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P1oTR SzoPA (Warszawa)

FINITE-DIMENSIONALITY OF 2-D MICROPOLAR FLUID
FLOW WITH PERIODIC BOUNDARY CONDITIONS

Abstract. This paper is devoted to proving the finite-dimensionality of
a two-dimensional micropolar fluid flow with periodic boundary conditions.
We define the notions of determining modes and nodes and estimate their
number. We check how the distribution of the forces and moments through
modes influences the estimate of the number of determining modes. We also
estimate the dimension of the global attractor. Finally, we compare our re-
sults with analogous results for the Navier—Stokes equation.

1. Introduction. There are some heuristic as well as dimensional anal-
ysis arguments suggesting that the long-time behavior of a turbulent flow is
determined by a finite number of parameters. Therefore the flow has only
a finite number of degrees of freedom and can be approximated by a finite
system of ordinary differential equations. These arguments are based on a
conjecture that rapidly varying, high-wavenumber components decay as fast
as they leave lower-wavenumber ingredients unaffected. By Kolmogorov’s
theory, in 3-dimensional flows only the wavenumbers up to the cutoff value
M¢ = (¢/v3)Y* need to be considered. The question is then reduced, as
explained in [17], to finding the number of resolution elements necessary to
be considered to describe the behavior of a fluid in a volume, say a cube of
side length lp. The smallest resolved distance is [; = 1/Ax and therefore the
number of resolution elements is (Ip/l4)3.

A theory of Kraichnan [15], concerning a 2-dimensional turbulent flow,
allows us to estimate the number of resolution elements required by (Io/Ak;)?,
where Ak, is the Kraichnan length A\, = (¥3/x)"/% and x is the average
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enstrophy dissipation rate. We refer the reader to [3] for a more detailed
discussion of turbulent length scales.

The notion of determining modes arises naturally when considering the
Fourier decomposition of a flow. There are some results concerning determin-
ing modes in the context of 2-dimensional Navier—Stokes equations. Foiag
and Prodi showed in [8] that if a number of Fourier modes of two different
solutions have the same asymptotic behavior, then the entire solutions also
have the same asymptotic behavior. Subsequent work has been aimed at es-
timating how many low modes are necessary to determine the behavior of a
flow. The most recent results are in [6] for the case of no-slip boundary con-
ditions and in [12] for the case of periodic boundary conditions. The number
of determining modes for a 2-D micropolar fluid low with no-slip boundary
conditions was estimated in [23].

In many practical situations, for instance in physical experiments, data
are collected from measurements at finitely many points in the domain of
the flow. A natural question is how many measurement points are necessary
to determine the long-term behavior of the flow. This leads to the notion of
determining nodes, introduced by Foiag and Temam in [9]. The most recent
estimate for the lowest number of determining nodes for the Navier—Stokes
equation in the space-periodic case was derived in [12].

Another approach to describing the asymptotic behavior of a flow with a
finite number of parameters is to use a global attractor. For every trajectory
u in the phase space we can choose, by the “Shadowing Lemma” (cf. [21]),
a trajectory ua lying on the attractor that is arbitrarily close to w in an
interval of time, that is, |u(t) — ua(t)| < € for t € (to,t1). On the other
hand, a global attractor has finite Hausdorff and fractal dimension, so we
can parametrize it with a finite number of parameters (cf. [7], [10], [19]).
Therefore we can describe approximately the long-term behavior of the flow
by a finite number of parameters.

There are many results concerning the dimension of an attractor for the
Navier—Stokes equation with a variety of boundary conditions, e.g. periodic
boundary conditions [26] or a pipe-like domain with arbitrary inflow at in-
finity [20]. The dimension of an attractor for micropolar fluid equations with
various boundary conditions was estimated in [2], [18].

In this paper we will consider all the above mentioned ways of deter-
mining the long-time behavior of a micropolar fluid flow by a finite number
of parameters. We estimate the lowest number of determining modes (The-
orem 2) and nodes (Theorem 3), and the dimension of a global attractor
(Theorem 4).

We will consider the micropolar fluid equations, which in the two-dimen-
sional case have the form (cf. [18])
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(1.1) %—(V—FVT)AU—}-(u'V)u+Vp:2Vrrotw+f,
(1.2) divu =0,
ow
(1.3) v alAw + (u - V)w + 4dvyw = 2v, rotu + g,
where u = (uj,uz) is the velocity field, p is the pressure and w is the

microrotation field interpreted as the angular velocity of particles. In the
two-dimensional case we assume that the axis of rotation of particles is per-
pendicular to the x1, x9 plane. The fields f = (f1, f2) and g are the external
forces and moments respectively. The positive constants v, v, a are the vis-
cosity coefficients, and

rotu:%—% divu:%+au2 roth(@_w _8_w>

(91’1 (91’2 ’ 8131 8—1‘27 (91’2 ’ (91’1
We supplement these equations with the initial conditions
(1.4) u(z,0) = up(z), w(z,0)=wo(x)

and periodic boundary conditions
(1.5)  w(z+ Le;,t) = u(x,t), w(x+ Lej,t) =w(x,t) Yo e RVt >0,

where e1, e5 is the usual basis of R? and L is the period in the ith direction.
We give the existence theorem in the next section after defining the relevant
function spaces.

This paper is organized as follows: In Section 2 we introduce the function
spaces and operators used throughout, and we present the main results. Sec-
tion 3 contains some a priori estimates. In Sections 4 and 5 we estimate the
number of determining modes and determining nodes, respectively. In Sec-
tion 6 we recall the notions of fractal and Hausdorff dimension and estimate
the dimension of a global atractor.

2. Mathematical setting of the problem and the main results.
In this section we introduce some function spaces, trilinear forms b and b1,
the Stokes and —A operators and the rot operator.

Function spaces. Set Q = (0, L)2. For every Banach space X we will
denote by X the space X x X with the standard product norm.

L1 is the usual Lebesgue space L(Q) for ¢ € [1, 00]. We denote the scalar
product in L? by (-,-) and the norm in L? by | - | when it does not lead to
confusion.

H™, m € N, are the usual Sobolev spaces H™(Q) of functions whose
derivatives up to order m are square integrable, with the norm

llw||m = < Z S |Dau|2d$)1/2'

la|<m Q
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We denote by Hp (Q), m € N, the space of real functions in H|l (R")
which are periodic with period L in each coordinate direction: u(x + Le;) =

u(zx), i =1,2. It is a Hilbert space with the scalar product

(U, V) = Z S D%u(z)D%(x) dz

lajl<m @

and the induced norm |- |;,. The functions in Hp (@) are explicitly charac-
terized by their Fourier series expansion:

H (@) = {u= 3 uee®™"* iy = g fuln = 3 (K" < oo}
keZ" keZn

where k/L = (ki/L,ky/L). The norm |ul,, is equivalent to the norm

{2 kezn (1 + k2™ |ug |2} /2. We also set

Hpe (Q) = {u € Hje (Q) = uo = 0}.
We denote by H and V the divergence-free subsets of HY (Q) and

per

HL (@), respectively. We equip V' with the scalar product and the Hilbert

per
norm

"/ Ou v 1/2
() =3 (g g ) Il = (o
This norm is equivalent to the norm induced by Héer(Q), and V is a Hilbert
space for this scalar product.
One can check that HI;T is the dual space to Hgér; we also denote the
dual space to V as V'.
Let ‘H and V denote H x ngr and V' x Héer, respectively, with standard
product norms.
L%(0,T; X), where X is a Banach space, is the space of strongly measur-
able functions u: (0,7") — X with the following norm:

T 1/q
(Vg ar) ™, 1<,

esssup |u(t)llx,  ¢=oc.
te(0,T)

HU”L‘?(O,T;X) =

C([0,T]; X), where X is a Banach space, is the space of continuous func-
tions u: (0,7") — X with the usual norm.

Stokes and —A operators. Let us consider the Stokes problem, obtained
from the Navier-Stokes equation by neglecting all time-dependent and non-
linear terms, with periodic boundary conditions (1.5): for given f € HD_ or

H-!, find w € H! . and p € L? such that

per? per
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(2.1) —Au+Vp=f, V-u=0.

It is known (cf. e.g. [21, 25]) that in this case the Stokes operator A is simply
—A (provided that f € H) with domain D(A) = H%er N H. The operator A
is one-to-one from D(A) onto H.

The operator A~! is linear and continuous from H into D(A). Since
the injection of D(A) in H is compact, we can consider A~! as a compact
operator in H. It is also self-adjoint as an operator in H. Hence it has a
sequence of eigenfunctions w;, j € N, which form an orthonormal basis

of H,
ij :)\jwj, wj ED(A),
O<M<A<..., A —o00 asj— oo.

Let us consider the Poisson equation with periodic boundary condition,

that is: for given g € Hpelr find w € ngr such that

—Aw =g.

The operator —A has the same properties as the Stokes operator: it is one-
to-one from D(A;) = H2,, N HY, onto HY, . The operator Ay’ is linear

per per per*
continuous from ngr onto D(A;) and compact as an operator in H, per Al-
though the eigenvalues are the same, the eigenfunctions are different, because
w is a scalar function. We denote the eigenfunctions of —A by pi. Let A1 be

the —A operator with domain D(4;) = nHY

per per*

We can express every u € H and every w € ngr

= Zuk(t)wk(ag), w(z,t) = Zwk(t)Qk(x)
k=1 k=1

The Galerkin projectors corresponding to the first m modes are

Pru(z,t) = Zuk wi(z),  Pyhwilz,t) = Zwk oz

We also denote the projections onto modes higher than m by @, and Q!
respectively,

Qmu(z,t) = Z uk(H)wi(z), QLw(x,t)= Z wi(t) ox ().
k=m+1 k=m+1

Trilinear forms. We define trilinear forms b and b; as follows:

2
b(u,v,w) = Z Suz g:f wj dx



314 P. Szopa

for all u,v,w € V, and

2
by (u,w, V) = qul
Q

=1 Li

for all v € V' and all scalar functions w,® € per(Q). The forms b and by
are skew-symmetric with respect to the last two coordinates,

(2.2) b(u,v,w) = =b(u,w,v), bi(u,w,p)=—bi(u,p,w),
which implies the orthogonality property
b(u,v,v) =0, bi(u,w,w)=0.

In the 2-dimensional space-periodic case the form b has one more orthogo-
nality property (cf. [25]):

(2.3) b(u,u, Au) =0 VYu € D(A),

which the form b; does not have—it is not true that b;(u,w,Ajw) = 0
for all u € D(A) and w € D(A;). The lack of this orthogonality property
causes that the a priori estimates we obtain are more involved than analogous
estimates for the Navier—Stokes equation with periodic boundary conditions.

We get some estimates of the forms b and b; using the Ladyzhenskaya
inequality [16]

1/4
flull s < <§> w2 u)|V?  for all u € H!
T

per>»

and the Agmon inequality [1, 11]
1
[Juf| e < 7 [u|"/?|AulY?  for all u € D(A).
™

We also use the Holder inequalities:

(2.4) b, v, w)| < exful 22 o]| - w2 w| V2w, v,w eV,
(2.5) |b(u, v, Aw)| < exful?|ul[V2 o] /2] Av|/?| Awl,

ueV, v,we D(A)
(2.6) b1 (u, w0, 40) < ealal 2l NP wll, ww, 4 € H,

(2.7) b1 (u,w, A1)| < exful?| Aul 2 w]| - | A,

u€ D(A), w€ H),, ¥ € D(41),
(2.8)  |bi(u,w, A)| < erful? A2 |w]| - |Ary],

u€ D(A), w € H.., ¥ € D(Ay),

for an appropriate constant c;.
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The rot operator has the following properties:

Srotu cwdr = Srotw -udx, S rot w|? dx = S IVwl|? dz,

Q Q Q Q
(2.9)
S [rot u|? dz = S |Vu|? d,
Q Q
for all u € V and w € H}

per*

Main results. The existence and uniqueness of solutions for this model
as well as existence of a global attractor were proved in [24]. We also assume
(as in [24]) that the space averages of u, w, f and g vanish.

THEOREM 1. Let f € L*(0,T;H), g € L?(0,T;HC.,) for each T > 0

] per
and let ug € H, wy € ngr. There exists a unique weak solution of problem
(1.1)—(1.3), that is, a pair of functions (u,w) where

ue C([0,T); H) N L*(0,T;V) for each T > 0,
w e C([0,T); HY,) N L*(0, T3 HY,,)  for each T > 0,

such that u(z,0) = ug(x), w(z,0) = wo(x) and satisfying the following iden-
tities:
d

2 ((t), ) + (v + 1) (Vu(t), Vo) + b(u(t), u(t), »)
= 21/T(I'Ot (.U(t), SO) + (fa 90)

for all p € V, and

d
%(w(t)v w) + a(vw(t)7 V¢) + bl(u(t)7 w(t)7 w) + 4VT(w(t)7 w)
= 2up(rotu, ¥) + (g(t), )
for all ¢ € H;er(Q), in the sense of scalar distributions on (0,00).

In the first two theorems that we prove in this paper, we consider the
difference between two solutions of micropolar fluid equations. Let us denote
by (u1,w;) and (ug,ws) solutions corresponding to two possibly different
pairs of the external forces and moments (f1,g1) and (f2,g2) respectively,
with the corresponding pressure terms p = p(x,t) and ¢ = q(z,t). We set
u=up —ug, w=ws —wy, f=fi— f2and g = g1 — g

It is assumed that the external forces fi1, fo and moments g1, go have the
same asymptotic behavior for large time, that is,

(2.10) ([ f1(z,t) = fa(z, O)llF-1 + g1 (2, ) = ga(, )[[3-1 = 0 ast — o0
for determining modes and

211)  [filet) = foleDP + i, t) — ga(a, )2 = 0 ast— o
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for determining nodes. The estimates obtained in this paper will be given in
terms of the asymptotic strength of forces and moments measured in their
L? and H! norms, that is,

F= li?nSllp(\fl(lf)’2 + gL (&)%),
Fo= 11?1sup A= + gl F-1) 2

Let us notice that in the autonomous case, F = (| f|2 + |g[2)/2.

DEFINITION 1. The first m modes associated with P, and P. are called
determining modes if the condition

(2.12) S(|Pmu1(a:,t) — Ppug(z,t)|? + | Pl (z,t) — PLws(z,t)?) dz — 0
Q

as t — oo, together with the condition (2.10) for the forces and moments,

implies

(213) §(|Qmur(,) = Quua(e,)* + |Qpwn (@, 1) — Quwa(w,)|*) dw — 0
Q

as t — oo.

An estimate of the number of determining modes is given in the following
theorem.

THEOREM 2. Let f; € L*(0,T;H), g; € L?>(0,T;L?) for i = 1,2. If
the forces and moments satisfy condition (2.10), then the first m modes are
determining in the sense of Definition 1 provided that

1612 82 ~,

> .
= Daaky | dhiksks = !

m

In order to prove this estimate we derive a differential inequality for
|Qumu(t)|>+|QL w(t)|? and then we estimate m by checking the assumptions
of the generalized Gronwall lemma (Lemma 2; cf. [5]).

We consider a set X' = {x!,..., 2V} of N measurement points (called
nodes). We assume that these points are uniformly distributed within the
domain () in the sense that () may be covered by N identical squares
Q1,...,Qn such that exactly one z¢ is in each square: z* € Q;.

We assume that both flows have the same time-asymptotic behavior at
the measurement points. This can be written in the form
(2.14) max lug (27, t) —ug(z?, 1) - 0 ast— oo,

=1,...

(2.15) max lwi (27, 1) —wa (2, t)| = 0 as t — oo.

3ty



2-D micropolar fluid flow 317

We want to estimate how many points of observation are necessary to de-
termine the asymptotic behavior of the flow in the following sense:

DEFINITION 2. The set ¥ = {z!,... 2V} is called a set of determining
nodes if (2.14), (2.15) together with the condition (2.11) for the forces and
moments implies

(2.16) S(\ul(ac,t) —ug(x, )2 + |wi (2, t) — wa(z,t)|?)de — 0 ast — oco.

Q
THEOREM 3. Let () be a domain covered by N identical squares @1,
.., QN and consider a set X = {z',..., 2N} of points in Q distributed one

in each square: x' € Q; for 1 <i < N. Let f1 and fo be two forcing terms
in L?(0,00; H) and g1 and go be two moments in L2(0,oo;ngr), satisfy-
ing (2.11). Then X is a set of determining nodes in the sense of Definition 2
for the 2-dimensional micropolar fluid equations with periodic boundary con-

ditions provided that

c 8u?
N > L2
- )\1]61{ o vr

2.1/2 2 -
cic c1 baky + 32v7 ~,  16Cc) ~4 SO
=. F F F
+< o a> ( k2 T gl @t &
16C411/C\1 ~4 ~ ~ T4
——F F*) 5.
Novkiks exp(ca + c3F7)

To obtain the above estimate we derive a differential inequality for the
H'-norm of the difference of solutions and bound N from below by checking
the assumptions of the generalized Gronwall lemma.

The following theorem concerns the dimension of a global attractor.

THEOREM 4. There exists a constant Cy such that if N is the integer
satisfying
N —1 < 2Cy(k}ky)"Y?F < N,

where ki, ko are as in (3.2) below, then the N -dimensional volume element
in the phase space 'H is exponentially decaying; moreover the Hausdorff di-
mension of the attractor A,,, v, > 0, is less than or equal to N and its
fractal dimension is less than or equal to 2N .

The dimension of the attractor is estimated by using Lyapunov expo-
nents.

3. A priori estimates. In this section we derive some a priori esti-
mates. Since we will consider the asymptotic behavior of solutions we esti-
mate their norms in terms of the asymptotic strength of forces and moments.
To this end we set
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F = liftnsup(]f(t)’2 +lg(t) )2,

(3.1) ~
Py = h?lsup(llf(t)llﬁ—l + @)1,

and

(3.2) kl = min{u,a}, k2 = kl)\l-

Inequalities (3.3), (3.6) and (3.8) below come from [24]. Let us consider the
following one:

d _
(3.3) %(lu(t)l2 +w(®)?) + ka(Ju(®)]* + |w(®)?) < k(O +9()).
Integrating it with respect to ¢ in the interval (0,¢) we obtain
t
(34)  [u®)]’ + [w®)® < |uol* + |wol® + k5 [ (If()* + lg(5)]?) ds
0

< ol + wol? + k5 (1 132 0 ety + 1912200 s )

which implies a uniform bound on the norm of the solution in H.

Applying Gronwall’s inequality to (3.3) we obtain a bound on the norm
of solutions for large times, which is independent of the initial condition.
First we have

[u(®) + |w(®)? < 200 (ju(to) ? + fw(to)?)
k720 = €O I i iy + 1912 i, )

hence for ¢y and ¢ large enough,
2 ~
(3:5) [u®F + lw®F < 5 F*.
2

To estimate the average of the square of the norm of solutions in V we use
the inequality

(3.6) %(Iu(t)F + lw(®)?) + k()] + lw()]1?)
< k3N (IF @O+ g®)).

By integration we obtain
t+T
ju(t + 1) + |w(t + )+ k1 | (Ju(s)l* + llw(s)]?) ds
t
t+T
<kt N ()P +1g(9)) ds + Ju()]? + w (D).
t

Since |u(t)|? + |w(t)|? is uniformly bounded with respect to t (cf. (3.4)), for
t and T large enough we have



2-D micropolar fluid flow 319

t+T

(3.7) % J (lu(o)? + llw(s)I?) ds

t

1 t+T 1
< (klkz)‘lf S (If(8)|2+19(5)12)d8+T(IU(t)FHw(t)IQ)
2 -
< @FQ.

In order to derive two more estimates we consider the inequality

() P+ D) + " (| Au(t) + | Areo(t))
g(ﬁghwﬂwwnw 8W>m()W+HMﬂW%+;GﬂﬂF+w@W)
OZ 1

Setting

) = IO + 1%, 300 = ( 25 Pl + 22,
h(t) = 1 (50 + 190,

we infer from (3.8) that

(3.8)

dy
—= < h.
di 9y +
We check the assumptions of the uniform Gronwall lemma (cf. [26]). If ¢ > ¢

(so that estimates (3.5) and (3.7) hold), for some r we have

t+r 2 t+r

Suir 8C'r 3r

g(s)ds < —/— + F*=a, h ds<—F2_a,

§9() a | aukik3 L § () ko 2
t+r

2r ~
S y(s)dsgﬁF2Ea3.
t 2

Therefore by uniform Gronwall’s lemma we obtain

2 + 3kor ~ 8v2r 8Cr =
3.9 + 2 ¢ 2 < 2o F2 T F4
@9) )P+ el < S P exp S+
for all t > tg + r. Set
243k 8 8Cr
3.10 == =— = :
(3.10) “ kiky © o @ o?vk k3

Then (3.9) becomes
(3.11) u®)]]? + |lw®)]]? < &1EF? exp(ca + 3 F™Y).
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Now we want to derive an estimate on the average of the square of the
norm of solutions in D(A) x D(A;). Integrating (3.8) in (¢,t + T) we get

lut + D)1 + llw(t + DI = [lu@)* — w@)]?
Ky t+T

+ 20§ (Au(s) + | Arw(s) ) ds

t+T
< | {(%’u(t)\QHw(t)Hz—l—8VT>(Hu(t)H2+Hw(t)Hz)

«

hence
1 t+T
= 1 (A + | A(s)P) ds
12 4 1"
<z o (lu@®* + lw(®)1?) + BT § (IF ()PP + 1g(s)?) ds
T 2
27 1 (Z ) + P2 + )P + 222 )

(lu()I? + llw(s)]?) ds.

Since solutions are uniformly bounded in the V norm for large ¢, for ¢t and T
large enough we obtain
t+T
(312) = | (|Au(s)]* + |Arw(s)?) ds
t

5o~ 1602 177
<5 F? 4+ b T V (lus)]? + llw(s)l?) ds
1 t

5 3202\ ~ 8C  ~
<= T ) 2 F?
- < + ) + o2vk, k2

=V a1+ w1 Ulal) 17 + lw(s)1?) ds
t

(5 3202 72 16Cc;

—\k  ak?ky 2vkik3

FSexp(cy + c3FY).
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The estimate we derive below is necessary to estimate the number of
determining modes in terms of the H~! norm of the forces and moments.
Taking the scalar product of (1.1) with u in H we obtain

1d

(3:13) 5 Ul + v+ ) [ul]? = 20, (rotw, w) + (£,)

because b(u, u,u) = 0. We estimate the terms of the RHS of (3.13) as follows:

v, (rot w, u) = 2up(w,rotu) < 2up|w| - |lul| < 2vp|w|* + % | w||?,

(3.14) v ) 1 N
(f,u) < flls-rllulle < 5 llull™+ o 1L llg-a

We treat (1.3) in an analogous way. We multiply it by w, integrate over @
and obtain

1d
(3.15) 5 %‘Mz + a|w|? + 4vpw|? = 2v,(rot u, w) + (g, w).

The terms of the RHS of (3.15) are estimated as

20, (ot ,w) < 2wyl + 7 [l

(3.16)
Q 2 1 2

(9,w) < llglu—slwll < 5 Il + 5= llgllF--

Adding equations (3.13) and (3.15), and using estimates (3.14) and (3.16),
we arrive at

d 1
317) o (ul 4 W) + R (el + [lwf?) < & (115 + gl -)-

Let us notice that (3.17) looks similar to (3.6). Therefore, proceeding in the
same way we obtain

t+T 9

(3.18) T § () 1? + llw(s)]?) ds < FFZ
t 1

for t and T large enough.

Let us summarize the above results in the following lemma.

LEMMA 1. Letug € H, wy € HS, and f € L*(0,T; H)NL>(0,T; H), g €
L0, T, ngr) NL>(0,T, ngr) for every T > 0. Let (u(t),w(t)) be a solution
of equations (1.1)—(1.3) with periodic boundary condition (1.5). Then the
following inequalities hold for t and T large enough:
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9
u(t)® + |w(t)]? < 2 2,
2

lu(@)[* + [lw(@)[|* < & F exp(@ + & F?),

1t+T ) , d 3 5 ﬁQ

= S ()| + o)) ds < 5= F2
(3.19) 1 tT B

= 1 ()P + o)) ds < kiw

1 t+T

= | (Au()? + [Aw(s)) ds

t

5 3202\ ~ 16C¢  ~ ~
<= " NF? 4 —— = FOexp(cy + G F*
= <k% + ak§k2> Q2Ukk3 exp(Cz + &),
where the constants ¢, ¢a, ¢3 are defined in (3.10), k1 = min(v, «), ko = k11,
and F and F_q are defined in (3.1).

4. Determining modes. In this section we prove Theorem 2. We follow
the method described in [5]. The proof is based on the following generaliza-
tion of the classical Gronwall lemma.

LEMMA 2. Let v = ~(t) and = [(t) be locally integrable real-valued
functions on [tg,o0) that satisfy the following conditions for some T > 0:

t+T t+T
litrgg)lff § y(7)dr > 0, li?iigp T § v (7)dT < o0,
(4.1) LT
- + _
Jfim 5 (r)dr =0,

t
where v~ (t) = max{—v(t),0} and B (t) = max{B(t),0}. Suppose that & =

&(t) is an absolutely continuous nonnegative function on [tg, 00) that satisfies
the following inequality almost everywhere on [tg, 00):

d§
E*"Yﬁﬁﬁ-

Then £(t) — 0 as t — oo.

Proof of Theorem 2. Writing the equations of the micropolar fluid in a
functional form for a pair of solutions (u1,w;) and (u2,w2) and subtracting
them we find
(4.2) ut + (v + vp) Au + B(u,u1) + B(ug,u) = 2v, rotw + f,

(4.3) w + aAdjw + By (u,w1) + By (u2,w) + 4vpw = 2, rot u + g,
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where u = u1 —uo, w = w1 —wo, f = f1 — fo and g = g1 — g2. First we
deal with equation (4.2). Multiplying it by @Q,,u and integrating over @) we
obtain

(44) ‘Qmu|2 (l/ + VT)HQmuH2 + b(ua Ui, Qmu) + b(u27 u, Qmu)
= 2Vr(r0t w, Qmu) + (fa Qmu)

We estimate the linear terms of the RHS of (4.4) as follows:

N =
Q‘|&‘

v,
(/, @mt) < 1 -1 Qs < “22 Q) +

2vp (rot w, Qmu) = 2v,[( Py, rot w, Qmu) + (Qm rot w, Qmu)]
< 204 |Q Tot w| - | @l

«
< 2 @bl +

because (P, rotw, @mu) = 0. In order to estimate the form b we write

(4.5) b(u, u1, Qmu) = b(Ppu, ut, Qmu) + b(Qmu, u1, Qrnu)
and
(46) b(u27 u, Qmu) = b(u27 Pm“v Qmu)a

because b(u,v,v) = 0. Using (2.2), (2.4) and the Young inequality we infer
that

b(Prtt, ur, Q) < cx| Poyta] || P2 ua |2 g | V/2]| Qo

y—i— Uy 202
(4.7)  b(Qmu,u1, Quu) < |Qumull® + +—|Qmu| %,

b(uz, Py, Qmu) < 01!U2\1/2HU2H1/2IPmUI1/2HPmUHWHQmUH-

Now we treat equation (4.3) in a similar manner. Taking the scalar prod-

uct with Q! w in ngr we obtain

(4.8) \Ql w|? + | QL w||? + by (u, wi, QL w) + by (ug, w, QL w)
— 2Vr(r0t u, Q'}nw) + (.g: Q;nw)

The terms of the RHS of (4.8) are estimated as follows:

2 dt

Q 1
(9, @) < T 1Qmll® + — g%+,

v,
2v,(rot u, Q}nw) = QVT(Q}W rot u, Q}nw) < ZT |]Qmu|]2 + 41/T|Q71ﬂw|2,
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and the form b; by using (2.2), (2.6) and Young’s inequality:

by (Pt w1, Qi) < 1| Pt 2|| P |2t [l /2| Qo

1/+ Uy cillw
b (Qutsor, Qho) < LV Q2 + -
(4.9) ”( " vr)
C w
-+§HQ#wW o Q.

by (uz, P, Qpw) < 01|u2!1/2HU2||1/2HQ£MH Pl VR P2,
Adding (4.4) and (4.8) and using the foregoing estimates we arrive at

d
(4.10) = (1Qmul* + |Quwl®) + k1 (|Qmull” + [ Quw]*)
1602 462
~ (1Qml + [Qbl?) (75 + 2 (P + rl ) ) < (0

where 3(t) = all terms converging to 0 as t — oo, and k3 = min(v + v, «).
We make use of the inequalities A\, 1|Qmul? < ||Qmul? and M\yy1|QL,w|? <
|QL.w|? in order to write (4.10) in a form which allows us to use the gener-
alized Gronwall lemma (Lemma 2):

(@11) L (Quul + 1Qhwl) + (@l + Qb

4¢3 1612
: <k1Am+1 7 (lanl® + fleon %) = —) <pB.
3 «

Setting

4¢3 1612
§00) = 1Qmul +1Quel’ 7() = kadmsa = 2 (hua P+ fln ) = ==,

we can write (4.11) in the form

d§
E+7§<ﬁ

Now we only have to check the assumptions of Lemma 2. In Lemma 1 we
have shown that

| T 5
7V ()P + i (9)]) ds < 5 F2,.

t 1
To check the first condition in (4.1) we write

t+T 16 9% 2

o )

fmint 75§ 3(5)ds 2 b = =2 = limsp 8+ e )
1602 82

a kzkg

> ki Ama1 — F2, > 0.
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This assumption is satisfied for

1612 8c3

>

—dMaky * dA1ksk3
because A, ~ dm. It is easy to check that if m satisfies (4.12) then the
second assumption in (4.1) also holds. The third condition is satisfied because
B(t) — 0 as t — co. That ends the proof. m

(4.12) m F?,

This estimate is similar to that obtained in [23] but in the present paper
we have relaxed the convergence of forces and moments to be only in H 1.
Moreover, the estimate obtained is in terms of their H~! norm. The same
reasoning works in the case of no-slip boundary conditions.

Corollaries. This part of the paper was inspired by the paper of J. C.
Robinson [22], in which he showed how the distribution of a force through
modes influences the dimension of a global attractor of the Navier—Stokes
equation.

Suppose that the asymptotic strength of the forces and moments is equal
to F'. We check how their spatial distribution influences the number of de-
termining modes. We consider several cases and write down the calculations
only for f because calculations for g are exactly the same.

1. Assume that the forces and moments act only in two scales and the
norms of both modes are equal, i.e.

) = [fn@F = [F(6)/2.
Then the H~! norm of f satisfies

s P Y (L
e = () ~ (5 ).

Inserted into (4.12), this gives
16} 8¢i =1 1
> L2 ).
" vak: | daksks \n TN

The number of determining modes depends on the inverse of the number of
modes in which the forces and moments are acting.

2. Suppose that the forces and moments act only in some scales and the
energy in each mode is not known,

N
= fows.
k=n

The following inequalities are straightforward consequences of the definition
of the norm in H~!:

1 2 2 1 2
- < << —
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which implies

1~ ~ 1 ~
4.13 — F?<F? < —F2
(413 PP
Inserting (4.13) to (4.12) we get

1612 82~ 1612 82 F?

T r

> F2, > —
— dM\ak + d)\lkgki” 1= d\ ok + d)\1k3k% AN

m

3. Assume that the forces are uniformly distributed in the first N modes,

that is, | fx|* = (1/N)|f|2.. Then

P Nt
k=1

Since Ay ~ k we have F_q ~ N-1/2(In N)l/zﬁ, which yields the following
estimate of the number of determining modes:
1612 8¢}

T C1  maar—1/2 1/2
> F2N-1/2(In N)Y/2,
" Dksky ANk (In )

4. Suppose that the forces and moments act in the first N modes and the
norm of a mode increases linearly with its number,

2|1 £1122

NN+

|fil® =
fork=1,...,N. Then

N i P | i Ny
1 )\k n(n + 1) n(n + 1) 1 )\k

£l =

Since A\, ~ k we have

1915 ~ L1
= n+1
and (4.12) implies
1612 8c? F?

> .
" Dksk | dhkskd n+ 1

5. Suppose again that the forces and moments act in the first N modes,
but now we assume that the norm of a mode decreases linearly with its
number, that is,

2|1 £1122

2 _
el = n(n+1)

(n+1—-%k), k=1,...,N.
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Then
i = 2l 1=k 207 (m1)
n(n+1) = A n(n+1) =\ k
2
~ % [(n+1)Inn —n).
Inserting the above into (4.12) we infer that
1612 8c2 2F2

m > Dok + DakskS n(n 1) [(n+1)Inn —n).

The above considerations show that if we increase the number of modes
in which the forces and moments act, or we act only in modes with high
wavenumber, then the number of modes necessary to determine the flow
decreases. It could be so because in small scales, corresponding to high-
wavenumber modes, the damping effect of viscosity is stronger than in large
scales. Moreover the number of determining modes depends on how the forces
and moments are distributed throughout the modes.

The same argument can be applied to check how the distribution of the
forces and moments influences the estimates of the number of determining
nodes and the dimension of the global attractor.

5. Determining nodes. In this section we prove Theorem 3. We will
actually show that (2.11), (2.14) and (2.15) imply that the solutions converge
to each other in a stronger norm associated with enstrophy, that is,

V(IVu (2, t) = Vug (2, 1) * + [Vwr (2,t) — Vws(z,t)*) de — 0 as t — oo,
Q
Set

_ j
n(w) nax, [w(z?)|

for each velocity or microrotation field w.
In the proof of existence of a finite set of determining nodes, two lemmas

are used. One of them is the generalized Gronwall lemma, already applied
in the previous section, the other is the following lemma from [12].

LEMMA 3. Let the domain ) be covered by N identical squares QQ;. Con-

sider the set X = {x!, e ,xN} of points in @), one in each square. Then, for
each vector field w in H%er,

2 - 2 - 2
(5.1) wl? < ) + g |

_ 2 2 c 2
(5.2) [w]* < eNn(w)” + NN | Awl?,
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2 2 ¢ 2
(5.3) [wl[Lo gy < eNn(w)” + NN | Awl?,
for an appropriate constant c.

Proof of Theorem 3. Set uw = uy; — usg, f = f1 — fo etc. Subtracting the
equations for u; and us we find

0
(5.4) 8_:: + (v +uv)Au+ (ug - V)ug — (ug2 - V)ug = 2v,rotw + f.
By taking the inner product of (5.4) and Au in H, we get
1d
(5:5) % Tt + (v ve) Auf? + b s, Au) + b(us, u, Au)

= 2u,(rotw, Au) + (f, Au).
Exploiting the orthogonality property (2.3) we obtain (cf. [5])
b(u,uy, Au) + b(ug, u, Au) = —b(u,u, Auy),

thus we can write (5.5) in the form
d

3 Eﬂu(t)H2 + (v + )| Aul? = 2u,(rot w, Au) + (f, Au) + b(u, u, Auy).

We estimate the terms of the RHS of (5.6) using (2.5), Lemma 3 and Young’s

inequality:

(5.6)

20, (rotw, Au) < = [Auf? + 2v,Jw],

Uy 1
(f, Au) < 5 | Aul® + o i

b(u, u, Auy) < c!/tey (w)/2||u]| - | Aul'/?) Aus |
s Wy 1) > )\1/4 n 1
1
2 v
Aug|* + = |Aul®.
b Pl + % L
Using the above estimates we find from (5.6) that
1d 9 3 , 23 9 9
. - — — v]Au|® — A
6:1) g gl + 3 ulau? = Sl

e,

NG ()" u] - | Aul'?| Au].
1

1
< 2v||wll* + 5 [f1* +
T

Now we treat the equations for microrotation in a similar way. Subtracting
them we find

9w

(658 >

+ aAjw + (ug - V)wy — (ug - V)ws + 4w = 2v,Totu + g.
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Multiplying (5.8) by Ajw and integrating over () we get
1d

(5.9) 3 €

— ||| + ol Ayw|?by (1, w, Ayw) + by (ug,w, Ayw) + v ||w]|?
= 2v,(rot u, Ajw) + (g, Aw).
We estimate the nonlinear terms using (2.7), (2.8) and the Young inequality:
- 2, 2, 4 Z1l 4
bi(u, w1, Aw) < < [Aw]” + |A [+ — - ful e,

2 2
bl(uQ,w,Alw) < % |A1w\2 + Fl ’Ug‘ . ’AU2| . Hw|]2

The terms of the RHS of (5.9) are estimated similar to the terms of the RHS
of (5.6):

8 2
2uy(rot u, Ajw) < % |Ajw|? + % [|u||?,
«
(9, Aw) < |A1w|2 |9|2~
Using the above estimates in (5.9) gives
82 2c2
(610) 3 Tl + 3 [l + vl 2 ful 2T o] Ao o]
<2 Act
~lgl* + \AUIQ + == [l ]|
a a’v
Adding (5.7) and (5.10) we obtain
1d i 8v;2
1) 3 ol Al )l (S 1A+ 22

261 4C
ol (X - ] = 20, ) = 2L

2 2 et/ 1/2 1/2
k—(\f\ +191%) + /\1/4 n(w) ™= [lul] - | Au] 7= A,

where k3 = min{v,, a}. From Lemma 3 we deduce

M N

(5.12) | Aul* > ull* = AN (u)?,

and an analogous inequality for w,

M N
(5.13) | Arw|? > 2 lwl|? — M NZ(w)?.
By the Poincaré inequality we get

4ct
5.14 2 4o
(5.14) 5 lulllen]* <
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Taking into account (5.12)—(5.14) we infer from (5.11) that

1 ki N c2cl/? 8V 2c1
1 2 — 1 Ay - = - — A
519) 5 gl ol + (22 - A7 2o P2

4

4cy 4 2 2
s lall) lul? + ol

+ 2v, —

2 2 1t/ 1/2 1/2
k—(|f| +91*) + 1/4 n(w) = ull - [Aul™ 7] A |
)\1

k1A N2
+ = () +9(w)?).
Setting
(kAN Acl/? 5 SU2 2¢
) =2 P2 - L LA - 2 2 ) g
4ct 4
o - 1||)

Lcl/A
B(t) = < (112 + 191?) + )\1/4 n(u)' 2|l - |Au/?) Auy|

B )+ ) ).

£(t) = ull® + lwll?,
we can write (5.15) in the form

dg§
E+’Y§<ﬂ

The time average of § goes to zero as time goes to infinity because for ¢
bounded away from zero the time averages of the squares of the norms of
uy and ug in D(A) are uniformly bounded (Lemma 1). Therefore the third
condition in (4.1) is satisfied. In order to check the first condition in (4.1)
we write

t+T

1 ki N 2
liminf — S ~v(s)ds > 2< 1Al it
Ty

+2u, — —L
«

t—o0 &

T 1 HST { c2cl/?
— limsup —
t—o0 T ¢

2 2ci
+ 2 ()] Lua(o)] + ok (9] s )




2-D micropolar fluid flow 331

> 2

ki N 82
<11 4o, — vy
c a

t+T 2.1/2
1
w7 | S Ao + 5 o)

a 2, A4d 4
+ 2 () + 31 (o) s )

2 2.1/2
> 2<k1)\1N Lo 8y <clc N c_1>
c

« ALV «

Saks + 3202 ~,  16CC ~5 .. =4
: L F F F
< akZks T o @+l
16¢icy
Aavkiks
Therefore if

c 812 c2cl/? cl
5.16 N > r_9 L =
( ) _)\1k‘1{ « Vr+< AV +Oé>

ﬁ4 eXp(EQ + 83ﬁ4)> .

Saky + 322 ~,  16CC ~5 . =y
| =T F F F
< ak2ks avizig I exp@+ &k
16¢icy

— % Flexp(cy + &

Mavkiky | CPe TG )}’

then the first condition in (4.1) is satisfied. It is easy to check that if N
satisfies (5.16) then the second condition in (4.1) also holds. Therefore we
infer from the uniform Gronwall lemma that ||u(t)||?+||w(t)]|> — 0 as t — oc.
That ends the proof. =

6. Hausdorff and fractal dimensions of the attractor. In this sec-
tion we recall the notions of Hausdorff and fractal dimension of an invariant
set. Then we prove Theorem 4, i.e. we show that the attractors A,,, v, > 0,
associated with the system (1.1)—(1.3) have finite Hausdorff and fractal di-
mensions, which can be estimated by constants depending on the data: f,
g, v, a and the domain @ of the flow but independent of the microrotation
viscosity v,.

Let (X, d) be a metric space and Y C X be a subset of X. For every
d € Ry and € > 0 we set

u(Y,d,e) merl,
el

where the infimum is taken over all coverings of Y by a family (B;);c; of
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balls of radii r; < e. ug(Y,d, €) is a nonincreasing function of €. The number
pn (Y, d), called the d-dimensional Hausdorff measure of Y, is defined as

HH (Y7 d) = ;I_)Hé /’LH(Ya d7 E) = Slilg MH(Ya d7 E)'
&€

If (Y, d’) < oo for some d' then pp(Y,d) =0 for every d > d'. Then there
exists do € [0, oo] such that p(Y,d) = 0 for every d > dy and pn(Y,d) = oo
for d < dy. The dy is called the Hausdorff dimension of Y, and denoted by
du(Y).

Now we define the fractal dimension of Y. Let £ > 0. We denote by ny (&)
the minimum number of balls of X of radius € necessary to cover Y. The
fractal dimension of Y, also called the capacity of Y, is

drp(Y) = lilgljélp %.
We refer the reader to [4] for more details.
Proof of Theorem 4. The relation
(6.1) N =1 <2Co(kika) V2 [P + 1g)? < N

is a consequence of estimates of the uniform Lyapunov exponents associated
with the attractors A,, .

First, we rewrite (1.1)—(1.3) in a more suitable form. To do this we intro-
duce some notations. Let w; = (uj,w;) € H (or V') for i = 1,2. We introduce
scalar products and norms in H and V as follows:

[T, 7] = (wn,uz) + (i), [1] = [@,7]'/2
for all w,wy,ue € H, and
([, s]] = (Vur, Vug) + (Vwr, Vo), [[@]] = [[a, ]/

for all w, w1, us € V. The notation seems to be confusing, but it will always
be clear from context whether (-,-) denotes the scalar product in L? or a
vector in H or V.
We define a trilinear form B on ¥V x V x V by
B(ﬂl,ﬂg, Hg) = b(ul, U9, U3) + bl(ul, w2, wg)

and associate with B a bilinear continuous operator B from V x V to V' as
follows:

(B(uy1,u2), $) = B(uy,Ua, ¢), U1, U2, ¢ € V.
We define bilinear forms R and @ on V x ) by
R(w1,u2) = —2vp(rotwy, ug) — 2vp(rot ug, wa) + vy (w1, we),
a(uy,u2) = (v + vp)(Vui, Vug) + a(Vwi, Vws)
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and associate with them continuous linear operators R and A from V to V'
by
The weak form of equations (1.1)—(1.3) is (cf. [24])

(6.2) Q(U(t% p(t) + (v + ) (Vull), V(1)) + b(u(t), u(t), ¢)

dt
= 2u,(rot w(t), ) + (f, 9)
for all p € V, and

(63) 50, 9) +a(Volt), T9) + by (u(t), w(t), ) + aw(w(t), )
= 2Vr(r0t U, w) + (g(t)v ¢)

for all ¢ € Héer(Q), in the sense of scalar distributions on (0, 00). Setting
G = (f,g) € H we can rewrite (6.2) and (6.3) as

4 7.6) + a(,0) + B3, 7,0) + R(T,6) = G 6],

where 7@ = (u,w), ¢ = (¢,1), or in the functional form

iﬂ + A(w) + B(u,w) + R(u) = G.

dt
The corresponding problem linearized about u has the form
d
—U = F'(u)U.

where F'(u) = —A(U) — B(w,U) — B(U,w) + R(U).
Our aim is to estimate from above the trace
N

TrF'(W) o Py = Y _[F'(W)e;, %5,
=1

where p; = ¢;(7),j =1,..., N, is an orthonormal (in H) basis of Py (7)H =
Span{Ui(7),...,Un(7)}, Pn(7,&1,. .., &N) being the orthogonal projector in
H on the space spanned by U;(7), j = 1,..., N, where the U; satisfy

d

EUj:F,<H)Uj, Uj(O):fj, j=1,...,N.

Because B(W, ¢;, ;) = 0, we have
[F'(@)p;, 0] = —alej, ¢5) — B(w), T, ¢5) — R(gj, ¢;)-

Setting T = (u,w) and ¢; = (v}, 2;) we obtain
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N N N
Za ©jsP5) (V_‘_VT)Z”UJ'HQ_aZ|’ZjH27
=1 i=1 =1

1=
N N N
Z ()Dj7u Soj Zb(vjauvvj)_zbl(vj7wazj)
i=1 i=1 i=1
N N N N
- Z R(pj, ;) =2v, Z(rot 2j,05) + 2vy Z(rot vj, 25) — 4uy Z |2;]2.
i=1 i=1 i=1 i=1

Now let us consider the operator a + R:
a(pj, ;) + R(ej, 05) = (v +ve)((v7,05))* + al(z), )
— 2up(rot 2, v;) — 2up(rot vy, 2;) + 4vr |24

By the first identity in (2.9), and Schwarz’s and Young’s inequalities, we
have

2u,(rot zj,v;) + 2vp(tot vj, 2;) = vy (vot zj,v;) < vpllvs||? + dvp| 253,
therefore
aleg, ¢j) + Blegs 5) 2 v((vj,05)) + al(z),25)) = kalles, sl Ve €V,

where k1 = min{v, o} as in (3.2), whence

N N
= (als ¢5) + R(es,0)) < —k1 > _[lps, 051
=1 i=1

We estimate the trilinear form b as follows:
N N
‘Z b(vj, u, ’Uj)’ = ‘Z S(vj - V)uv; da:‘ < S |Vu(x,t)|o1(x,t)de,
i=1 i=1Q Q

where
N

Ql(xvt) = Z |vj($7t)’27

=1
and similarly

N
‘Zbl Vi, U, 2 ‘ = ‘ZS V)uz; dw‘

i=1Q
S S \Vu(x,t)\gl(w,t)1/2g2(:c,t)1/2 dl’,
Q
where

N
t) = |z, 1)
i=1
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Therefore we can estimate the form B as follows:
N
_ 2 1/2
> Bles a0 < §(1Vulor + [Velor%0)?) da.
i=1 Q
Setting ¢ = g1 + g2, by the Cauchy and Schwarz inequalities we obtain

N
> Bles )| < [(elVul + o Vel) do < V20| - [[]).
=1

Q
From the above estimates we infer that
N
(6.4) Tr F'(u(r)) o Pn(7) < —k1 Y[l (MI)* + V2]o(7)] - [[@(7)]].
i=1

N

Because the family {¢;(7)};1; is orthonormal in H, the corresponding family

of pairs (vj, z;) is orthonormal in L2(Q)?*? and we can use a generalization

of the Sobolev-Lieb—Thirring inequality ([26]) to write
N N
(6.5) lo(T)[> < Co Y (IlvilI* + 12i11%) = Co > _[[wi (D],
i=1 i=1
for an appropriate constant Cj.
Since SQ o(z,t)dx = N, by the Schwarz inequality we get

N < Q|- ol
and taking into account (6.5),
N
N2
6.6 (T2 > ,
(6.6) ;[[%( )]] ColQl

We estimate the second term of the RHS of (6.4) using Young’s inequality,
(6.5) and (6.6):

N
Vol ] < o lef? + 22 (P < o Y- llos) + L2l

From the above considerations, we have
_ ki N? Co
6.7 Tr F'(u(r)) o Pn(7) € —— —— + —

Let @y = (uo,wo) € A and u(r) = S(7)up. Set

t
1
gn(t) = sup sup{—STr F'(S(1)up) o Py (7) dT :
up €A t

0
& e H, [gi]gl,izl,...,N},
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qn = limsup gy (t).

t—o00
In view of (6.7), we conclude that
6.8 < - N? + —+,
(6.8) IN S 50 !
where

t

1
v = lim sup — S [[S(7)@0])* dr.
t—oogeA t
0

We can estimate v in terms of the data using (3.6). Since

t

1 1 11
“Ns@®ue))? < — [G)? + = = [wp)?
7SOl < (6 + 3 1l
it follows that
1
— [;N?
"k [G]
and by (6.8),
kl 2 CO 2
6.9 < — G|~
Setting
k1 Co 2
- = 2 a
i 2Co|Q) " ksz[ ’

we can write (6.9) in the form
qn < —k1N? + ka.

The general theory provided in [26] allows us to conclude that the uniform
Lyapunov exponents p; associated with the attractor satisfy

pr 4y < =kt 4 K2, ViEN,
and for the N satisfying (cf. Lemma VI, 2.2 in [26])
o\ 1/2
N-1< <ﬂ> <N,
K1
the assertion holds. =

The resulting estimate of the dimension of the global attractor is similar
to an analogous estimate for the micropolar fluid equations with no-slip
boundary conditions (cf. [18]), but is of a higher order than the analogous
estimate for the Navier—Stokes equation with periodic boundary conditions.
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7. Conclusions. The lack of the orthogonality property of the form by,
which was mentioned in Section 2, causes that the estimates of the numbers
of determining modes, nodes and the dimension of the global attractor are
more involved than the corresponding estimates for the Navier—Stokes equa-
tion in the space-periodic case. The reason is the following: the estimate of
the square of the norm of a solution in V and the average of the square of
the norm in D(A) for the Navier—Stokes equation, which are analogous to
(3.9) and (3.12), are proportional to F2 (cf. [5]), where

F = limsup(s |f(x,t)\2dx> 1/2.

t—o00
Q

Estimates (3.9) and (3.12) are exponential with respect to F, which implies
an exponential estimate of the number of determining nodes. We cannot
obtain linear dependence of the number of determining modes on F' because
the form b; does not have the orthogonality property (2.3).

We check how the estimates we obtained depend on v,. The case when
vy is small is particularly interesting because if v, = 0 the micropolar fluid
system reduces to the Navier—Stokes system and the velocity field u becomes
independent of the microrotation field w:

u — vAu+ (u-V)u+Vp = f,
divu = 0,
w — alAw + (u-V)w = g.
1. The estimate of the number of determining modes
m~ clﬁzl —+ o

(cf. (4.12)) is similar to that for the Navier—Stokes equation ([5]) and the
micropolar fluid equations (]|23]), both with Dirichlet boundary conditions.
The coefficient ¢; does not depend on v, but if v, — 0, then co — 0, so if
v, = 0 our estimate agrees with that for the Navier—Stokes equation.

2. The estimate of the number of determining nodes

m ~ P(F) + Q(F) exp(R(F))

(cf. (5.16)), where P, Q and R are polynomials, is similar to that for the
Navier—Stokes equation with Dirichlet boundary conditions ([5]). If v, — 0,
then the above estimate remains exponential with respect to F. Our result is
much more involved than an analogous result for the Navier—Stokes equation
in [5], where it was shown that the dependence is linear.

3. The estimate (6.1) of the dimension of the global attractor does not
depend on v, and is similar to such an estimate for the Navier—Stokes equa-
tion with Dirichlet boundary condition ([5]) and for the micropolar fluid
equations with Dirichlet boundary condition ([18]).
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