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COMPARISON OF EXPLICIT AND IMPLICIT DIFFERENCE
METHODS FOR QUASILINEAR FUNCTIONAL

DIFFERENTIAL EQUATIONS

Abstract. We give a theorem on error estimates of approximate solutions
for explicit and implicit difference functional equations with unknown func-
tions of several variables. We apply this general result to investigate the sta-
bility of difference methods for quasilinear functional differential equations
with initial boundary condition of Dirichlet type. We consider first order
partial functional differential equations and parabolic functional differen-
tial problems. We compare the properties of explicit and implicit difference
methods.

We use a comparison technique with nonlinear estimates of Perron type
for given functions with respect to the functional variables.

1. Introduction. We are interested in numerical approximation of clas-
sical solutions to quasilinear functional differential equations with initial
boundary conditions of Dirichlet type. First order partial functional dif-
ferential equations and parabolic functional differential problems are consi-
dered.

Difference schemes for evolution functional differential equations consist
in replacing partial derivatives with difference operators. Moreover, because
differential equations contain functional variables, some interpolating oper-
ators are needed. This leads to difference functional problems which satisfy
consistency conditions on classical solutions of original equations. The main
task in these considerations is to find difference approximations of functional
differential equations which are stable. A comparison technique is used to
investigate the stability of functional difference problems.
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It is not our aim here to give a full review of papers concerning explicit
difference methods for quasilinear functional differential equations. The pa-
pers [3], [4], [18] and the monograph [7] contain such reviews. In recent
years, a number of papers on implicit difference methods for functional par-
tial differential equations have been published. Difference approximations of
classical solutions to first order partial functional differential equations were
considered in [9]. Implicit difference schemes for parabolic equations with
initial boundary condition of Dirichlet type were studied in [5], [10]. From
the abundant literature concerning the convergence of difference schemes for
nonlinear functional differential equations we mention the papers [1], [8],
[13], [18]. Monotone iterative methods and implicit difference schemes for
computing approximate solutions to parabolic equations with time delays
were investigated in [11], [12], [14], [15], [20].

The aim of the present paper is to compare explicit and implicit difference
methods for quasilinear functional differential equations.

Two types of assumptions are needed in theorems on convergence of dif-
ference methods for evolution functional differential equations. The first type
conditions concern regularity of the given functions. The second type con-
ditions concern the mesh. We show that the equations considered here have
the following properties. Assumptions on the regularity of the given functions
are the same in theorems on convergence of explicit and implicit difference
schemes. We prove that assumptions on the mesh are needed for explicit dif-
ference methods, but are not necessary for implicit schemes. We show that
there are implicit methods which are convergent, while the corresponding
explicit schemes are not.

Our results are based on the following idea. Normally, difference inequali-
ties and theorems on recurrent inequalities are used to investigate the stabil-
ity of explicit and implicit difference schemes. As a rule, these considerations
require a lot of calculations so the main properties of the corresponding op-
erators cannot be easily seen. The aim of the present paper is to show that
results on explicit and implicit difference schemes are consequences of re-
sults on abstract difference equations with an unknown function of several
variables.

The authors of [1]–[5], [8]–[15], [18], [20] have assumed that the given
functions satisfy the Lipschitz condition or nonlinear estimates of Perron
type with respect to the functional variables, and these conditions are global
with respect to the functional variables. Our assumptions are more general.
We assume that the nonlinear estimates of Perron type are local with respect
to the functional variables. It is clear that there are differential equations
with deviated variables and differential integral equations such that estimates
of Perron type only hold locally.
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We formulate our functional differential problems. For any metric spaces
X and Y we denote by C(X,Y ) the class of all continuous functions from X
into Y. We use vectorial inequalities with the understanding that the same
inequalities hold between their corresponding components. Let Mn×n be the
set of all n× n matrices with real entries. Write

E0 = [−b0, 0]×[−b, b], E = [0, a]×[−b, b], ∂0E = [0, a]×([−b, b]\(−b, b)),

where a > 0, b0 ∈ R+, R+ = [0,∞), and b = (b1, . . . bn), bi > 0 for i =
1, . . . , n. For (t, x) ∈ E we define

D[t, x] = {(τ, y) ∈ R1+n : τ ≤ 0, (t+ τ, x+ y) ∈ E0 ∪ E}.

It is clear that D[t, x] = [−b0 − t, 0] × [−b − x, b − x] For a function z :
E0 ∪ E → R and a point (t, x) ∈ E we define a function z(t,x) : D[t, x]→ R
by z(t,x)(τ, y) = z(t + τ, x + y), (τ, y) ∈ D[t, x]; that is, we restrict z to the
set (E0∪E)∩ ([−b0, t]×Rn) and then shift this restriction to the set D[t, x].
Write B = [−b0 − a, 0] × [−2b, 2b]. Then D[t, x] ⊂ B for (t, x) ∈ E. Set
Ξ = E × C(B,R) and suppose that

f : Ξ → Rn, f = (f1, . . . , fn), g : Ξ → R, ϕ : E0 ∪ ∂0E → R

are given functions. Let z be an unknown function of the variables (t, x),
x = (x1, . . . , xn). We consider the functional differential equation

(1) ∂tz(t, x) =
n∑
i=1

fi(t, x, z(t,x)) ∂xiz(t, x) + g(t, x, z(t,x))

with the initial boundary condition

(2) z(t, x) = ϕ(t, x) on E0 ∪ ∂0E.

We will say that f and g satisfy the condition (V ) if for each (t, x) ∈ E and
for w, w̃ ∈ C(B,R) such that w(τ, y) = w̃(τ, y) for (τ, y) ∈ D[t, x] we have
f(t, x, w) = f(t, x, w̃) and g(t, x, w) = g(t, x, w̃). The condition (V ) means
that the values of f and g at the point (t, x, w) ∈ Ξ depend on (t, x) and on
the restriction of w to the set D[t, x] only. We assume that f and g satisfy
the condition (V ) and we consider classical solutions to (1), (2).

Now we formulate initial boundary value problems for parabolic func-
tional differential equations. Suppose that

F : Ξ →Mn×n, F = [Fij ]ni,j=1,

G : Ξ → Rn, G = (G1, . . . , Gn), G : Ξ → R, ϕ : E0 ∪ ∂0E → R

are given functions. We consider the functional differential equation
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∂tz(t, x) =
n∑

i,j=1

Fij(t, x, z(t,x))∂xixjz(t, x)(3)

+
n∑
i=1

Gi(t, x, z(t,x))∂xiz(t, x) +G(t, x, z(t,x))

with the initial boundary condition (2). We assume that F, G, G satisfy the
following condition (V ): if (t, x) ∈ E, w, w̃ ∈ C(B,R) and w(τ, y) = w̃(τ, y)
for (τ, y) ∈ D[t, x] then F(t, x, w) = F(t, x, w̃), G(t, x, w) = G(t, x, w̃),
G(t, x, w) = G(t, x, w̃). We consider classical solutions to (3), (2).

The paper is organized as follows. In Section 2 we propose a new method
of investigating explicit or implicit difference schemes corresponding to ini-
tial boundary value problems for quasilinear functional differential equations.
We formulate general difference functional problems with an unknown func-
tion of several variables. We give sufficient conditions for the existence and
uniqueness of solutions of initial boundary value problems and we prove a
theorem on error estimates of approximate solutions. The error is estimated
by a solution of an initial problem for a nonlinear difference equation with
an unknown function of one variable. In Section 3 we apply the above gen-
eral results to quasilinear first order partial functional differential equations.
Section 4 deals with explicit and implicit difference schemes for parabolic
functional differential problems. We use general ideas for finite difference
equations which were introduced in the monographs [7], [16], [17].

2. Functional difference equations. For x ∈ Rn, W ∈ Mn×n where
x = (x1, . . . , xn) and W = [wij ]ni,j=1 we put

‖x‖ =
n∑
i=1

|xi|, ‖W‖ = max
{ n∑
j=1

|wij | : 1 ≤ i ≤ n
}
.

The norm in the space C(B,R) is defined by ‖w‖B = max{|w(τ, y)| :
(τ, y) ∈ B}.

For any sets X and Y we denote by F (X,Y ) the set of all functions
defined on X and taking values in Y. We define a mesh on E0 ∪ E in the
following way. Suppose that (h0, h

′), h′ = (h1, . . . , hn), hi > 0 for 0 ≤ i ≤ n,
are steps of the mesh. For h = (h0, h

′) and (r,m) ∈ Z1+n where m =
(m1, . . . ,mn), we define nodal points as follows:

t(r) = rh0, x(m) = (x(m1)
1 , . . . , x(mn)

n ) = (m1h1, . . . ,mnhn).

Let H be the set of all h such there are K0 ∈ Z andM = (M1, . . . ,Mn) ∈ Nn

satisfying K0h0 = b0 and (M1h1, . . . ,Mnhn) = b. Let K ∈ N be defined by
Kh0 ≤ a < (K + 1)h0. Write

R1+n
h = {(t(r), x(m)) : (r,m) ∈ Z1+n}
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and
E0.h = E0 ∩ R1+n

h , Eh = E ∩ R1+n
h , ∂0Eh = ∂0Eh ∩ R1+n,

E′h = {(t(r), x(m)) ∈ Eh \ ∂0Eh : 0 ≤ r ≤ K − 1}, Ih = {t(r) : 0 ≤ r ≤ K}.

For z ∈ F (E0.h ∪ Eh,R), ω ∈ F (Ih,R) we write z(r,m) = z(t(r), x(m)) and
ω(r) = ω(t(r)). Set

Λ = {λ = (λ1, . . . , λn) : λi ∈ {−1, 0, 1} for 1 ≤ i ≤ n and ‖λ‖ ≤ 2},
Λ′ = Λ \ {θ}, θ = (0, . . . , 0) ∈ Rn,

and χ = 1 + 2n2. Note that χ is the number of elements of Λ. Let ψ : Λ →
{1, . . . , χ} be a function such that ψ(λ) 6= ψ(λ̃) for λ 6= λ̃. We assume that
≺ is an order in Λ defined in the following way: if ψ(λ) < ψ(λ̃) then λ ≺ λ̃.
Elements of the space Rχ will be denoted by ξ = {ξλ}λ∈Λ. Write

Ah = {x(m) : m = (m1, . . . ,mn) ∈ Λ }.
For ζ : Ah → R we put ζ(m) = ζ(x(m)). If z : E0.h∪Eh → R and (t(r)x(m)) ∈
Eh \ ∂0Eh then the function z〈r,m〉 : Ah → R is defined by

z〈r,m〉(y) = z(t(r), x(m) + y), y ∈ Ah.
Solutions of difference functional equations are elements of the space
F (E0.h ∪Eh,R). Since equations (1) and (3) contain the functional variable
z(t,x) which is an element of C(D[t, x],R), we need an interpolating operator
Th : F (E0.h∪Eh,R)→ C(E0∪E,R). Additional assumptions on Th are for-
mulated later in this section. For z ∈ F (E0.h ∪ Eh,R) and (t(r), x(m)) ∈ Eh
we write (Thz)[r,m] instead of (Thz)(t(r),x(m)). Set Ωh = E′h × C(B,R) and
suppose that

fh : Ωh → R, Gh : Ωh → Rχ, Gh = {Gh.λ}λ∈Λ
are given functions. For (t, x, w) ∈ Ωh and ζ ∈ F (Ah,R) we put

Gh(t, x, w) ◦ ζ =
∑
λ∈Λ

Gh.λ(t, x, w)ζ(λ).

Let Fh : Ωh × F (Ah,R)→ R be defined by
(4) Fh(t, x, w, ζ) = fh(t, x, w) +Gh(t, x, w) ◦ ζ.
We will say that fh and Gh satisfy the condition (V ) if for each (t, x) ∈ E′h
and w, w̃ ∈ C(B,R) such that w(τ, y) = w̃(τ, y) for (τ, y) ∈ D[t, x] we have
fh(t, x, w) = f(t, x, w̃) and Gh(t, x, w) = Gh(t, x, w̃). For z ∈ F (E0.h∪Eh,R)
and (t(r)x(m)) ∈ E′h we put

(5) Fex.h[z](r,m) = Fh(t(r), x(m), (Th)[r,m], z〈r,m〉).

Let δ0 be the difference operator defined by

δ0z
(r,m) =

1
h0

[z(r+1,m) − z(r,m)].
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Given ϕh : E0.h ∪ ∂0Eh → R, we consider the functional difference equation

(6) δ0z
(r,m) = Fex.h[z](r,m)

with the initial boundary condition

(7) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh.

If Gh, fh satisfy the condition (V ) then there exists exactly one solution
uh : E0.h ∪ Eh → R to (6), (7).

The above problem (6), (7) is obtained in the following way. Explicit
difference equations corresponding to (1) or (3) have the form

(8) δ0z
(r,m) = Ψh(t(r), x(m), z(·))

where Ψh : E′h × F (E0.h ∪ Eh,R) → R is an operator of Volterra type.
Discretization of partial derivatives

∂xz = (∂x1z, . . . , ∂xnz), ∂xxz = [∂xixjz]
n
i,j=1

leads to the following observation: the numbers z(r,m+λ) where λ ∈ Λ appear
in the definitions of the difference operators

(9) δz = (δ1z, . . . , δnz), δ(2) = [δijz]ni,j=1,

corresponding to these derivatives. It follows that the right hand side of
(8) depends on the functional variable z〈r,m〉. Since (1) and (3) contain the
functional variable z(t,x) which is an element of C(D[t, x],R) we conclude
that Ψh in (8) depends on (Thz)[r,m]. It is clear that assumptions on the
functional variable (Thz)[r,m] and on z〈r,m〉 are not the same in theorems on
convergence of difference methods. So it is natural to consider the following
explicit difference scheme for (1) or (3):

(10) δ0z
(r,m) = Φh(t(r), x(m), (Thz)[r,m], z〈r,m〉)

where Φh : Ωh×F (Ah,R)→ R. We associate with (10) the initial boundary
condition (7). Equations (1) and (3) are linear with respect to derivatives. It
follows that explicit difference schemes for (1), (2) and (3), (2) are linear with
respect to difference operators (9). Thus they have the form (6), (7) with
Fex.h defined by (5). The functions ϕh : E0.h∪Eh → R, h ∈ H, approximate
ϕ : E0 ∪ ∂0E → R.

Set

(11) Fim.h[z](r,m) = Fh(t(r), x(m), (Th)[r,m], z〈r+1,m〉).

The functional difference equation

(12) δ0z
(r,m) = Fim.h[z](r,m)

with the initial boundary condition (7) is considered to be an implicit dif-
ference method.



Explicit and implicit difference methods 321

The above functional difference problems have the property: the numbers
z(r+1,m+λ), λ ∈ Λ, appear in (12). So (12), (7) is an implicit functional
difference equation. It is important that the functional variable (Thz)[r,m]

appears in (6) and in (12) in the classical sense.
For z ∈ C(E0 ∪E,R) and zh ∈ F (E0.h ∪Eh,R) we define the seminorms

‖z‖t = max{|z(τ, y)| : (τ, y) ∈ (E0∪E)∩([−b0, t]×Rn)}, 0 ≤ t ≤ a,
‖zh‖h.r = max{|zh(τ, y)| : (τ, y) ∈ (E0.h∪Eh)∩([−b0, t(r)]×Rn)}, 0 ≤ r ≤ K.

Assumption H[%]. The function % : [0, a]×R+ → R+ is continuous and
it is nondecreasing with respect to both variables and for each η ∈ R+ there
exists on [0, a] the maximal solution of the Cauchy problem

(13) ω′(t) = %(t, ω(t)), ω(0) = η.

Assumption H[Gh, fh]. The functions Gh : Ωh → Rχ, fh : Ωh → R
satisfy the condition (V ) and

1) for (t, x, w) ∈ Ωh we have

(14) Gh.λ(t, x, w) ≥ 0 for λ ∈ Λ′ and
∑
λ∈Λ

Gh.λ(t, x, w) ≤ 0,

2) there is % : [0, a] × R+ → R+ such that Assumption H[%] is satisfied
and

|fh(t, x, w)| ≤ %(t, ‖w‖B) for (t, x, w) ∈ Ωh, h ∈ H,
3) there is η̃ ∈ R+ such that

|ϕ(r,m)
h | ≤ η̃ on E0.h and |ϕ(r,m)

h | ≤ ω(t(r), η̃) on ∂0Eh

where ω(·, η̃) is the maximal solution to (13) for η = η̃.

Assumption H[Th]. The operator Th : F (E0.h∪Eh,R)→ C(E0∪E,R)
satisfies the conditions:

1) for z, z̄ ∈ F (E0.h ∪ Eh,R) we have

‖Th[z]− Th[z̄]‖t(r) ≤ ‖z − z̄‖h.r, 0 ≤ r ≤ K,
2) if z : E0 ∪E → R+ is of class C1 then there is γ? : H → R+ such that

‖Th[zh]− z‖t ≤ γ?(h), 0 ≤ t ≤ a, lim
h→0

γ?(h) = 0,

where zh is the restriction of z to E0.h ∪ Eh,
3) if 0h ∈ F (E0.h ∪ Eh,R) is given by 0h(t, x) = 0 for (t, x) ∈ E0.h ∪ Eh

then Th[0h](t, x) = 0 for (t, x) ∈ E0 ∪ E.
An example of the operator Th satisfying Assumption H[Th] can be found

in [7, Chapter 5]. We begin with a theorem on the existence and estimates
of solutions to (6), (7) and (12), (7).
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Theorem 2.1. Suppose that Assumptions H[Gh, fh] and H[Th] are sa-
tisfied. Then:

I. There exists exactly one solution vh : E0.h ∪ Eh → R to (12), (7) and

(15) |v(r,m)
h | ≤ ω(t(r), η̃) on Eh.

II. If additionally the steps of the mesh satisfy the condition

(16) 1 + h0Gh.θ(t, x, w) ≥ 0 on Ωh,

then there is exactly one solution uh : E0.h ∪ Eh → R to (6), (7) and

(17) |u(r,m)
h | ≤ ω(t(r), η̃) on Eh.

Proof. I. Suppose that 0 ≤ r < K is fixed and that the solution vh to
(12), (7) is given on (E0.h∪Eh)∩ ([−b0, t(r)]×Rn). We prove that the values
v

(r+1,m)
h , −M ≤ m ≤ M, exist and are unique. It is sufficient to show that
there exists exactly one solution of the linear system

z(r+1,m) = v
(r,m)
h + h0 Fh(t(r), x(m), (Thvh)[r,m], z〈r+1,m〉)(18)

for (t(r), x(m)) ∈ E′h,

z(r+1,m) = ϕ
(r+1,m)
h for (t(r+1), x(m)) ∈ ∂0Eh,(19)

where Fh is given by (4). It follows from (14) that the homogeneous system
corresponding to (18), (19) has exactly one zero solution. Thus the solution
vh is given on (E0.h ∪ Eh) ∩ ([−b0, t(r+1)] × Rn) and it is unique. Since vh
is given on E0.h, the proof of the existence and uniqueness of a solution to
(12), (7) is completed by induction with respect to r, 0 ≤ r ≤ K.

Now we prove (15). We conclude from (12) that

(20) v
(r+1,m)
h [1 + h0Gh.θ(t(r), x(m), (Thvh)[r,m])]

= v
(r+1,m)
h + h0

∑
λ∈Λ′

Gh.λ(t(r), x(m), (Thvh)[r,m])v
(r+1,m+λ)
h

+ h0fh(t(r), x(m), (Thvh)[r,m])

where (t(r), x(m)) ∈ E′h. Let ωh : Ih → R+ be defined by ω
(r)
h = ‖vh‖h.r,

0 ≤ r ≤ K. It follows from condition 2) of Assumption H[Gh, fh] and from
(14), (20) that

ω
(r+1)
h ≤ ω(r)

h + h0 %(t(r), ω(r)
h ) for 0 ≤ r ≤ K − 1

and ω(r)
h ≤ η̃. The function ω(·, η̃) satisfies the recurrent inequality

(21) ω(t(r+1), η̃) ≥ ω(t(r), η̃) + h0%(t(r), ω(t(r), η̃)), 0 ≤ r ≤ K − 1.

Since ω(0)
h ≤ ω(t(0), η̃), we have ω(r)

h ≤ ω(t(r), η̃) for 0 ≤ r ≤ K and (15)
follows.
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II. It is clear that there exists exactly one solution uh : E0.h ∪ Eh → R
to (6), (7). We conclude from (6) that

(22) u
(r+1,m)
h = u

(r,m)
h [1 + h0Gh.θ(t(r), x(m), (Thuh)[r,m])]

+ h0

∑
λ∈Λ′

Gh.λ(t(r), x(m), (Thuh)[r,m])u
(r,m+λ)
h + h0fh(t(r), x(m), (Thuh)[r,m])

where (t(r), x(m)) ∈ E′h. Let ω̃h : Ih → R+ be defined by ω̃
(r)
h = ‖uh‖h.r,

0 ≤ r ≤ K. It follows from condition 2) of Assumption H[Gh, fh] and from
(14), (16), (22) that

ω̃
(r+1)
h ≤ ω̃(r)

h + h0%(t(r), ω̃(r)
h ) for 0 ≤ r ≤ K − 1,

and ω̃(0)
h ≤ η̃. The above relations and (21) imply (17). This completes the

proof of the theorem.

We will consider approximate solutions to (6), (7) and (12), (7). Suppose
that the functions zh : E0.h ∪ Eh → R, h ∈ H, and α0, γ : H → R+ satisfy

(23) |δ0z(r,m)
h − Fex.h[zh](r,m)| ≤ γ(h) on E′h

and

|z(r,m)
h − ϕ(r,m)

h | ≤ α0(h) on E0.h ∪ ∂0Eh,(24)
lim
h→0

α0(h) = 0, lim
h→0

γ(h) = 0.(25)

The functions zh, h ∈ H, satisfying the above relations are considered to be
approximate solutions to (6), (7). If

(26) |δ0z(r,m)
h − Fim.h[zh](r,m)| ≤ γ(h) on E′h

and conditions (24), (25) are satisfied then zh, h ∈ H, are approximate
solutions to (12), (7).

We give a theorem on estimates of differences between the exact and
approximate solutions to (6), (7) and (12), (7). Suppose that Assumptions
H[Gh, fh] and H[Th] are satisfied. Write C̃ = ω(a, η̃) and

KC(B,R)[C̃] = {w ∈ C(B,R) : ‖w‖B ≤ C̃}.

Assumption H0[σ]. The function σ : [0, a] × R+ → R+ satisfies the
conditions:

1) σ is continuous and it is nondecreasing with respect to both variables,
2) σ(t, 0) = 0 for t ∈ [0, a] and the maximal solution of the Cauchy

problem
ω′(t) = σ(t, ω(t)), ω(0) = 0,

is ω̃(t) = 0 for t ∈ [0, a].
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Theorem 2.2. Suppose that Assumptions H[Gh, fh] and H[Th] are sat-
isfied and there exist σ : [0, a] × R+ → R+ and Yh ⊂ F (Ah,R) such that
Assumption H0[σ] is satisfied and for w, w̃ ∈ KC(B,R)[C̃] and ζ ∈ Yh we
have

(27) |Fh(t, x, w, ζ)− Fh(t, x, w̃, ζ)| ≤ σ(t, ‖w − w̃‖B), (t, x) ∈ E′h.
I. Suppose that vh : E0.h ∪ Eh → R is a solution to (12), (7) and ṽh :

E0.h ∪ Eh → R satisfies the conditions:

(i) ‖ṽh‖h.r ≤ C̃ and (ṽh)〈r,m〉 ∈ Yh for 0 ≤ r ≤ K,
(ii) conditions (24)–(26) are satisfied for zh = ṽh.

Then there is α : H → R+ such that

(28) |(vh − ṽh)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0.

II. Suppose that the steps of the mesh satisfy (16) and uh : E0.h∪Eh → R
is a solution to (6), (7) and ũh : E0.h ∪ Eh → R satisfies the conditions:

(i) ‖ũh‖h.r ≤ C̃ and (ũh)〈r,m〉 ∈ Yh for 0 ≤ r ≤ K,
(ii) conditions (23)–(25) are satisfied with zh = ũh.

Then there is α : H → R+ such that

(29) |(uh − ũh)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0.

Proof. I. The existence of the solution vh to (12), (7) follows from The-
orem 2.1. Let Γim.h : E′h → R be defined by

δ0ṽ
(r,m)
h = Fim.h[ṽh](r,m) + Γ

(r,m)
im.h .

Then |Γ r,m)
im.h | ≤ γ(h) on E′h. It follows from (12) that

(30) (ṽh − vh)(r+1,m)[1− h0Gh.θ(t(r), x(m), (Thvh)[r,m])]

= (ṽh − vh)(r,m)

+ h0

∑
λ∈Λ′

Gh.λ(t(r), x(m), (Thvh)[r,m])(ṽh − vh)(r,m+λ) + Γ
(r,m)
im.h

+ Fh(t(r), x(m), (Thṽh)[r,m], (ṽh)〈r+1,m〉)

− Fh(t(r), x(m), (Thvh)[r,m], (ṽh)〈r+1,m〉).

Let εh : Ih → R+ be given by ε(r)h = ‖ṽh − vh‖h.r, 0 ≤ r ≤ K. We conclude
from Assumptions H[Gh, fh], H[Th] and H[σ] and from (30) that

(31) ε
(r+1)
h ≤ ε(r)h + h0σ(t(r), ε(r)h ) + h0γ(h), 0 ≤ r ≤ K − 1,

and ε
(0)
h ≤ α0(h). Denote by ω(·, h) the maximal solution of the Cauchy

problem
(32) ω′(t) = σ(t, ω(t)) + γ(h), ω(0) = α0(h).
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It follows that ω(·, h) is defined on [0, a] and limh→0 ω(t, h) = 0 uniformly
on [0, a]. Moreover we have

ω(t(r+1), h) ≥ ω(t(r), h) + h0σ(t(r), ω(t(r), h)) + h0γ(h), 0 ≤ r ≤ K − 1.

This gives ε(r)h ≤ ω(t(r), h) for 0 ≤ r ≤ K and condition (28) is satisfied with
α(h) = ω(a, h).

II. It is clear that there exists a solution uh to (6), (7). Let Γex.h : E′h → R
be defined by

δ0ṽ
(r,m)
h = Fex.h[ṽh](r,m) + Γ

(r,m)
ex.h .

Then |Γ r,m)
ex.h | ≤ γ(h) on E′h. It follows from (6) that

(33) (ṽh − vh)(r+1,m) = (ṽh − vh)(r,m)[1 + h0Gh.θ(t(r), x(m), (Thuh)[r,m])]

+ h0

∑
λ∈Λ′

Gh.λ(t(r), x(m), (Thuh)[r,m])(ũh − uh)(r,m+λ) + Γ
(r,m)
im.h

+ Fh(t(r), x(m), (Thũh)[r,m], (ũh)〈r,m〉)− Fh(t(r), x(m), (Thuh)[r,m], (ũh)〈r,m〉).

Let εh : Ih → R+ be given by ε(r)h = ‖ũh − uh‖h.r, 0 ≤ r ≤ K. We conclude
from Assumptions H[Gh, fh], H[Th] and H[σ] and from (16), (33) that the
function εh satisfies (31) and ε(0)

h ≤ α0(h). Thus condition (29) is satisfied
with α(h) = ω(a, h) where ω(·, h) is the maximal solution to (32).

This completes the proof of the theorem.

Remark 2.3. Suppose that all the assumptions of Theorem 2.2 hold
with σ(t, p) = Lp on [0, a] × R+ where L ∈ R+, so the operator Fh satis-
fies the Lipschitz condition with respect to the functional variable on
E′h×KC(B,R)[C̃]×Yh. Then |(vh− ṽh)(r,m)| ≤ α̃(h) on Eh and |(uh− ṽh)(r,m)|
≤ α̃(h) on Eh where

α̃(h) = α0(h)eLa + γ(h)
eLa − 1
L

if L > 0,(34)

α̃(h) = α0(h) + aγ(h) if L = 0.(35)

The above estimates are obtained by solving problem (32) with σ(t, p) = Lp.

It follows that we have obtained the same estimates of errors for the
implicit and for the explicit difference equations.

3. First order partial functional differential equations. We formu-
late difference methods for (1), (2). Consider the operator Uh : Ωh×F (Ah,R)
→ R defined in the following way. Let (t(r), x(m), w, ζ) ∈ Ωh × F (Ah,R).
Write

J
(r,m)
+ [w] = {i ∈ {1, . . . , n} : fi(t(r), x(m), w) ≥ 0},

J
(r,m)
− [w] = {1, . . . , n} \ J (r,m)

+ [w]
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and

Uh(t(r), x(m), w, ζ) =
n∑
i=1

fi(t(r), x(m), w)δjζ(θ) + g(t(r), x(m), w).

The expressions (δ1ζ(θ), . . . , δnζ
(θ)) are given in the following way. Set ei =

(0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 in the ith place and

δjζ
(θ) =

1
hj

[ζ(ej) − ζ(θ)] for j ∈ J (r,m)
+ [w],

δjζ
(θ) =

1
hj

[ζ(θ) − ζ(−ej)] for j ∈ J (r,m)
− [w].

For z ∈ F (E0.h ∪ Eh,R) and (t(r), x(m)) ∈ E′h we write

Uex.h[z](r,m) = Uh(t(r), x(m), (Thz)[r,m], z〈r,m〉),

Uim.h[z](r,m) = Uh(t(r), x(m), (Thz)[r,m], z〈r+1,m〉).

Given ϕh : E0.h ∪ Eh → R, we approximate the classical solution to (1), (2)
with the solution of the functional difference equation

(36) δ0z
(r,m) = Uex.h[z](r,m)

with the initial boundary condition

(37) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh.

The difference equation

(38) δ0z
(r,m) = Uim.h[z](r,m)

with initial boundary condition (37) is considered to be an implicit difference
scheme for (1), (2).

Assumption H0[f , g, ϕ]. The functions f : Ξ → Rn, g : Ξ → R and
ϕ : E0 ∪ ∂0E → R are such that

1) f and g are continuous and satisfy the condition (V ),
2) there is % : [0, a]×R+ → R+ such that of Assumption H[%] holds and

|g(t, x, w)| ≤ %(t, ‖w‖B) on Ξ,

3) ϕ ∈ C(E0∪∂0E,R), ϕh ∈ F (E0.h∪∂0Eh,R) and there is α0 : H → R+

such that
|ϕ(t, x)− ϕh(t, x)| ≤ α0(h) on E0.h ∪ ∂0Eh and lim

h→0
α0(h) = 0,

4) the constant η̃ ∈ R+ is defined by the relations

(39) |ϕ(t, x)| ≤ η̃ on E0, |ϕh(t, x)| ≤ η̃ on E0.h,

(40) |ϕ(t, x)| ≤ ω(t, η̃) on ∂0E, |ϕh(t, x)| ≤ ω(t, η̃) on ∂0Eh,

where ω(·, η̃) is the maximal solution to (13) for η = η̃.
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We give estimates of solutions to (1), (2).

Lemma 3.1. If Assumption H0[f , g, ϕ] is satisfied and z̃ : E0 ∪E → R is
a solution to (1), (2) and z̃ is of class C1 then

(41) |z̃(t, x)| ≤ ω(t, η̃) on E.

Proof. For ε > 0 we denote by ω(·, η̃, ε) the maximal solution of the
Cauchy problem

(42) ω′(t) = %(t, ω(t)) + ε, ω(0) = η̃ + ε.

Then ω( · , η̃, ε) is defined on [0, a] and

(43) lim
ε→0

ω(t, η̃, ε) = ω(t, η̃) uniformly on [0, a].

Write ω̃(t) = ‖z̃‖t, t ∈ [0, a]. We prove that

(44) ω̃(t) < ω(t, η̃, ε) for t ∈ [0, a].

Suppose for contradiction that assertion (44) fails to be true. Then there is
(t̃, x̃) ∈ (0, a]× (−b, b) such that

ω̃(t) < ω(t, η̃, ε) for t ∈ [0, t̃) and ω̃(t̃) = ω(t̃, η̃, ε) = |z̃(t̃, x̃)|.

Two cases are possible: either (i) z̃(t̃, x̃)=ω(t̃, η̃, ε) or (ii) z̃(t̃, x̃)=−ω(t̃, η̃, ε).
In the first case,

(45) D−ω̃(t̃) ≥ ω′(t̃, η̃, ε)

where D− is the left hand lower Dini derivative. Since ∂xz̃(t̃, x̃) = θ, we have

D−ω̃(t̃) ≤ ∂tz̃(t̃, x̃) = g(t̃, x̃, z̃(t̃,x̃)) ≤ %(t̃, ω(t̃, η̃, ε)) < ω′(t̃, η̃, ε),

which contradicts (45). The case z̃(t̃, x̃) = −ω(t̃, η̃, ε) can be treated in a
similar way. Thus (44) is proved. Letting ε tend to zero in (44) we obtain (41).
This completes the proof.

Lemma 3.2. Suppose that Assumption H[Th] and H0[f , g, ϕ] are satisfied.
Then:

I. There exists exactly one solution vh : E0.h∪Eh → R to (38), (37), and

|v(r,m)
h | ≤ ω(t(r), η̃) on Eh.

II. Moreover, if

(46) 1− h0

n∑
i=1

1
hi
|fi(t, x, w)| ≥ 0 on Ξ

then the solution uh : E0.h ∪ Eh → R to (36), (37) satisfies the condition

|u(r,m)
h | ≤ ω(t(r), η̃) on Eh.
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Proof. We apply Theorem 2.1. Define Gh : Ωh → Rχ, Gh = {Gh.λ}λ∈Λ,
and fh : Ωh → R in the following way. Let (t(r), x(m), w) ∈ Ωh. Write

Λ
(r,m)
+ [w] = {λ ∈ Λ : there is j ∈ J (r,m)

+ [w] such that λ = ej},

Λ
(r,m)
− [w] = {λ ∈ Λ : there is j ∈ J (r,m)

− [w] such that λ = −ej}.
Set

fh(t(r), x(m), w) = g(t(r), x(m), w),

Gh.θ(t(r), x(m), w) = −
n∑
j=1

1
hj
|fj(t(r), x(m), w)|,

Gh.ej
(t(r), x(m), w) =

1
hj
fj(t(r), x(m), w) for j ∈ J (r,m)

+ [w],

Gh.−ej
(t(r), x(m), w) = − 1

hj
fj(t(r), x(m), w) for j ∈ J (r,m)

− [w],

Gh.λ(t(r), x(m), w) = 0 for λ ∈ Λ \ [Λ(r,m)
i.+ [w] ∪ Λ(r,m)

i.− [w] ∪ {θ}].
Then Assumption H[Gh] is satisfied and problems (36), (37) and (38), (37)
are equivalent to (6), (7) and (12), (7) respectively. Our lemma follows from
Theorem 2.1.

Remark 3.3. The stability of difference equations generated by hyper-
bolic systems of conservation laws is strictly connected with the so-called
Courant–Friedrichs–Levy (CFL) conditions (see [6, Chapter III]). The (CFL)
conditions for the quasilinear equation (1) have the form (46).

Suppose that Assumptions H[Th] and H0[f , g, ϕ] are satisfied. Write C̃ =
ω(a, η̃) and
(47) X[C̃] = {w ∈ C(B,R) : ‖w‖B ≤ C̃}.

Assumption H[σ]. The function σ : [0, a]× R+ → R+ satisfies:

1) σ is continuous and it is nondecreasing with respect to both variables,
2) σ(t, 0) = 0 for t ∈ [0, a] and for each c ≥ 1 the maximal solution of

the Cauchy problem
ω′(t) = cσ(t, ω(t)), ω(0) = 0,

is ω̃(t) = 0 for t ∈ [0, a].

Assumption H[f , g, ϕ]. The functions f : Ξ → Rn and g : Ξ → R, ϕ :
E0∪∂0E → R satisfy AssumptionH0[f , g, ϕ] and there is σ : [0, a]×R+ → R+

such that Assumption H[σ] is satisfied and
‖f(t, x, w)− f(t, x, w̃‖ ≤ σ(t, ‖w − w̃‖B),(48)
|g(t, x, w)− g(t, x, w̃| ≤ σ(t, ‖w − w̃‖B),(49)

where (t, x) ∈ E, w, w̃ ∈ X[C̃].
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Remark 3.4. It is important that we have assumed inequalities (48),
(49) for w, w̃ ∈ X[C̃]. It is clear that there are differential integral equa-
tions and differential equations with deviated variables such that Assump-
tion H[f , g, σ] holds and estimates (48), (49) are not satisfied on Ξ.

Theorem 3.5. Suppose that Assumptions H[Th] and H[f , g, ϕ] are sat-
isfied and z̃ : E0 ∪ E → R is a solution to (1), (2) and z̃ is of class C1 and
z̃h is the restriction of z̃ to the set E0.h ∪ Eh. Then:

I. There exists exactly one solution vh : E0.h ∪Eh → R to (38), (37) and
there is α : H → R+ such that

(50) |(vh − z̃h)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0.

II. If condition (46) is satisfied then there is α : H → R+ such that

(51) |(uh − z̃h)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0,

where uh : E0.h ∪ Eh → R is a solution to (36), (37).

Proof. We apply Theorem 2.2 to prove (50) and (51). Let c̃ ∈ R+ be such
that

‖∂xz̃(t, x)‖ ≤ c̃ on E.

Denote by Yh the class of all ζ ∈ F (Ah,R) such that∣∣∣∣ 1
hj

[ζ(ej) − ζ(θ)]
∣∣∣∣ ≤ c̃, ∣∣∣∣ 1

hj
[ζ(θ) − ζ(−ej)]

∣∣∣∣ ≤ c̃, j = 1, . . . , n.

Then we have

‖z̃h‖h.r ≤ C̃ and (z̃h)〈r,m〉 ∈ Yh for 0 ≤ r ≤ K.

It follows from Assumption H[f , g, ϕ] that for w, w̃ ∈ Xh[C̄] and ζ ∈ Yh we
have

|Uh(t, x, w, ζ)− Uh(t, x, w̃, ζ)| ≤ (1 + c̃)σ(t, ‖w − w̃‖B), (t, x) ∈ E′h.

It is clear that condition (46) for equation (36) is equivalent to (15) for (6).
Thus all the assumptions of Theorem 2.2 are satisfied and assertions (50),
(51) follow.

Remark 3.6. Suppose that all the assumptions of Theorem 3.5 are sat-
isfied with σ(t, p) = L̃p on [0, a]× R+ where L̃ ∈ R+. Then there is L ∈ R+

such that |(z̃h − vh)(r,m)| ≤ α̃(h) on Eh and |(z̃h − uh)(r,m)| ≤ α̃(h) on Eh
where α̃ : H → R+ is given by (34), (35).

Now we present numerical examples. Put n = 2. Solutions of the initial
boundary value problems below are defined on E = [0, 0.5]× [−1, 1]× [−1, 1].
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Consider the differential equation with deviated variables

∂tz(t, x, y)

= 4x{1+cos[z(t, 0.25(x+
√

3y), 0.25(
√

3x−y))−z(t, 0.5x, 0.5y)]}∂xz(t, x, y)

+4y{1−cos[z(t, 0.25
√

2(x−y), 0.25
√

2(x+y))−z(t, 0.5x, 0.5y)]}∂yz(t, x, y)

+z(t, x, y)(x2+y2−1−16x2t)

with the initial boundary conditions

z(0, x, y) = 1, (x, y) ∈ [−1, 1]× [−1, 1],(52)

z(t,−1, y) = z(t, 1, y) = ety
2
, t ∈ [0, 0.5], y ∈ [−1, 1],(53)

z(t, x,−1) = z(t, x, 1) = etx
2
, t ∈ [0, 0.5], x ∈ [−1, 1].(54)

The solution of the above problem is v(t, x, y) = exp[t(x2 + y2 − 1)]. The
following tables show maximal values of errors for several step sizes.

Table 1. Errors for explicit Euler method

h0 h1 = h2 Maximal error Time [s]

2−8 2−4 6.49082661 · 10−3 0.063
2−9 2−5 3.35139036 · 10−3 0.502
2−10 2−6 1.70254707 · 10−3 4.039
2−11 2−7 8.58257280 · 10−4 32.574

Table 2. Explicit Euler method, violated CFL condition

h0 h1 = h2 Maximal error

2−6 2−4 2.31260490 · 100

2−7 2−5 7.77142720 · 107

2−8 2−6 5.43515795 · 1021

2−9 2−7 +∞

Now we consider the implicit Euler method and the (CFL) condition is
not satisfied.

Table 3. Errors for implicit Euler method

h0 h1 = h2 Maximal error Time [s]

2−8 2−6 6.11531734 · 10−3 0.982
2−9 2−7 3.10254097 · 10−3 8.194
2−10 2−8 1.56092644 · 10−3 63.151
2−11 2−9 8.04424286 · 10−4 510.758
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Consider the differential integral equation

∂tz(t, x, y) = 4x
{

1 + sin
[
2t

x�

−1

sz(t, s, y) ds− z(t, x, y)
]}
∂xz(t, x, y)

+ 4y
{

1− sin
[
2t

y�

−1

sz(t, x, s) ds− z(t, x, y)
]}
∂yz(t, x, y)

= f(t, x, y)z(t, x, y)

with the initial boundary conditions (52)–(54) where
f(t, x, y) = x2 + y2− 1− 8t(x2 + y2) + 8tx2 sin[exp(ty2)]− 8ty2 sin[exp(tx2)].

The solution of the above problem is v(t, x, y) = exp[t(x2 + y2 − 1)]. The
following tables show maximal error values for several step sizes.

Table 4. Errors for explicit Euler method

h0 h1 = h2 Maximal error Time [s]

2−8 2−4 6.63816929 · 10−3 0.063
2−9 2−5 3.43430042 · 10−3 0.502
2−10 2−6 1.74641609 · 10−3 4.039
2−11 2−7 8.80718231 · 10−4 32.574

Table 5. Explicit Euler method, violated CFL condition

h0 h1 = h2 Maximal error

2−6 2−4 4.39485836 · 100

2−7 2−5 1.76221740 · 107

2−8 2−6 1.99352761 · 1019

2−9 2−7 +∞

Now we consider the implicit Euler method and the (CFL) condition is not
satisfied.

Table 6. Errors for implicit Euler method

h0 h1 = h2 Maximal error Time [s]

2−8 2−6 6.07287884 · 10−3 1.353

2−9 2−7 3.11011076 · 10−3 11.014

2−10 2−8 1.57845020 · 10−3 88.759

2−11 2−9 7.96794891 · 10−4 715.743

Our considerations reveal the following relations between explicit and
implicit difference methods for (1), (2). Assumptions on the regularity of
given functions are the same in the theorems on convergence of explicit and
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implicit difference schemes. We need condition (46) on the mesh for explicit
difference methods, but not for implicit methods. Error estimates are the
same for both methods. Tables 2, 3 and 5, 6 show that there are implicit
difference methods which are convergent, while the corresponding explicit
schemes are not.

4. Parabolic functional differential equations. We formulate differ-
ence methods for (3), (2). Consider the operator Wh : Ωh × F (Ah,R) → R
defined in the following way. Let (t(r), x(m), w, ζ) ∈ Ωh × F (Ah,R). Write

S
(r,m)
+ [w] = {(i, j) : 1 ≤ i, j ≤ n, i 6= j, Fij(t(r), x(m), w) ≥ 0},

S
(r,m)
− [w] = {(i, j) : 1 ≤ i, j ≤ n, i 6= j, Fij(t(r), x(m), w) < 0},

and

δ+i ζ
(θ) =

1
hi

[ζ(ei) − ζ(θ)], δ−i ζ
(θ) =

1
hi

[ζ(θ) − ζ(−ei)], 1 ≤ i ≤ n.

Set

Wh(t(r), x(m), w, ζ) =
n∑

i,j=1

Fij(t(r), x(m), w)δijζ(θ)(55)

+
n∑
i=1

Gi(t(r), x(m), w)δiζ(θ) +G(t(r), x(m), w).

The expressions δζ(θ) = (δ1ζ(θ), . . . , δnζ
(θ)) and δ(2)ζ(θ) = [δijζ(θ)]ni,j=1 are

defined in the following way:

δiζ
(θ) =

1
2hi

[ζ(ei) − ζ(−ei)], δiiζ
(θ) = δ+i δ

−
i ζ

(θ) for i = 1, . . . , n.

and

δijζ
(θ) =


1
2

[δ+i δ
+
j ζ

(θ) + δ−i δ
−
j ζ

(θ)] for (i, j) ∈ S(r,m)
+ [w],

1
2

[δ+i δ
−
j ζ

(θ) + δ−i δ
+
j ζ

(θ)] for (i, j) ∈ S(r,m)
− [w].

For z ∈ F (E0.h ∪ Eh) and (t(r), x(m)) ∈ E′h we put

Wex.h[z](r,m) = Wh(t(r), x(m), (Thz)[r,m], z〈r,m〉),

Wim.h[z](r,m) = Wh(t(r), x(m), (Thz)[r,m], z〈r+1,m〉).

Given ϕh : E0.h ∪ ∂0Eh → R, we approximate classical solutions to (3), (2)
with solutions of the functional difference equation

(56) δ0z
(r,m) = Wex.h[z](r,m)

with the initial boundary condition

(57) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh.
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The functional difference equation

(58) δ0z
(r,m) = Wim.h[z](r,m)

with the initial boundary condition (57) is considered to be an implicit dif-
ference scheme for (3), (2).

We first construct estimates of solutions to (3), (2). A function z ∈ C(E0∪
E,R) will be called of class C1.2 if z(·, x) : [−b0, a] → R is of class C1 for
x ∈ [−b, b] and z(t, ·) : [−b, b]→ R is of class C2 for t ∈ [−b0, a].

Assumption H0[F, ϕ]. The functions F : Ξ →Mn×n and G : Ξ → Rn,
G : Ξ → R are continuous and they satisfy the condition (V ) and

1) the matrix F is symmetric and for (t, x, w) ∈ Ξ we have

(59)
n∑

i,j=1

Fij(t, x, w)yiyj ≥ 0, y = (y1, . . . , yn) ∈ Rn,

2) there is % : [0, a]× R+ → R+ such that Assumption H[%] is satisfied
and

(60)
∣∣G(t, x, w)| ≤ %(t, ‖w‖B) on Ξ,

3) ϕ ∈ C(E0∪∂0E,R), ϕh ∈ F(E0.h∪∂0Eh,R) and there is α0 : H → R+

such that

|ϕ(t, x)− ϕh(t, x)| ≤ α0(h) on E0.h ∪ ∂0Eh and lim
h→0

α0(h) = 0,

4) η̃ ∈ R+ is such that

|ϕ(t, x)| ≤ η̃ on E0 and |ϕh(t, x)| ≤ η̃ on E0.h,

|ϕ(t, x)| ≤ ω(t, η̃) on ∂0E and |ϕh(t, x)| ≤ ω(t, η̃) on ∂0Eh,

where ω( · η̃) is the maximal solution to (13) with η = η̃.

Lemma 4.1. If Assumption H0[F, ϕ] is satisfied and z̃ : E0 ∪ E → R is
a solution to (3), (2) and z̃ is of class C1.2 then

(61) |z̃(t, x)| ≤ ω(t, η̃) on E.

Proof. For ε > 0 we denote by ω(·, η̃, ε) the maximal solution of the
Cauchy problem (13). The function ω(·, η̃, ε) is defined on [0, a] and it satisfies
condition (43). Write ω̃(t) = ‖z̃‖t, t ∈ [0, a]. We prove that

(62) ω̃(t) < ω(t, η̃, ε) for t ∈ [0, a].

Suppose for contradiction that assertion (62) fails to be true. Then there
exists (t̃, x̃) ∈ (0, a]× (−b, b) such that

ω̃(t) < ω(t, η̃, ε) for t ∈ [0, t̃), ω̃(t̃) = ω(t̃, η̃, ε) = |z̃(t̃, x̃)|.
Suppose that ω̃(t̃) = z̃(t̃, x̃). Then

(63) D−ω̃(t̃) ≥ ω′(t̃, η̃, ε).
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Moreover ∂xz̃(t̃, x̃) = θ and

(64)
n∑

i,j=1

∂xixj z̃(t̃, x̃)yiyj ≤ 0 for y = (y1, . . . , yn) ∈ Rn.

We conclude from (59), (60), (64) that
D−ω̃(t̃) ≤ ∂tz̃(t̃, x̃) ≤ G(t̃, x̃, z̃(t̃,x̃)) ≤ %(t̃, ω(t̃, η̃, ε)) < ω′(t̃, η̃, ε),

which contradicts (62). The case ω̃(t̃) = −z̃(t̃, x̃) can be treated in a simi-
lar way. Thus inequality (62) is proved. Letting ε tend to zero in (62) we
obtain (61).

Assumption H[F, ϕ]. Assumption H0[F, ϕ] is satisfied and the steps of
the mesh satisfy

(65)
1
hi
Fii(P )−

n∑
j=1
j 6=i

1
hj
|Fij(P )| − 1

2
|Gi(P )| ≥ 0,

P = (t, x, w) ∈ Ξ, i = 1, . . . , n.

Remark 4.2. Suppose that there is ã > 0 such that

Fii(P )−
n∑
j=1
j 6=i

|Fij(P )| ≥ ã, P ∈ Ξ, i = 1, . . . , n.

Then condition (59) is satisfied (see [19]) and there is ε0 > 0 such that for
‖h′‖ < ε0 and for h1 = h2, . . . , hn inequalities (65) hold.

Lemma 4.3. Suppose that Assumptions H[Th] and H[F, ϕ] are satisfied.
Then:

I. There exists exactly one solution vh : E0.h ∪Eh → R to (58), (57) and

|v(r,m)
h | ≤ ω(t(r), η̄) on Eh.

II. If additionally

(66) 1− 2h0

n∑
i=1

1
h2
i

Fii(P ) +
n∑

i,j=1
j 6=i

1
hj
|Fij(P )| ≥ 0,

where P = (t, x, w) ∈ Ξ, then the solution uh : E0.h ∪ Eh → R to (56), (57)
satisfies the condition

|u(r,m)
h | ≤ ω(t(r), η̃) on Eh.

Proof. We apply Theorem 2.1. Consider the functions fh : Ωh → R
and Gh : Ωh → Rχ, Gh = {Gh.λ}λ∈Λ, defined in the following way. Let
(t(r), x(m), w) ∈ Ωh. Write

Λ
(r,m)
0 [w] = {λ ∈ Λ : there is i, 1 ≤ i ≤ n, such that λ = ei or λ = −ei},
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Λ
(r,m)
I [w] = {λ ∈ Λ : there is (i, j) ∈ S(r,m)

+ [w] such that
λ = ei + ej or λ = −ei − ej},

Λ
(r,m)
II [w] = {λ ∈ Λ : there is (i, j) ∈ S(r,m)

− [w] such that
λ = ei − ej or λ = −ei + ej},

Λ̃(r,m)[w] = Λ \ {Λ(r,m)
0 [w] ∪ Λ(r,m)

I [w] ∪ Λ(r,m)
II [w] ∪ {θ}}.

Set P = (t, x, w) ∈ Ω and

fh(P ) = G(P ), Gh.θ(P ) = −2
n∑
i=1

1
h2
i

Fii(P ) +
n∑

i,j=1
i 6=j

1
hihj
|Fij(P )|,

Gh.ei
(P ) =

1
h2
i

Fii(P )−
n∑
j=1
j 6=i

1
hihj
|Fij(P )|+ 1

2hi
Gi(P ),

Gh.−ei
(P ) =

1
h2
i

Fii(P )−
n∑
j=1
j 6=i

1
hihj
|Fij(P )| − 1

2hi
Gi(P ),

Gh.ei+ej
(P ) = Gh.−ei−ej

(P ) = − 1
2hihj

Fij(P ), (i, j) ∈ S(r,m)
+ [w],

Gh.ei−ej
(P ) = Gh.−ei+ej

(P ) =
1

2hihj
Fij(P ), (i, j) ∈ S(r,m)

− [w],

Gh.λ(P ) = 0 for λ ∈ Λ̃[w](r,m).

Then AssumptionH[Gh, fh] is satisfied and problems (56), (57) and (58), (57)
are equivalent to (6), (7) and (12), (7) respectively. Our lemma follows from
Theorem 2.1.

Suppose that Assumptions H[Th] and H[F, ϕ] are satisfied. Write C̃ =
ω(a, η̃). Let X[C̃] be defined by (47).

Assumption H[F, σ]. The functions F : Ξ → Mn×n, G : Ξ → Rn,
G : Ξ → R and ϕ : E0 ∪ ∂0E → R satisfy Assumption H0[F, ϕ] and there is
σ : [0, a]× R+ such that Assumption H[σ] holds and the expressions

‖F(t, x, w)− F(t, x, w̃)‖, ‖G(t, x, w)−G(t, x, w̃)‖, |G(t, x, w)−G(t, x, w̃)|

are bounded from above by σ(t, ‖w−w̃‖B) for all (t, x) ∈ E and w, w̃ ∈ X[C̃].

Remark 4.4. It is important that we have assumed nonlinear estimates
for w, w̃ ∈ X[C̃]. It is clear that there are differential integral equations and
differential equations with deviated variables such that Assumption H[F, σ]
holds and the nonlinear estimates are not satisfied on Ξ.
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Theorem 4.5. Suppose that Assumptions H[Th] and H[F, σ] are satis-
fied and z̃ : E0 ∪ E → R is a solution to (3), (2) of class C1.2, and z̃h is the
restriction of z̃ to the set E0.h ∪ Eh. Then:

I. There exists exactly one solution vh : E0.h ∪Eh → R to (58), (57) and
there is α : H → R+ such that

(67) |(vh − z̃h)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0.

II. If condition (66) is satisfied then there is α : H → R+ such that

(68) |(uh − z̃h)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0,

where uh : E0.h ∪ Eh → R+ is a solution to (56), (57).

Proof. We apply Theorem 2.2 to prove (67), (68). Let c̃ ∈ R+ be such
that

‖∂xz̃(t, x)‖ ≤ c̃, ‖∂xxz̃(t, x)‖ ≤ c̃ for (t, x) ∈ E.
Denote by Yh the class of all ζ ∈ F(Ah,R) satisfying

1
2
|δ+i ζ

(θ) + δ
(θ)
i | ≤ c̃, i = 1, . . . , n,

1
2
|δ+i δ

+
j ζ

(θ) + δ−i δ
−
j ζ

(θ)| ≤ c̃, 1
2
|δ+i δ

−
j ζ

(θ) + δ−i δ
+
j ζ

(θ)| ≤ c̃, i, j = 1, . . . , n.

Then
‖z̃h‖h.r ≤ C̃, (z̃h)〈r,m〉 ∈ Yh for r = 0, 1, . . . ,K.

It follows from Assumptions H[Th] and H[F, σ] that there is γ : H → R+

such that

|δ0z̃(r,m)
h −Wim.h[z̃h](r,m)| ≤ γ(h) on E′h,

|δ0z̃(r,m)
h −Wex.h[z̃h](r,m)| ≤ γ(h) on E′h.

We conclude from Assumption H[F, σ] that there is c̄ > 0 such that the
operator Wh given by (55) satisfies

|Wh(t, x, w, ζ)−Wh(t, x, w̃, ζ)| ≤ (1 + c̄)σ(t, ‖w − w̃‖B)

for all (t, x) ∈ E′h, w, w̃ ∈ X[C̃] and ζ ∈ Yh. It is clear that condition (66) for
equation (56) is equivalent to (15) for equation (6). Thus all the assumptions
of Theorem 2.2 are satisfied and assertions (67), (68) follow.

Remark 4.6. Suppose that all the assumptions of Theorem 4.5 are sat-
isfied with σ(t, p) = L̃p on [0, a]× R+ where L̃ ∈ R+. Then there is L ∈ R+

such that |(z̃h − vh)(r,m)| ≤ α̃(h) on Eh and |(z̃h − uh)(r,m)| ≤ α̃(h) on Eh
where α̃ : H → R+ is given by (34), (35).

Now we give numerical examples. Put n = 2. Solutions of the initial
boundary value problems are defined on E = [0, 0.5]× [−1, 1]× [−1, 1].
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Consider the differential equation with deviated variables

∂tz(t, x, y) = {2 + cos[z(t, 0.5(x+ y), 0.5(x− y))− etxy]}∂xxz(t, x, y)

+ {2 + cos[z(t, 0.5(x− y), 0.5(x+ y))− e−txy]}∂yyz(t, x, y)
+ ∂xyz(t, x, y) sin[z(0.25t, x, y)− z(t, 0.5x, 0.5y)]
+ f(t, x, y)z(t, x, y),

f(t, x, y) = x2 − y2 − 12t2(x2 + y2),

with the initial boundary conditions

z(0, x, y) = 1, (x, y) ∈ [−1, 1]× [−1, 1],(69)

z(t,−1, y) = z(t, 1, y) = et(1−y
2), t ∈ [0, 0.5], y ∈ [−1, 1],(70)

z(t, x,−1) = z(t, x, 1) = et(x
2−1), t ∈ [0, 0.5], x ∈ [−1, 1].(71)

The solution of the above problem is v(t, x, y) = exp[t(x2 − y2)]. The
following tables show maximal values of errors for several step sizes.

Table 7. Errors for explicit Euler method

h0 h1 = h2 Maximal error Time [s]

2−8 2−1 6.09265984 · 10−3 0.115
2−10 2−3 3.10700168 · 10−3 1.142
2−12 2−4 1.56094035 · 10−3 19.312
2−14 2−5 7.81394600 · 10−4 318.221

Table 8. Errors for explicit Euler scheme, violated CFL condition

h0 h1 = h2 Maximal error

2−5 2−2 3.80077434 · 101

2−7 2−3 3.37466385 · 1017

2−9 2−4 7.36222251 · 1088

2−11 2−5 +∞

Now we consider the implicit Euler method with steps of the mesh given in
Table 8.

Table 9. Errors for implicit Euler scheme

h0 h1 = h2 Maximal error Time [s]

2−5 2−2 2.70180118 · 10−2 0.112
2−7 2−3 1.46550838 · 10−2 1.251
2−9 2−4 7.47607123 · 10−3 24.920
2−11 2−5 3.75674966 · 10−3 941.878
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Consider the differential integral equation

∂tz(t, x, y) =
{

2 + cos
[
2t

x�

0

sz(t, s, y) ds− z(t, x, y)
]}
∂xxz(t, x, y)

+
{

2 + cos
[
2t

y�

0

sz(t, x, s) ds+ z(t, x, y)
]}
∂yyz(t, x, y)

+ ∂xyz(t, x, y) sin
[
1 + (x2 − y2)

t�

0

z(τ, x, y) dτ − z(t, x, y)
]

+ f(t, x, y)z(t, x, y)

with initial boundary conditions (69)–(71) where

f(t, x, y)) = x2 − y2 − 8t2(x2 + y2)− 2t(1 + 2x2t) cos e−ty
2

− 2t(−1 + 2y2t) cos etx
2
.

The function v(t, x, y) = et(x
2−y2) is a solution of the above problem. The

following tables show maximal values of errors for several step sizes.

Table 10. Errors for explicit Euler method

h0 h1 = h2 Maximal error Time [s]

2−8 2−1 5.63773239 · 10−3 0.006
2−10 2−3 2.87933980 · 10−3 0.052
2−12 2−4 1.44708568 · 10−3 0.766
2−14 2−5 7.24464180 · 10−4 12.727

Table 11. Errors for explicit Euler scheme, violated CFL condition

h0 h1 = h2 Maximal error

2−5 2−2 9.57986240 · 100

2−7 2−3 6.01045114 · 1016

2−9 2−4 2.40913798 · 1087

2−11 2−5 +∞

Now we consider the implicit Euler method with steps of the mesh given in
Table 11.

Table 12. Errors for implicit Euler scheme

h0 h1 = h2 Maximal error Time [s]

2−5 2−2 2.69819681 · 10−2 0. 938
2−7 2−3 1.47067642 · 10−2 0.827
2−9 2−4 7.51138801 · 10−3 22.291
2−11 2−5 3.77561536 · 10−3 899.428
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Our considerations show the following relations between explicit and im-
plicit difference methods for (3), (2). Assumptions on the regularity of given
functions are the same in the theorems on convergence of explicit and im-
plicit difference schemes. We need condition (46) on the mesh for explicit
difference methods, but not for implicit ones. Error estimates are the same
for both methods. Tables 8, 9 and 11, 12 show that there are implicit differ-
ence methods which are convergent, while the corresponding explicit schemes
are not.
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