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ON CHARACTERISTIC FUNCTIONS OF kTH RECORD
VALUES FROM THE GENERALIZED EXTREME VALUE

DISTRIBUTION AND ITS CHARACTERIZATION

Abstract. Recurrence relations for the marginal, joint and conditional
characteristic functions of kth record values from the generalized extreme
value distribution are established. These relations are utilized to obtain re-
currence relations for single, product and conditional moments of kth record
values. Moreover, by making use of the recurrence relations the generalized
extreme value distribution is characterized.

1. Introduction. Let {Xn, n ≥ 1} be an infinite sequence of indepen-
dent and identically distributed random variables with common probability
density function (pdf) f(x) and cumulative distribution function (cdf) F (x).
Let Vn = min{X1, . . . , Xn}, n ≥ 1. We say Xi is a lower record value of this
sequence if Vi < Vi−1, i ≥ 2. Consider L(n) = min{i : i > L(n − 1),
Xi < XL(n−1)} for n ≥ 2, and L(1) = 1. Then {XL(n), n ≥ 1} denotes the
sequence of lower record values. Looking at the successive kth largest values
in the sequence, Dziubdziela and Kopociński (1976) introduced the model of
kth upper record values. Pawlas and Szynal (1998) discussed the concept of
kth lower record values.

For a fixed k ≥ 1, we define the sequence {Lk(n), n ≥ 1} of kth lower
record times of {Xn, n ≥ 1} as follows:

Lk(1) = 1, Lk(n+ 1) = min{j > Lk(n) : Xk:Lk(n)+k−1 > Xk:j+k−1}.

The sequence {Xn;k, n ≥ 1}, where Xn;k = Xk:Lk(n)+k−1, is called the se-
quence of kth lower record values of {Xn, n ≥ 1}.
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It is known (see Pawlas and Szynal 1998) that the pdf of Xn;k and the
joint pdf of (Xm;k, Xn;k), m < n, are given respectively by

(1.1) fXn;k
(x) =

kn

(n− 1)!
[− lnF (x)]n−1[F (x)]k−1f(x),

n ≥ 1, −∞ < x <∞,

(1.2) fXm;k,Xn;k
(x, y) =

kn

(m−1)!(n−m−1)!
[lnF (x)− lnF (y)]n−m−1

× [− lnF (x)]m−1 f(x)
F (x)

[F (y)]k−1f(y),

x > y, 1 ≤ m < n, n ≥ 2.

Record values appear in many statistical applications. They may be help-
ful as a model for successively largest values for highest water levels or high-
est temperatures. In the context of bioscience, they appear when we are
interested in the behavior of human organs, like kidneys or lungs, or when
studying the behavior of the ordered records of glocagine in the assessment
of glucose level among diabetic patients.

The generalized extreme value distribution (GEV) has been discussed
by Jenkinson (1955). Gumbel, Frechet and Weibull distributions are spe-
cial cases of the GEV distribution. These distributions have been used in
the analysis of data concerning floods, extreme sea levels and air pollution
problems. For details, see Gumbel (1958), Jenkinson (1955) and Ahsanullah
(1995).

Recurrence relations for single and product moments of record values
from the GEV distribution are derived by Balakrishnan et al. (1993). Ah-
sanullah and Raqab (1999) established recurrence relations for the moment
generating functions of record values from Pareto and Gumbel distributions.
Pawlas and Szynal (2000) gave characterization conditions for the inverse
Weibull distribution and generalized extreme value distributions based on
moments of kth record values.

Recently Raqab (2003) obtained recurrence relations between the margi-
nal and joint moment generating functions of lower record values from the
generalized extreme value distribution.

Let us consider the GEV distribution with pdf

(1.3) f(x) =


(1− αx)1/α−1e−(1−αx)1/α , x < 1/α for α > 0

and x > 1/α for α < 0,
e−xe−e

−x
, −∞ < x <∞ for α = 0.

One can observe that this distribution satisfies

(1.4) (1− αx)f(x) = F (x)(− lnF (x)), −∞ < x <∞.
The relation (1.4) is used to derive recurrence relations between the marginal



Record values from GEV distribution 359

and joint characteristic functions of kth record values from the GEV distri-
bution. In this paper we derive recurrence relations for the marginal, joint
and conditional characteristic functions of kth lower record value from the
GEV distribution. These recurrence relations are used to obtain recurrence
relations for single, product and conditional moments of kth lower record
values as well as to characterize the GEV distribution.

2. Recurrence relation for the marginal characteristic function
of kth record values. Let Φn;k(t) denote the characteristic function of kth
lower record values Xn;k.

Theorem 2.1. For n ≥ 1, k ≥ 1 and α 6= 0,

(2.1) nΦn+1;k(t) = (n− it)Φn;k(t) + iαtδn;k(t),

where

δn;k(t) =
1
i

d

dt
Φn;k(t) and i =

√
−1.

Proof. We have
Φn;k(t) = E(eitXn;k).

Thus

Φn;k(t) =
∞�

−∞
eitxfXn;k

(x) dx.

By making use of (1.1) and (1.4), we get

(2.2) Φn;k(t)− αδn;k(t) =
kn

(n− 1)!

∞�

−∞
eitx(− lnF (x))nF k(x) dx.

Integrating the right hand side of (2.2) yields

(2.3) Φn;k(t)− αδn;k(t) =
kneitx

it(n− 1)!
(− lnF (x))nF k(x)

∣∣∣∣∞
−∞

× nkn

it(n− 1)!

∞�

−∞
eitx(− lnF (x))n−1F k−1(x)f(x) dx

− nkn+1

it(n)!

∞�

−∞
eitx(− lnF (x))nF k−1(x)f(x) dx,

=
n

it
Φn;k(t)−

n

it
Φn+1;k(t).

After simplifying (2.3), we get (2.1).
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Corollary 2.2. For n ≥ 1, and r = 1, 2, . . . , the following equation is
satisfied:

(2.4) Φ
(r)
n+1;k(t) =

[
1− it− rα

n

]
Φ

(r)
n;k(t)−

ir

n
Φ

(r−1)
n;k (t) +

iαt

n
Φ

(r+1)
n;k (t),

where Φ(r)
n;k(t) is the rth derivative of Φn;k(t).

Proof. This follows directly by differentiating (2.1) r times.

Remark 1.

1. By setting t = 0 and k = 1, equation (2.4) reduces to the recurrence
relation for single moments of record values given in Balakrishnan et
al. (1993).

2. The result of Pawlas and Szynal (1998) for single moments of kth
record values is a special case of (2.4) obtained by setting t = 0.

3. Recurrence relations for the joint characteristic function of
kth record values. Let Φm,n;k(t1, t2) denote the characteristic function of
mth and nth lower kth record values Xm;k and Xn;k.

Theorem 3.1. For 1 ≤ m < n − 1 and α 6= 0, the joint characteristic
functions of kth lower record values from GEV(α) defined in (1.3) satisfy the
recurrence relation

(3.1) mΦm+1,n;k(t1, t2) = (m− it1)Φm,n;k(t1, t2) + iαt1δm,n;k(t1, t2),

where

δm,n;k(t1, t2) =
1
i

∂

∂t1
Φm,n;k(t1, t2).

Proof. On making use of (1.2) and (1.4), we get

(3.2) Φm,n;k(t1, t2)− αδm,n;k(t1, t2) = c

∞�

−∞
eit2yI(y)F k−1(y)f(y) dy,

where

c =
kn

(m− 1)!(n−m− 1)!

and

(3.3) I(y) =
∞�

y

eit1x(− lnF (x))m[lnF (x)− lnF (y)]n−m−1 dx.
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Integrating (3.3) by parts (with eit1x differentiated) gives

(3.4) I(y) =
m

it1

∞�

y

eit1x(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1 f(x)
F (x)

dx

− n−m−1
it1

∞�

y

eit1x(− lnF (x))m[lnF (x)− lnF (y)]n−m−2 f(x)
F (x)

dx.

Making use of (3.4) in (3.2), after some simplification we get (3.1).

Corollary 3.2. For 1 ≤ m < n − 1, r, s = 0, 1, 2, . . . and α 6= 0, the
following is satisfied:

Φ
(r+1,s)
m+1,n;k(t1, t2) =

[
1− it1 − rα

m

]
Φ

(r+1,s)
m,n;k (t1, t2)(3.5)

− ir

m
Φ

(r,s)
m,n;k(t1, t2) +

αt1
m
Φ

(r+2,s)
m,n;k (t1, t2),

where

Φ
(r,s)
m,n;k(t1, t2) =

∂r+s

∂rt1∂st2
Φm,n;k(t1, t2).

Proof. This follows directly by differentiating (3.1) r + 1 times with re-
spect to t1 and s times with respect to t2.

Remark 2.

1. By setting t1 = t2 = 0 and k = 1, the result of Balakrishnan et al.
(1993) is a special case of (3.5).

2. Setting t2 = 0 in Theorem 3.1 and Corollary 3.2, the results of Theo-
rem 2.1 and Corollary 2.2 are obtained on replacing r by r + 1.

4. Recurrence relations for the conditional characteristic func-
tions. Let fn|m;k(y|x) and φn|m;k(t) be the conditional pdf and the condi-
tional characteristic function of Xn;k given Xm;k = x, respectively. Then we
can prove the following theorem.

Theorem 4.1. For 1 ≤ m ≤ n − 1 and α 6= 0, the conditional charac-
teristic functions of kth lower record values from GEV(α) defined in (3.1)
satisfy the following recurrence relation:

(4.1) (n−m)φn+1|m;k(t) + k[lnF (x)]φn|m;k(t)

= [n−m+ k lnF (x)− it]φn|m;k(t) + iαtδn|m;k,

where

δn|m;k(t) =
1
i

d

dt
Φn|m;k(t).
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Proof. Using (1.1) and (1.2), one can show that

(4.2) fn|m;k(y|x) = c1[lnF (x)− lnF (y)]n−m−1F k−1(y)f(y),

−∞ < y < x <∞,
where

c1 =
kn−m

(n−m− 1)!F k(x)
.

Making use of (1.4) and (4.2), we get

φn|m;k(t)− αδn|m;k(t)

= c1

x�

−∞
eity(1− αy)[lnF (x)− lnF (y)]n−m−1F k−1(y)f(y) dy

= c1

x�

−∞
eity[lnF (x)− lnF (y)]n−m−1F k(y)(− lnF (y)) dy,

which can be written as

(4.3) φn|m;k(t)− αδn|m;k(t) = I1 − I2,
where

I1 = c1

x�

−∞
eity[lnF (x)− lnF (y)]n−mF k(y) dy,(4.4)

I2 = c1[lnF (x)]
x�

−∞
eity[lnF (x)− lnF (y)]n−m−1F k(y) dy.(4.5)

Integrating (4.3) and (4.4) by parts (with eity integrated and the rest of the
integrand differentiated), we get

I1 =
n−m
it

φn|m;k(t)−
n−m
it

φn+1|m;k(t),(4.6)

I2 =
k lnF (x)

it
φn|m+1;k(t)−

k

it
[lnF (x)]φn|m;k(t).(4.7)

Upon using (4.3), (4.6) and (4.7), we obtain (4.1). This completes the proof.

Now, let fm|n;k(x|y) and φm|n;k(t) be the conditional pdf and the condi-
tional characteristic function of Xm;k given Xn;k = y.

Theorem 4.2. For 1 ≤ m < n− 1 and α 6= 0,

(4.8) mΦm+1|n;k(t) = (m− it1)Φm|n;k(t) + iαtδm|n;k(t),

where

δm|n;k(t) =
1
i

d

dt
Φm|n;k(t).
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Proof. On utilization (1.1) and (1.2), we get

(4.9) fm|n(x|y) = c2(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1 f(x)
F (x)

,

−∞ < y < x <∞.
where

c2 =
(n− 1)!

(m− 1)!(n−m− 1)!(− lnF (y))n−1
.

Upon using (1.4) and (4.9), one can see that

Φm|n;k(t)− αδm|n;k(t) = c2

∞�

y

eitx(− lnF (x))m[lnF (x)− lnF (y)]n−m−1 dx.

Integrating by parts on the right hand side (with eity integrated and the
rest of the integrand differentiated), after some simplifications we obtain the
required result.

The following can be derived from Theorem 4.2:

Corollary 4.3. For 1 ≤ m < n− 1, r, s = 0, 1, 2, . . . and α 6= 0,

(4.10) Φ
(r)
m+1|n;k(t) =

[
1− it− rα

m

]
Φ

(r)
m|n;k(t)−

ir

m
Φ

(r−1)
m|n;k(t) + αtΦ

(r+1)
m|n;k(t),

(4.11) aΦ
(r)
n+1|m;k(t) + bΦ

(r)
n|m+1;k(t) = [a+ b− it+ rα]Φ(r)

n|m;k(t)

= [a+ b− it+ ir]− irΦ(r−1)
n|m;k(t) + αtΦ

(r+1)
n|m;k(t),

where a = n−m and b = k lnF (x).

Remark 3.

1. By letting α → 0 in (4.1), (4.8), (4.10) and (4.11), results for the
Gumbel distribution are obtained.

2. Setting t = 0 in (4.10) and (4.11), one gets recurrence relations be-
tween the conditional moments of lower kth record values.

5. Characterization. In this section, we characterize the generalized
extreme value distribution based on the recurrence relations for marginal,
joint and conditional characteristic functions.

Proposition (Lin 1986). Let n0 be any fixed non-negative integer,
−∞ < a < b < ∞, and g(x) > 0 be an absolutely continuous function with
g′(x) 6= 0 on (a, b). Then the sequence of functions {(g(x))ne−g(x), n ≥ n0}
is complete in L(a, b) iff g(x) is strictly monotone on (a, b).

Theorem 5.1. A necessary and sufficient condition for a random vari-
able X to be distributed according to (1.4) is that (2.1) holds.
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Proof. The necessity is proved in Theorem 2.1.
For the sufficiency, assume that (2.1) holds. Then

nkn+1

n!

∞�

−∞
eixt(− lnF (x))nF k−1(x)f(x) dx = (n− it)Φn;k(t) + iαtδn;k(t).

Integrating the left hand side by parts (with F k−1(x)f(x) integrated and the
rest of the integrand differentiated), we get

nΦn;k(t)− it
∞�

−∞
eixt(− lnF (x))nF k(x) dx = (n− it)Φn;k(t) + iαtδn;k(t).

This leads to
∞�

−∞
eixt(− lnF (x))n−1F k−1(x)[(1− αx)f(x) + F (x) lnF (x)] dx = 0.

Upon using the Proposition, we get (1−αx)f(x) = −F (x) lnF (x), and this
completes the proof.

Theorem 5.2. For 1 ≤ m < n− 1, the following statements are equiva-
lent:

(i) X ∼ GEV(α), α 6= 0.
(ii) mΦm+1,n;k(t1, t2) = (m− it1)Φm,n;k(t1, t2) + iαt1δm,n;k(t1, t2).

Proof. (i)⇒(ii) is shown in Theorem 3.1. Conversely, assume that (ii)
holds. This leads to

(5.1)
mkn

m!(n−m− 2)!

∞�

−∞
eit2yI(y)F k−1(y)f(y) dy

= (m− it1)Φm,n;k(t1, t2) + iαt1δm,n;k(t1, t2),

where

I(y) =
∞�

y

eit1x(− lnF (x))m[lnF (x)− lnF (y)]n−m−2 f(x)
F (x)

dx.

Using integration by parts (with [lnF (x)−lnF (y)]n−m−2 f(x)
F (x) integrated and

the rest of the integrand differentiated), I(y) can be written as follows:

(5.2) I(y) =
m

(n−m− 1)

×
∞�

y

eit1x(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−2 f(x)
F (x)

dx

− it1
(n−m− 1)

∞�

y

eit1x(− lnF (x))m[lnF (x)− lnF (y)]n−m−1 dx.
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Upon using (5.1) and (5.2), we get

∞�

−∞

∞�

y

eit1xeit2y(− lnF (x))m[lnF (x)− lnF (y)]n−m−1F k−1(y)f(y) dx dy

=
∞�

−∞

∞�

y

eit1xeit2y(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1 f(x)
F (x)

× F k−1(y)f(y) dx dy

− α
∞�

−∞

∞�

y

xeit1xeit2y(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1 f(x)
F (x)

× F k−1(y)f(y) dx dy,

which leads to
∞�

−∞

∞�

y

eit1xeit2y(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1F k−1(y)f(y)

×
[
(1− αx) f(x)

F (x)
+ lnF (x)

]
dx dy = 0.

Upon using the Proposition, we get

(1− αx) f(x)
F (x)

= − lnF (x),

so (1 − αx)f(x) = −F (x) lnF (x), which proves by (1.4) that f(x) has the
form (1.3).

Theorem 5.3. For 1 ≤ m < n−1, k = 1, 2, . . . and α 6= 0, the following
statement are equivalent:

(i) X ∼ GEV(α).
(ii) Equation (4.8) holds.

Proof. (i)⇒(ii) is proved in Theorem 4.2.
To prove (ii)⇒(i), we have

(n− 1)!
(m− 1)!(n−m− 2)!(− lnF (y))n−1

∞�

y

eitx(− lnF (x))m

× [lnF (x)− lnF (y)]n−m−2 f(x)
F (x)

dx

= (m− it)Φm|n;k(t) + iαtδm|n;k(t).

Integrating the left hand side by parts (with [lnF (x) − lnF (y)]n−m−2 f(x)
F (x)
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integrated and the rest of the integrand differentiated) gives

∞�

y

eitx(− lnF (x))m[lnF (x)− lnF (y)]n−m−1 dx

−
∞�

y

eitx(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1 f(x)
F (x)

dx

+ α

∞�

y

xeitx(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1 f(x)
F (x)

dx = 0,

which leads to
∞�

y

eitx(− lnF (x))m−1[lnF (x)− lnF (y)]n−m−1

× [(1− αx)f(x) + F (x) lnF (x)] dx = 0.

Upon using the Proposition, we get

(1− αx)f(x) = −F (x) lnF (x)

This completes the proof.

Theorem 5.4. For 1 ≤ m < n−1, k = 1, 2, . . . and α 6= 0, the following
statement are equivalent:

(i) Y ∼ GEV(α) and α 6= 0.
(ii) Equation (4.1) holds.

Proof. (i)⇒(ii) is proved in Theorem 4.1.
To prove the converse, assume that (4.1) is satisfied. Then

kn−m+1

(n−m− 1)!F k(x)

x�

−∞
eity[lnF (x)− lnF (y)]n−mF k−1(y)f(y) dy

+ k lnF (x)
kn−m−1

(n−m− 2)!F k(x)

x�

−∞
eity[lnF (x)− lnF (y)]n−m−2

× F k−1(y)f(y) dy = [n−m+ k lnF (x)− it]Φn|m;k(t) + iαtδn|m;k(t).

After integrating the two integrals on the left hand side by parts, it can be
shown that

(n−m)Φn|m;k(t)− itJ1 + k lnF (x)Φn|m;k(t) + itJ2

= [n−m+ k lnF (x)− it]Φn|m;k(t) + iαtδn|m;k(t),
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where

J1 =
kn−m

(n−m− 1)!F k(x)

x�

−∞
eity[lnF (x)− lnF (y)]n−mF k(y) dy,

J2 =
kn−m

(n−m− 1)!F k(x)
[lnF (x)]

x�

−∞
eity[lnF (x)− lnF (y)]n−m−1F k(y) dy.

This leads to
x�

−∞
eity[lnF (x)−lnF (y)]n−m−1F k−1(y)×[F (y) lnF (y)+(1−αy)f(y)] dy= 0.

Using the Proposition, it can be shown that
(1− αy)f(y) = F (y) lnF (y),

which implies that (i) is true and the proof is complete.
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