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MATHEMATICAL DESCRIPTION OF THEPHASE TRANSITION CURVE NEARTHE CRITICAL POINT

Abstra
t. In this paper, by applying a simple mathemati
al model imi-tating the equation of state, behaviour of the phase transition 
urve near the
riti
al point is investigated. The problem of �nding the unique vapour-liquidequilibrium 
urve passing through the 
riti
al point is redu
ed to solving anonlinear system of di�erential equations.1. Introdu
tion. For 
hemi
al engineering appli
ations it is ne
essaryto predi
t very a

urately the vapour-liquid equilibrium (VLE) 
urve (see[1, 2℄). Before the more detailed formulation of the problem we introdu
esome important quantities in thermodynami
s of �uids. Let ̺, T and Pdenote the density, temperature and pressure of the �uid, respe
tively. Weassume that the equation of state (EOS) is given by P = P (̺, T ), where Pis an analyti
 fun
tion of T and ̺. Let µ = µ(̺, T ), an analyti
 fun
tion of
T and ̺, denote the 
hemi
al potential of the �uid. We 
an write the basi
thermodynami
 relation between P and µ as follows:(1) ∂µ

∂̺
=

1

̺

∂P

∂̺
.The VLE 
urve is given by two 
urves ̺V = ̺V (T ) and ̺L = ̺L(T ),whi
h are de�ned for any T below the 
riti
al temperature TC . These 
urvessatisfy the 
lassi
al thermodynami
 requirements (see [1, 2℄)(2) {

P (̺V (T ), T ) = P (̺L(T ), T ),

µ(̺V (T ), T ) = µ(̺L(T ), T ).Moreover, ̺V (T ) < ̺L(T ) for T < TC and ̺V (TC) = ̺L(TC) = ̺C , where
̺C is 
alled the 
riti
al density. The 
riti
al temperature and 
riti
al density2000 Mathemati
s Subje
t Classi�
ation: 34A34, 34C60, 80A17.Key words and phrases: VLE 
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342 T. Suªkowskidetermine the so-
alled 
riti
al point. It is known that at the 
riti
al point
˙̺V (TC) = ∞ and ˙̺L(TC) = −∞.By physi
al 
onsiderations we also have

∂P

∂̺
(̺V (T ), T ) 6= 0 and ∂P

∂̺
(̺L(T ), T ) 6= 0.The determination of the 
riti
al point from the thermodynami
 propertiesof the �uid is one of the main e�orts of 
hemi
al engineering.For ea
h given temperature T < TC , the system of equations (2) mustbe solved. Re
ently a new, easier and qui
ker, method has been proposed tosolve this system (see [4, 5℄). Pra
ti
ally, this method gives us a 
ontinuousmathemati
al model for ̺V = ̺V (T ) and ̺L = ̺L(T ), without having tosolve (2) point by point. The method is based on solving a system of nonlineardi�erential equations and 
an be applied to every known EOS. It is almostimpossible to solve this system analyti
ally, therefore numeri
al methodsshould be used. However, some examples show that small 
hanges of initial
onditions for the system of di�erential equations imply that �nding the VLE
urve is impossible be
ause the numeri
ally determined ̺V and ̺L 
annot
ross at the 
riti
al point (see [4, 5℄).In this paper we will 
onstru
t a simple mathemati
al model imitating theequation of state and we will try to explain the above-mentioned di�
ulties.On the basis of this model we shall show that there exist unique initial
onditions ̺0

V = ̺V (T0), ̺0

L = ̺L(T0) for �xed T0 < TC , su
h that thesystem of di�erential equations has a unique solution (̺V (T ), ̺L(T )) passingthrough the 
riti
al point.2. Theoreti
al ba
kground of the method. In this part we re
allthe theoreti
al base of the method presented in [4, 5℄.For any T below the 
riti
al temperature TC , the 
urves ̺V = ̺V (T )and ̺L = ̺L(T ) satisfy (2). Sin
e P and µ are given by analyti
al formulas,di�erentiating the equations (2) with respe
t to T we get
(3)















∂P

∂T
(̺V (T ), T )+

∂P

∂̺
(̺V (T ), T ) ˙̺V =

∂P

∂T
(̺L(T ), T )+

∂P

∂̺
(̺L(T ), T ) ˙̺L,

∂µ

∂T
(̺V (T ), T )+

∂µ

∂̺
(̺V (T ), T ) ˙̺V =

∂µ

∂T
(̺L(T ), T )+

∂µ

∂̺
(̺L(T ), T ) ˙̺L,where ˙̺V and ˙̺L denote the derivatives of ̺V and ̺L with respe
t to T .From (3) we obtain the system of two nonlinear di�erential equations of�rst order(4) {

˙̺V = f(̺V , ̺L, T ),

˙̺L = f(̺L, ̺V , T ),
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(5) f(̺V , ̺L, T )

=

(

∂µ
∂T

(̺V , T ) − ∂µ
∂T

(̺L, T )
)

̺L̺V +
(

∂P
∂T

(̺L, T ) − ∂P
∂T

(̺V , T )
)

̺V

∂P
∂̺

(̺V , T )(̺V − ̺L)
.Sin
e the right-hand side of (5) is su�
iently regular, the system (4) hasunique solutions ̺V and ̺L for given ̺0

V = ̺V (T0) and ̺0

L = ̺L(T0), where
T0 < TC (see [3℄). Obviously, it is almost impossible to �nd analyti
 expres-sions for solutions of (4) for given P and µ.3. Simple mathemati
al model imitating the equation of state(EOS). It is well known that the fun
tion P = P (̺, T ) has the followingproperties:

• P (0, T ) = 0 for any T ;
• for �xed T < TC the fun
tion P has two extrema, a maximum and aminimum;
• for �xed T >TC the fun
tion P is stri
tly in
reasing with respe
t to ̺;
• ∂P

∂̺
(̺C , TC) =

∂2P

∂2̺
(̺C , TC) = 0;

• some observations suggest that for �xed T the fun
tion P (̺, T ) is ap-proximately 
ubi
 with respe
t to ̺.Having all this in mind we 
an model the qualitative properties of the fun
-tion P by the following formula:(6) P (̺, T ) = ̺3 − 3̺2̺C + 3̺̺2

C + ̺(T − TC),whi
h behaves similarly to the Van der Waals equation of state near the
riti
al point.By (1) the fun
tion µ has the form(7) µ(̺, T ) =
3

2
̺2 − 6̺̺C + (3̺2

C + T − TC) ln ̺ + C(T ).Without loss of generality we 
an assume TC = 0.Substituting (6) and (7) into (5) we get the system of two nonlineardi�erential equations
(8)



















˙̺V =
̺V ̺L ln ̺V

̺L
+ ̺V (̺L − ̺V )

(3(̺V − ̺C)2 + T )(̺V − ̺L)
,

˙̺L =
̺L̺V ln ̺V

̺L
+ ̺L(̺L − ̺V )

(3(̺L − ̺C)2 + T )(̺V − ̺L)
.Sin
e we 
onsider ̺V and ̺L very 
lose to ̺C , the ratio ̺V /̺L is very 
loseto one. Hen
e we 
an use the approximation ln z ∼= (z − 1) − (z − 1)2/2,



344 T. Suªkowskiwhere z = ̺V /̺L. From (8) we get
(9) 













˙̺V =
̺L − ̺V

2(3(̺V − ̺C)2 + T )
,

˙̺L =
̺V − ̺L

2(3(̺L − ̺C)2 + T )
.Studying (9) we 
an assume ̺C = 0. Thus

(10) 













˙̺V =
̺L − ̺V

2(3̺2

V + T )
,

˙̺L =
̺V − ̺L

2(3̺2

L + T )
.The solution of the system (10) des
ribes the behaviour of the 
urves ̺V (T )and ̺L(T ) given by (8) near the 
riti
al point (̺C , TC) = (0, 0).In the next se
tion we will 
onsider the system of equations (10) undersome 
onditions having a physi
al meaning, namely

˙̺V (TC) = ∞, ˙̺L(TC) = −∞,
∂P

∂̺
(̺V (T ), T ) 6= 0,

∂P

∂̺
(̺L(T ), T ) 6= 0.We are interested in �nding the unique initial 
onditions ̺V (T0) = ̺0

V and
̺L(T0) = ̺0

L, where ̺0

V < ̺0

L, for whi
h the system (10) has a solutionpassing through the 
riti
al point.4. Analysis of the mathemati
al model. We 
hange notation anddenote the vapour density ̺V (T ), liquid density ̺L(T ) and temperature Tby x(t), y(t) and t, respe
tively. Thus the system (10) 
an be written in thefollowing form:
(11) 













ẋ =
y − x

2(3x2 + t)
,

ẏ =
x − y

2(3y2 + t)
.We shall study the system (11) with the initial 
onditions x(t0) = x0 and

y(t0) = y0 (x0 < y0).Definition 1. By a solution of the system (11) we mean a pair (x(t), y(t))of fun
tions su
h that(i) x(t), y(t) ∈ C1([t0, t
∗));(ii) x(t∗) = y(t∗) for some t∗ > t0;(iii) |ẋ(t∗

−
)| = |ẏ(t∗

−
)| = ∞;(iv) x(t) < y(t) for t ∈ [t0, t

∗).Theorem 2. If (x(t), y(t)) is a solution of (11) then(12) −x2 − xy − y2 = t for t ∈ [t0, t
∗].
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an transform the equations (11) to the form
2(3x2 + t)ẋ = y − x,(13)
2(3y2 + t)ẏ = x − y.(14)Subtra
ting (13) and (14) we obtain

(3x2 + t)ẋ − (3y2 + t)ẏ = y − x.Hen
e we have
d

dt
(x3 + tx) − d

dt
(y3 + ty) = 0.Thus(15) x3 − y3 + t(x − y) = c, where c = const.The equation (15) has to be satis�ed for t ∈ [t0, t

∗). By 
ontinuity it alsoholds for t = t∗.Sin
e x(t∗) = y(t∗), we have c = 0, and as x(t) < y(t) for t ∈ [t0, t
∗), weobtain(16) −x2 − xy − y2 = t.By 
ontinuity (16) holds on the interval [t0, t

∗]. The theorem is proved.Corollary 3. If x(t) and y(t) satisfy the system (11), then the 
urves
x(t) and y(t) 
an 
ross only for t∗ = 0.Proof. Sin
e the left-hand side of (12) is non-positive de�nite, we obtain
t0 < t∗ ≤ 0. Thus the 
urves x(t) and y(t) 
annot 
ross for t > 0.By (12) the system (11) 
an be transformed into the autonomous system
(17) 













ẋ = − 1

2(2x + y)
,

ẏ = − 1

2(2y + x)
.Now suppose x(t∗) = y(t∗), where t∗ < 0. Then x∗ 6= 0 by (12). Thus by(17) we get |ẋ(t∗)| = |ẏ(t∗)| < ∞. This 
ontradi
ts our de�nition of solution.If t∗ = 0 then from (12) we have x(t∗) = y(t∗) = 0. Moreover, by (17),

|ẋ(0−)| = |ẏ(0−)| = ∞. This ends the proof of the 
orollary.Theorem 4. Let t0 < 0 and (t∗, x(t∗)) = (t∗, y(t∗)) = (0, 0). Then thesystem (11) has a unique solution.Proof. Using the substitution(18) {

x(t) = ξ(t) − η(t),

y(t) = ξ(t) + η(t),we transform the 
ondition (12) to the form
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h is valid for t ∈ [t0, t
∗].By (18) and (19), from (11) we get(20) ξ̇ = − 3ξ

24ξ2 + 2t
.Moreover, the fun
tion η(t) is 
oupled with the solution ξ(t) of (20) by the
ondition (19). Additionally, ξ(0) = η(0) = 0 by our assumption.If ξ 6≡ 0 we obtain the �rst order linear nonhomogeneous di�erentialequation(21) dt

dξ
+

2

3ξ
t = −8ξ.Solving it we get(22) t = −3ξ2 +

c
3

√

ξ2
,where c = const. We infer ξ(0) = 0 if and only if c = 0. Thus ξ = ±

√

−t/3.By (19) we also have η(t) ≡ 0, whi
h implies x(t) ≡ y(t). This 
ontradi
tsthe assumption that x(t) < y(t).If ξ ≡ 0 we obtain η = ±
√
−t. Thus by (18) we get x = −

√
−t and

y =
√
−t for x(t) < y(t), whi
h is the unique solution of the system (11)
rossing at the 
riti
al point. The theorem is proved.Corollary 5. There exist unique initial 
onditions x0 = −√−t0 and

y0 =
√−t0, where t0 < 0, for whi
h the system (11) has a solution (x(t), y(t))de�ning the VLE 
urve passing through the 
riti
al point.5. Con
lusions. We have found the unique solution of the system (11)whi
h satis�es the 
onditions mentioned in De�nition 1. This means thatthere exist unique 
urves ̺V (T ) and ̺L(T ) whi
h satisfy the system (10) and
ross at (0, 0). By Theorem 4 we see that the point (t∗, x(t∗)) = (t∗, y(t∗)) =

(0, 0) agrees with the physi
al 
riti
al point (tC , ̺C) = (0, 0). The uniquesolution of the system (11) is an approximation of the solution of the system(8) whi
h 
hara
terizes the behaviour of the 
urves ̺V and ̺L near the
riti
al point.We expe
t that this resear
h 
an be useful for further tests in the numer-i
al determination of the phase transition 
urve.
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