ depends on ©;, ®y. The above implies
|1H'(1) = H'@)ll22 < Cl@L + 72 + C)(#1 — Bo)ll22
< ClI8% + @5 + Cllryom 181 — Ballzuom
< ClI7E + %5 + Cllzo o) 1 — Poll o)
< O(leul7..ory + 12207 (or) + DIBl Loy
The estimate (3.6) yields ||vz||2,2 < C||@|| x- By the above estimates and (3.7),
1 — @2||W22’1(QT)
< rCIBE _gry + 172 orr) + DBy + l1aPliz + oallaz)
< TC((H@H%OO(QT) + "‘H@H%w(gﬂ) + D@l Lo (27
+ llurell2 2@l o or) + [12llx)
<7O[Pllx = 7CI[71 — Pallx-
where the constant C' depends on @, (for small |5; — Pl (o)) =

Lemmas 3.1 and 3.2 show that the map 7(7,-) : X — W22’1(_QT) is
continuous for any 7 € [0, 1]. Its compactness follows from the compactness

of the imbedding W22’1(.QT) — X.

Uniform equicontinuity. In the next step of the proof we prove that if X
is a bounded subset of A’ then the family of maps {7 (-, ¢)}pex, : [0,1] = X
is uniformly equicontinuous.

Let € Ap, |@||lx < M, and uy, ug be solutions of (3.2), (3.3) corre-
sponding to 71, T respectively. Let ¢1, @2 be solutions of (3.4) corresponding
to 71, u1 and 7o, ug respectively.

The difference v = u; — uy satisfies

Vit — Vzz = (11 — 72) 2 (P) Py
with vanishing initial and boundary conditions. In view of (2.3) we have
(3.8) [vzll2,2 < [[(71 = 72)2/ (@) Bll2,1 < 111 — 2|, |22
The difference ¢ = ¢ — o satisfies
Bt — Vpae = —(11 — 1) H'(P) — B(112'(P)ure — 122 (P)uz,a),
with vanishing initial and boundary conditions. The estimate (2.4) implies
ez ory < (7 = 2) H'(@) + B(n2'(B)ur.e — 722 (@)uz)ll2,2-
Using the inequalities
1H'(@)] < Clgl’ + C,

712 (P)ur,e — 122" (@)uge| < (11 — T2)ure] + 122" (@) (Ur,0 — u2,2)],
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taking into account that u; satisfies (3.2) for 7 = 7, and using Lemma 2.4
we get
[urzll2.00 < CIT12 (@)P, ll2.0) + C2 < 1CP, 121 + Co
< 11C|[B,ll2,2 + C2

where C5 depends on the initial conditions (3.3). Hence (3.8) and ||@||x < M
yield
ez gry < Im =Rl (IH @) ll22 + [ur2ll22) + Crallve]l2,2
< |n = nl(ClIPI3_or) + C + ClEsllz2 + ClE,l22)
< C|m — 72|.
2,1

By continuity of the imbedding W~
the desired uniform equicontinuity. m

(27) < X, the above estimate shows

Boundedness of the fized point. In the next step we prove that there
exists a constant M such that every solution of the equation 7 (7, ) = ¢ for
any 7 € [0, 1] satisfies [|¢|x < M.

If o is a fixed point of 7 (7, -) for some 7, then

Uty — Uge = —TBZ' (@) 0z + b,

Bt — Ypuz + TH'(p) = =T B2 ()t

uli—o = up € Hl(Q), ut|i=0 = u1 € La(£2),
u=0 onST.

Q=0 = o € H'(12),

w; =0 on ST,

(3.9)

In virtue of the inequality (2.3),

uell2,2 < C(|TB2' (@)@ + bll2,1 + [lutll2 + [Juozl2)
< Ollgzll22 + CIbll21 + [[utlle + luozll2) = Cllezll22 + D

where D = C(||b||2,1 + ||u1]]2 + [|uo,2||2). This shows that

(3.10) lusll3 2 < Cllgzl3 2 + D%

Multiplying (3.9)2 by ¢ and integrating by parts with respect to x yields
BV oprdr + v\ pupr do + | H'(0)p dr = —7 | B () pu, da.

Taking into account that H'(¢)p > Cp* — Cp?, |BZ'(p)| < C, we get

ﬁxcpgotdx—}-'ySgoxcpwdx—l—TCSgoéldx §TC’S<p2dx—|—TCS|cpux|dx.
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If we omit 7C | ©* dz, the Young inequality yields

8 d

5 Ie@IE +lex @15 < Clie@Iz + Clle®)l2llun(t)]l2

< Clle®|3 + C1/8) )3 + dllua(t)3-
Integrating with respect to ¢ € (0,7 and applying (3.10) we get

B
5 le® 15 +llea 3,

< (0 + 00/ e R ds + ()2 + 5 O3

<(C+C(1/0))

O e O e

B
le()I3 ds + 5 (O3 + 6C | pxl3,2 + 0D*.

Choosing § = /2C, after reducing the term 6C||¢.||3 o, we get

i v ‘ 3
5 le®I3+ Fllexl3 < O o)l ds + 5 10(0)[3 + 6D°.
0

Since p14, =0, 2., =0 on ST the integral Gronwall inequality shows that
for t < T,

20 .
o015 < (1B + 5 D)1+ cte)
where ¢ = 2C/f3. Consequently, |¢|22 < [[¢ll200 = esssup||e(t)]2 <
C(T) < o0, so

t

o B
3 lezll3s < CS lo(s)[|3 ds + 5 lo(0)]|5 + 0D
0

< Ollpla + 2 lp(0)I3 + 6D,
thus
[zll22 < C(T).
Estimates (2.4) and (3.10) imply that
lellyzs < CON-TB2 @l + ol + [0l

< O (Cllusllzz + loollz + o0l

< C(T)(Cllgallz2 + C + llgollz + lleoell2)

< C(T)C + leollz + llpoallz) =M. =

Proof of the energy estimate. In this section, we prove the estimate
(1.13); from Theorem 1.
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Multiplying (2.12); by u; and integrating by parts with respect to z
(a5 (2(p)ur) = 2/ (@) puur + 2()uzt) we get
Sututt dx + Suxuxt dr = —B S z2(p)uge dr + S bu dx.

Multiplying (2.13); by ¢ and integrating by parts with respect to x, we
deduce that

Y07 dz + 7 {pupur du + | H'(0)pr de = =B 2 (@) pru, da.

In view of %(z(gp)ux) = 2/(¢)prug + z(p)uge, adding the above equalities,
we arrive at the energy identity

(311)  BlePde+ i(lﬂut dz + %S@?;dw
+ %Sui daH—SH(Lp) —i—Bz(go)uxdx) = Sbut dx.

We use the estimates H(p) > Cyp* — Cp? (see (2.11)), z(¢) < Clp| + C
and the inequality pu, > —(p? +u2)/2 to conclude that

1
(3.12) 5 ul + H(p) + Bz(p)ug > Cu? + Cpt — Cp? > Cu + Cy* — C.

Furthermore, integrating (3.11) with respect to t yields

= a3~ s (O)]3) + Bligell3 + % (e (I3 = lle2(0)]3)

(313)

+ <%Suidm—i—SH((p)dx—i-BSz(go)uxdac) . Z“butdxdt

for any ¢ < T'. In virtue of the Hoélder and Young inequalities we get

1
V\bug da dt < §[1b(s) |2 lue(s) 2 ds < [[bll2,1llurll2.00 < [1bI3,1 + 7 7 3o

Hence, (3.13) yields, for any ¢t < T,
1 gl
)13 + BllerlZa + 2 a3+ | (Cu2t) + Cot() - € da

1 1
< 7 luell3o + 5 (0 )Hz+ oz (0)113

+ (% W2(0) + H(p(0)) + Bz(@(o))um(0)> dz + b3,

713+ 5 Hsox( 300 + Clluall3 oo + Cllell 00 + Bllnl3 5

[ (0 )||2+ lpw (0)113 + (18113, + C
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where C' = C'+§ (3u2(0)+ H((0)) 4+ Bz(¢(0))uz(0)) dz. The above inequal-
ity and the inequality ||u||2,00 < ||uz]|2,00 yield the estimate (1.13);. m

Ezistence of the solution. For 7 = 0, system (3.2), (3.3) has exactly one
solution, because in this case both independent linear equations have unique
solutions. Thus the assumptions of the Leray—Schauder’s fixed point theorem
are proven. Hence 7 (1, ) has at least one fixed point ¢ € X. Then the pair
(u, @) is the solution of system (3.2), (3.3) for 7 = 1, thus also for (2.12),
(2.13). Theorem 1 is proved. =

4. Proof of Theorem 2. Let (u1, 1) and (ug, p2) be two solutions of
the system (2.12), (2.13). Let v = u; — ug and ¢ = 1 — 2. The pair (v, )
satisfies
Vit — Ugx = BZ/(SOI)SOI,x - BZ/(‘PQ)@Q@,

Bt —=vpaw = —[H' (1) = H'(92)] = Bl (¢1)ur,e =2 (p2)usel,
U|t:0 =0, Ut|t:0 =0, Plt=0 = 0,
v=0, ¢,=0 onS7T.

(4.1)

In view of the the zero initial conditions, Lemma 2.4 yields
[0]|2,00 + 1V2]l2,00 + [[Vt]l2,00 < CIIB2 (1) 01,2 — B2 (02)p2,2l2,1-
for any ¢ < T'. Taking into account the regularity of z(-) we have
12 (p1) 01,0 — 2'(92)p2.0]
< |2 (e1)p1e = 2'(02)P1al + 12/ (02) P10 — 2/ (02) 02,4l
=[(2'(¢1) = 2'(p2)) 1l + |2/ (02) (01,0 — 2,2)]
< 127(€) (1 — p2)pral +12'(02) (010 — 92,0))

< C(lpp1] + 0z])

where ¢ depends on 1, 2. Thus, for t < T,
t

[oll2,00 + [v2ll2.00 + [[ot]l2,00 < C§ (lp1,2ll2 + 0212) ds.
0

Applying the Holder inequality, we deduce that

t t
Vllpprallads <\ l@llallerellads < [l@llazlerellaz
0 0
The solution ¢; of problem (2.13) belongs to W22’1 and [|¢1][y20 < C(T).
2

The continuity of the imbedding D, : VV22 1 Ly o yields

||<P1,m||4,2 < C||<P1HW22,1 < C.
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Applying the inequality [|¢z|/2,1 < C|l¢zll2,2 we deduce that
(4.2) [0]2,00 + [[vz]l2,00 + [0t ll2.00 < Cllpllaz + Cllpzlla,2.
Multiplying (4.1)2 by ¢ and integrating by parts with respect to x, we get
BYopide+~ ¢ de + [ [H'(01) — H ()]0 de
= —B|(Z'(p1)ur,e — 2(p2)us ) p de.
The boundedness of 2”(-) yields
| B(2(p1)ur,e— 2 (02)uz,e)| = [B(2 (1) =2 (02))ur o] + B2 (02) (u1,0— uz,0)]
< C(lpurel + fvz]).

Taking into account the inequality [H'(p1)—H'(p2)]¢ > Clet+¢3]p? —Cp?,
we conclude that

8 d

5@8¢2dﬂc+7§9@§d$+08[¢§+90%]<P2d33

< C\@?dz + | |B(2 (1) ur e — 2(p2)un)pl da

< C’Sth dx + CS ]g02u1,1| + |vzp| d.

Hence, omitting C | [¢? + ¢3]¢? dz, we get

8 d
5 g IP®IE +7lex @13 < Clle®)llz + OV (lp*ura] + |vap]) da.

By virtue of the Hélder inequality,
C\lp*u1 ol de < Clpl3llure2-

(4.3)

Applying the estimate ||u1 42,00 < C, which is true by (1.13), we deduce
that
C{lp*urz| dx < Cllell3.

In view of the interpolation inequality (2.6)2, the above inequality yields
CVlPurel dz < C(1/8) |13 + 8l pzll3.

Thus, if we set 6 = 7/4 inequality (4.3) takes the form

3 d 3
2 Zle®I3+ S 1len 13 < Cle@IE +C§ loapldo.

The inequality (4.2) implies that for any ¢t < T,

vz ()ll2 < lvzll2,00 < Cllollaz + Cllezll2,2-

Hence, applying the Holder inequality we can estimate the last term in (4.4)
as

(4.4)

C| luapl da < Cllo(®)ll2llellaz + Cllp() 2]l oxll22-
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In view of the vanishing initial conditions and the above inequality, integrat-
ing (4.4) with respect to t yields

3
le @15+ 7 Ylealz
t

< Clelzz + C Y le®l2liellaz + lle@)l2lleellz,2) d
0

< Clllel32 + llellzzliellae + llell22lleall22)-
Applying the interpolation inequality (2.7) again, we get

3
le®15 + 3 ealz < Cllel32 + Cllels s + 2lell22lleall22)

< C(llell3 2 + llellzz2llpzlzz)-
Using the Young inequality we conclude that

3
k@15 + 3 l¢alz < Cllellzz + CA/DelE2 + dlieall32)

5
< Cllels + o llexllzz,

where we have set § = v/4C.
In view of the vanishing initial conditions, the integral Gronwall inequal-
ity yields, for t < T,

le@®)]3 = 0.

Hence, ¢(t) = 0 for any ¢ < T. Using (4.2) and the zero initial condition
in (4.1) we conclude that v = 0. This shows that @1 = @2, u1 = us. The
uniqueness is proved. m
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