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MATHEMATICAL DESCRIPTION OF THE
PHASE TRANSITION CURVE NEAR
THE CRITICAL POINT

Abstract. In this paper, by applying a simple mathematical model imi-
tating the equation of state, behaviour of the phase transition curve near the
critical point is investigated. The problem of finding the unique vapour-liquid
equilibrium curve passing through the critical point is reduced to solving a
nonlinear system of differential equations.

1. Introduction. For chemical engineering applications it is necessary
to predict very accurately the vapour-liquid equilibrium (VLE) curve (see
[1, 2]). Before the more detailed formulation of the problem we introduce
some important quantities in thermodynamics of fluids. Let o, T and P
denote the density, temperature and pressure of the fluid, respectively. We
assume that the equation of state (EOS) is given by P = P(p,T), where P
is an analytic function of 7" and ¢. Let u = u(o,T'), an analytic function of
T and p, denote the chemical potential of the fluid. We can write the basic
thermodynamic relation between P and p as follows:

% o 0o
The VLE curve is given by two curves gy = oy (T) and op = or(T),
which are defined for any T below the critical temperature T. These curves
satisfy the classical thermodynamic requirements (see [1, 2])

(2) {P(QV(T)vT) = P(oL(T),T),
nlov(T),T) = p(or(T), T).
Moreover, oy (T') < or(T) for T' < T and oy (Tc) = o(Tc) = oc, where

oc is called the critical density. The critical temperature and critical density
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determine the so-called critical point. It is known that at the critical point
ov(Te) =00 and ¢p(To) = —oc.

By physical considerations we also have

oP

o@D T) 20 and S (o (D).T) 0.

The determination of the critical point from the thermodynamic properties
of the fluid is one of the main efforts of chemical engineering.

For each given temperature T' < T, the system of equations (2) must
be solved. Recently a new, easier and quicker, method has been proposed to
solve this system (see [4, 5]). Practically, this method gives us a continuous
mathematical model for oy = oy (T) and o5, = or(T), without having to
solve (2) point by point. The method is based on solving a system of nonlinear
differential equations and can be applied to every known EOS. It is almost
impossible to solve this system analytically, therefore numerical methods
should be used. However, some examples show that small changes of initial
conditions for the system of differential equations imply that finding the VLE
curve is impossible because the numerically determined oy and g cannot
cross at the critical point (see [4, 5]).

In this paper we will construct a simple mathematical model imitating the
equation of state and we will try to explain the above-mentioned difficulties.
On the basis of this model we shall show that there exist unique initial
conditions oY, = ov(Ty), 0% = or(Tp) for fixed Ty < T, such that the
system of differential equations has a unique solution (ov (T), o1(T")) passing
through the critical point.

2. Theoretical background of the method. In this part we recall
the theoretical base of the method presented in [4, 5].

For any T below the critical temperature T, the curves oy = oy (T)
and o7, = or(T) satisfy (2). Since P and p are given by analytical formulas,
differentiating the equations (2) with respect to T we get

) e (1), )+ S (). Ty = 50 (1), )+ 5 0(T). T,
S o (). T)+ S 00 (1), D)y = S (00T T)+ 2 00T, T,

where ¢y and g7, denote the derivatives of gy and g, with respect to T
From (3) we obtain the system of two nonlinear differential equations of
first order

(1) {@V = f(ov,or,T),

or, = f(or,ov,T),
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where

(5)  flov,eor,T)

_ (% (ov,T) — % (o, T)) orov + (3£ (o, T) — 2L (ov, T)) ov
9 (v, T)(ov — or)

Since the right-hand side of (5) is sufficiently regular, the system (4) has
unique solutions gy and gy, for given o), = oy (Tp) and 0% = o1, (Tp), where
To < Te (see [3]). Obviously, it is almost impossible to find analytic expres-
sions for solutions of (4) for given P and pu.

3. Simple mathematical model imitating the equation of state
(EOS). It is well known that the function P = P(p,T) has the following
properties:

e P(0,T) =0 for any T}

e for fixed T < T¢ the function P has two extrema, a maximum and a

minimum;
e for fixed T'>T the function P is strictly increasing with respect to g;
oP 0*P

J 8—Q(QC,TC) = aTQ(QC,TC) = 0;

e some observations suggest that for fixed T" the function P(p,T) is ap-
proximately cubic with respect to g.

Having all this in mind we can model the qualitative properties of the func-
tion P by the following formula:

(6) P(o,T) = o® = 30°0c + 300t + o(T — Tc),
which behaves similarly to the Van der Waals equation of state near the
critical point.

By (1) the function p has the form

3
(7) 1o, T) = 592—6ggc+(3Q%+T—Tc)1nQ+C(T)-

Without loss of generality we can assume T = 0.
Substituting (6) and (7) into (5) we get the system of two nonlinear
differential equations

ovorIn ¢ + ov (oL — ov)

& = Blov —ec + Doy — o1)’
(8) In &v _

. erovIngE+orn(or —ov)

L= BloL — 002+ T)(ov — o1)

Since we consider gy and gy, very close to o¢, the ratio gy /gy, is very close
to one. Hence we can use the approximation Inz & (2 — 1) — (2 — 1)%/2,
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where z = gy /pr. From (8) we get

oy = 0L — Ov

(9) 2(3(9‘/ - QC)2 + T)’
. ov — 0L
oL =

2(3(or —0c)* +T)’
Studying (9) we can assume go = 0. Thus

QV _ oL — OV
2303, 4+ 1)’
(10)
QL _ ov — 0L )
2302 + 1)

The solution of the system (10) describes the behaviour of the curves oy (7))
and or,(7T") given by (8) near the critical point (oc,T¢) = (0,0).

In the next section we will consider the system of equations (10) under
some conditions having a physical meaning, namely

v (Te) = 00, 61(To) = —o0, aa—iwv(T),T)#o, %—§<@L<T>,T>#o.

We are interested in finding the unique initial conditions oy (Tp) = Q(‘], and
or.(To) = 0%, where ¢, < 9, for which the system (10) has a solution
passing through the critical point.

4. Analysis of the mathematical model. We change notation and
denote the vapour density oy (7), liquid density o7, (7T") and temperature T
by x(t), y(t) and t, respectively. Thus the system (10) can be written in the
following form:

p=—2 T
- 2(3x2 4+ 1)’
(11) vy
Y= o5ma
2(3y? + 1)

We shall study the system (11) with the initial conditions x(t9) = zp and
y(to) = yo (¥o < ¥o).

DEFINITION 1. By a solution of the system (11) we mean a pair (z(t), y(t))
of functions such that

(1) z(t), y(t) € C([to, t*));
(il) x(t*) = y(t*) for some t* > to;
(if) |2(t2)] = [9(t2)] = oo;
(iv) z(t) < y(t) for t € [to,t¥).
THEOREM 2. If (x(t),y(t)) is a solution of (11) then
(12) —2?—zy—y* =t fort€ [to,t*].
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Proof. We can transform the equations (11) to the form
(13) 232 + )i =y — m,
(14) 203y° +t)y == — v.
Subtracting (13) and (14) we obtain

(B2 + )i — By + 1)y =y — .

Hence we have
d(a:3+tx) d(3+t)—0
dt a T T
Thus
(15) 2 — 93 +t(x —y)=c, where c= const.
The equation (15) has to be satisfied for ¢ € [to,t*). By continuity it also
holds for ¢ = t*.

Since x(t*) = y(t*), we have ¢ = 0, and as z(t) < y(t) for t € [to,t*), we
obtain
(16) —2? —axy -y =t
By continuity (16) holds on the interval [to,¢*]. The theorem is proved.

COROLLARY 3. If z(t) and y(t) satisfy the system (11), then the curves
x(t) and y(t) can cross only for t* = 0.

Proof. Since the left-hand side of (12) is non-positive definite, we obtain
to < t* < 0. Thus the curves z(¢) and y(t) cannot cross for ¢ > 0.
By (12) the system (11) can be transformed into the autonomous system

b b
(7) | 2(2x1+ Y)
V= 3y

Now suppose z(t*) = y(t*), where t* < 0. Then z* # 0 by (12). Thus by
(17) we get |2(t*)| = |y(t*)| < co. This contradicts our definition of solution.

If t* = 0 then from (12) we have z(t*) = y(¢*) = 0. Moreover, by (17),
|£(0_)| = |9(0-)| = oco. This ends the proof of the corollary.

THEOREM 4. Let to < 0 and (t*,z(t*)) = (t*,y(t*)) = (0,0). Then the
system (11) has a unique solution.

Proof. Using the substitution
z(t) = &(t) — n(t),
1 e = 60 0

we transform the condition (12) to the form
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which is valid for ¢ € [to, t*].
By (18) and (19), from (11) we get
3¢

20 R S
(20) ¢ 24£2 + 2t
Moreover, the function 7(t) is coupled with the solution £(¢) of (20) by the
condition (19). Additionally, £(0) = n(0) = 0 by our assumption.

If £ # 0 we obtain the first order linear nonhomogeneous differential
equation

dat 2

21 T Y
Solving it we get
(22) t=—3e24

%/5_27
where ¢ = const. We infer £(0) = 0 if and only if ¢ = 0. Thus £ = +,/—¢/3.
By (19) we also have n(t) = 0, which implies x(¢) = y(t). This contradicts
the assumption that z(t) < y(t).
If £ = 0 we obtain n = £y/—t. Thus by (18) we get x = —/—t and
y = v/—t for z(t) < y(t), which is the unique solution of the system (11)
crossing at the critical point. The theorem is proved.

COROLLARY 5. There exist unique initial conditions xog = —+/—ty and
Yo = /—to, where ty < 0, for which the system (11) has a solution (x(t),y(t))
defining the VLE curve passing through the critical point.

5. Conclusions. We have found the unique solution of the system (11)
which satisfies the conditions mentioned in Definition 1. This means that
there exist unique curves gy (T') and o1, (T) which satisfy the system (10) and
cross at (0,0). By Theorem 4 we see that the point (¢t*, z(t*)) = (t*,y(t*)) =
(0,0) agrees with the physical critical point (t¢, 0c) = (0,0). The unique
solution of the system (11) is an approximation of the solution of the system
(8) which characterizes the behaviour of the curves gy and g near the
critical point.

We expect that this research can be useful for further tests in the numer-
ical determination of the phase transition curve.
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