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FULL REGULARITY OF BOUNDED SOLUTIONS TO
NONDIAGONAL PARABOLIC SYSTEMS OF

TWO EQUATIONS

Abstract. Hölder continuity and, basing on this, full regularity and global
existence of weak solutions is studied for a general nondiagonal parabolic
system of nonlinear differential equations with the matrix of coefficients
satisfying special structure conditions and depending on the unknowns. A
technique based on estimating a certain function of unknowns is employed
to this end.

1. Introduction. In the present paper we study the Hölder continuity,
full regularity and global existence of solutions to a nonlinear nondiagonal
parabolic system of two equations in divergence form under special assump-
tions upon its structure.

It is well-known that the De Giorgi–Nash–Moser estimates are no longer
valid in general for an elliptic system; the latter can be regarded as a special
case of the parabolic version. An example of an unbounded solution to a
linear elliptic system with bounded coefficients was built up by De Giorgi
in [4]. There is yet another example due to J. Nečas and J. Souček of a
nonlinear elliptic system with coefficients sufficiently smooth, but with a
weak solution not belonging to W 2,2.

These two and many other examples illustrate that the regularity prob-
lem for elliptic systems proves to be far more complicated than that for
second order elliptic equations.

For systems of differential equations, until now a priori estimates of De
Giorgi type have been extended only to a special class of parabolic systems
of equations, the so-called weakly coupled systems.
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Therefore the question of finding strongly coupled systems whose solu-
tions exhibit a certain regularity is of interest.

The technique we are utilizing has been employed earlier in [10] for semi-
linear systems (see also [6], [11] and [7]), and consists in switching to new
functions, for which the estimate is established in a conventional way, whence
the final conclusion about each component of the vector function solution
follows. This technique allows one to tackle nonlinear nondiagonal systems.

The main idea of our approach is as follows: instead of trying to establish
estimates for each component of a solution (u, v) we introduce some new
functions H(u, v) of the components from whose estimates we shall be able
to derive estimates for the components themselves.

In the present paper, although restricting ourselves to systems of sec-
ond order equations in divergence form possessing a special structure, we
demonstrate full regularity of solutions to nonlinear parabolic systems of
equations in which coupling occurs in the leading derivatives and whose
leading coefficients depend on x, u, and v.

For our results it is crucial that we assume the L∞ boundedness of so-
lutions to system (2.1). Some results on boundedness of solutions to system
(2.1) under conditions (2.3)–(2.9) will appear elsewhere.

2. Basic notations and hypotheses. We shall be concerned with a
system of two equations of the form

(2.1)


ut −

∂

∂xi
(a1(x, u, v)∇u+ b1(x, u, v)∇v) = f1(x, t)

1√
1 + |u|+ |v|

,

vt −
∂

∂xi
(a2(x, u, v)∇u+ b2(x, u, v)∇v) = f2(x, t)

1√
1 + |u|+ |v|

,

(x, t) ∈ Q,

(2.2) fj(x, t) ∈ Lτ (Q), τ =
2 + n

2− nκ
, κ ∈ (0, 2/n).

Moreover we suppose that there are two positive linearly independent func-
tions of two variables H1(u, v) > 0 and H2(u, v) > 0 (we shall write H for
both H1 and H2) such that for all u, v, x ∈ R,

(2.3) C1(u2 + v2)−K ≤ H(u, v) ≤ C2(u2 + v2) +K,

(2.4) 0 ≤ |Hu(u, v)|, |Hv(u, v)| ≤ C2(|u|+ |v|) +K,

(2.5) C1 ≤ |Huu(u, v)|, |Huv(u, v)|, |Hvv(u, v)| ≤ C2,

where 0 < C1, C2,K <∞ are constants, and the following hypotheses hold:

(2.6)
{
a1(x, u, v)Hu(u, v) + a2(x, u, v)Hv(u, v) = Λ(x, u, v)Hu(u, v),
b1(x, u, v)Hu(u, v) + b2(x, u, v)Hv(u, v) = Λ(x, u, v)Hv(u, v);
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and

(2.7) a1Huu + a2Huv ≥ 0,

(2.8)

∥∥∥∥∥ 2(a1Huu + a2Huv) (a1 + b2)Huv + b1Huu + a2Hvv

(a1 + b2)Huv + b1Huu + a2Hvv 2(b1Huv + b2Hvv)

∥∥∥∥∥≥0,

where Λ: Ω × R× R→ R is a measurable function such that

(2.9) 0 < Λ1 ≤ Λ(x, u, v) ≤ Λ2, ∀u, v, x ∈ R,

for some numbers Λ1,2. The inverse functions u = H−1
1 (H1, H2) and

v = H−1
2 (H1, H2) are continuously differentiable:

(2.10) H−1
1 , H−1

2 ∈ C1(R,R).

Additionally we assume that the coefficients a1, a2, b1, b2 satisfy an ellip-
ticity condition (the strong Legendre condition) and are twice continuously
differentiable functions of u and v:

(2.11) a1(x, u, v), a2(x, u, v), b1(x, u, v), b2(x, u, v) ∈ C2(·,R,R).

Example. Here is an example of a parabolic model system satisfying
our hypotheses:

a1(u, v) = Λ1(u, v)−H2uH1vη(u, v); a2(u, v) = H1uH2uη(u, v);
b1(u, v) = −H2vH1vη(u, v); b2(u, v) = Λ1(u, v) +H1uH2vη(u, v);

|η(u, v)| = C3/(1 + |k1|+ |k2|+ u4 + v4);
H1(u, v) = δ(u2 + v2 + εuv) + u+ k1v;
H2(u, v) = δ(u2 + v2 + εuv) + u+ k2v;

C1 ≤ Λ1(u, v) ≤ C2; |ε| ≤ 1/10; C1 ≥ 5C3 > 0;
0 < δ < max[1; 1/(4M)]; δ, ε, k1, k2 = const; k1, k2 > 0; k1 6= k2.

The boundary conditions of the Dirichlet type are assigned:

(2.12)

{
(u− g1, v − g2)(x, t) ∈W 1,2

0 (Ω) a.e. t ∈ (0, T ),
(u, v)(x, 0) = (u0, v0)(x).

A positive solution to system (2.1) with Dirichlet data (2.12) is under-
stood in the weak sense, as in [5].

Let us describe the notions, quantities and functions entering system
(2.1) that will appear in this paper.

Here and onward we use the following notations: Q = Ω × (0, T ]; S =
∂Ω × (0, T ]; ∂Q ≡ {Ω × {0}} ∪ {∂Ω × (0, T ]}; ∂Q′ is a portion of ∂Q;
Ω is a bounded domain in Rn with piecewise smooth boundary; x ∈ Ω;
T > 0; t ∈ (0, T ]; n ≥ 2; i = 1, . . . , n; j = 1, 2 and summation convention
over repeated indices is assumed; u, v ∈ C(0, T ;L2(Ω))∩L2(0, T ;W 1,2(Ω));
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W 1,2
0 (Ω) is the space of functions in W 1,2(Ω) vanishing on ∂Ω in the sense

of traces for a.e. t ∈ (0, T ].
The boundary ∂Ω of the domain Ω is assumed to satisfy condition (A):

there are positive numbers a0 and θ0 such that for any ball K% with center
on ∂Ω and radius % ≤ a0,

(A) mesK% ∩Ω ≤ (1− θ0) mesK%.

By parabolicity of system (2.1) it is meant that the part without deriva-
tives with respect to time is elliptic. As the definition of ellipticity of a
system of differential equations we take the strong Legendre condition.

Assume that

(2.13) |aj(x, r)|, |bj(x, r)| ≤ Λ2, ∀r ∈ R2, ∀x ∈ Rn.

For simplicity we write

ũ0 =
{
u0(x), x ∈ Ω, t = 0,
g1(x, t), x ∈ ∂Ω, t ∈ (0, T ),

ṽ0 =
{
v0(x), x ∈ Ω, t = 0,
g2(x, t), x ∈ ∂Ω, t ∈ (0, T ).

Let m be a nonnegative integer, α ∈ (0, 1) and a = m+ α. We put

|u|a;Q =
∑

ν+2µ≤m
sup
Q
|Dν

xD
µ
t u|+

∑
ν+2µ=m

sup
Q

[Dν
xD

µ
t u]α;Q,

where [. . . ]α;Q stands for the Hölder norm and u ∈ BCa,a/2(Q) if |u|a;Q <∞.
The functions gj(x, t), (u0, v0)(x) in boundary data (2.12) are assumed

to satisfy
gj ∈ BCαg ,αg/2(S), u0, v0 ∈ BCα0(Ω × {0})

with αg ∈ (0, 1) and α0 ∈ (0, 1).
We also assume that the components (u, v) of the solution are bounded

by zero and a constant M :

(2.14) 0 < u, v ≤M.

3. Hölder continuity. Let us now turn to the question of Hölder conti-
nuity of weak solutions to (2.1) under assumptions (2.3)–(2.7). To establish
Hölder continuity of weak solutions to problem (2.1)–(2.12) it suffices to
show that they belong to the classes B2(Q,M, γ, r, δ, κ) (inequality (3.2))
and B2(Q ∪ ∂Q′,M, γ, r, δ, κ) (inequality (3.3)) introduced in [8, §§7 and 8
of Chapter II], with M,γ, q, r, δ, κ being fixed positive numbers and ∂Q′ the
part of the boundary ∂Q. Our main result in this section is the following
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Theorem 3.1. Let (u, v) be a solution to system (2.1) and let assump-
tions (2.2)–(2.9) be satisfied. Then

(u, v) ∈ B2(Q,M,C, r, δ, κ) and (u, v) ∈ B2(Q ∪ ∂Q′,M,C, r, δ, κ).

For every ϕ ∈ L1(Q) and 0 < h < T let us introduce the Steklov averages

ϕ(x, t)h ≡


1
h

t+h�

t

ϕ(x, τ) dτ, t ∈ (0, T − h],

0, t > T − h,
for all 0 < t < T . Recall that for ϕ ∈ Lq(Ω × (0, T )) we have ϕh → ϕ in
Lq(Ω× (0, T −ε)) as h→ 0 for every ε ∈ (0, T ); and for ϕ ∈ C(0, T ;Lq(Ω)),
ϕh(t)→ ϕ(t) in Lq(Ω) as h→ 0 for every t ∈ (0, T − ε) and all ε ∈ (0, T ).

In order to prove interior regularity of solutions we need the following
set of notations.

Let K% be the n-dimensional open ball centered at x0 of radius % con-
tained in Ω:

K% ≡ {x ∈ Rn | |x− x0| < %}.
Let Q(τ, %) be a cylinder contained in Q of height τ built up upon K%:

Q(τ, %) ≡ K% × {t0, t0 + τ} = {|x− x0| < %, t0 < t < t0 + τ}.
Write

(H − k)+(x, t) = max{(H(x, t)− k), 0}.
Introduce a set of positive numbers k subject to the condition

(3.1) ess sup
Q(%,τ)

|(H(x, t)− k)+| ≤ δ.

Set
Ak,%(t) ≡ {x ∈ K% | (H(x, t)− k)+ > 0},

were % and τ are some positive numbers so small that Q(τ, %) ⊂ Q.
Let ζ(x, t) be a continuous, piecewise smooth cut-off function ranging

from 0 to 1 and equal to zero on the lateral boundary of the cylinder Q(τ, %).
Set

q =
2(2 + n)

n
.

In order to prove regularity up to the boundary we need some additional
notations. K% and Q(%, τ) are no more fully contained in the domains Ω
and Q.

We impose an additional condition upon the set of levels k:

k ≥ max
Q(%,τ)∩∂Q′

H(x, t).

Let
Bk,%(t) ≡ {x ∈ K% ∩Ω | (H(x, t)− k)+ > 0}.
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Proof of Theorem 3.1. Multiply the first equation of (2.1) by Hu and
add the second one multiplied by Hv (the H stands for H1 or H2). Choose
(Hh − k)+ζ2(x, t) as a testing function. After integrating in t from t0 to t,
0 ≤ t0 ≤ t ≤ T , and in x over the domain Ω and letting h→ 0, this results
in
1
2

�

Ω

(H − k)2+ζ
2(x, t) +

� �

Ω×(t0,t)

{〈a1∇u+ b1∇v,Huu(H − k)+∇u

+Huv(H − k)+∇v +H2
u∇u+HuHv∇v〉

+ 〈a2∇u+ b2∇v,Huu(H − k)+∇u

+Huv(H − k)+∇v +H2
u∇u+HuHv∇v〉}χAk,%

ζ2

+ 2
� �

Ω×(t0,t)

〈(a1Hu + a2Hv)∇u+ (b1Hu + b2Hv)∇v,∇ζ〉ζ(H − k)+

≤
� �

Ω×(t0,t)

f1Hu + f2Hv√
1 + |u|+ |v|

(H − k)+ζ2

+
1
2

�

Ω

(H − k)2+ζ
2(x, t0) +

� �

Ω×(t0,t)

(H − k)2+ζζt.

We have

〈a1∇u+ b1∇v,Huu(H − k)+∇u+Huv(H − k)+∇v +H2
u∇u+HuHv∇v〉

+ 〈a2∇u+ b2∇v,Huu(H − k)+∇u+Huv(H − k)+∇v +H2
u∇u+HuHv∇v〉

= {[a1H
2
u + a2HuHv]|∇u|2 + [(a1 + b2)HuHv + b1H

2
u + a2H

2
v ](∇u∇v)

+ [b1HuHv + b2H
2
v ]|∇v|2}+ {[a1Huu + a2Huv]|∇u|2

+ [(a1 + b2)Huv + b1Huu + a2Hvv](∇u∇v)

+ [b1Huv + b2Hvv]|∇v|2}(H − k)+.

According to hypotheses (2.6) the first curly brackets give

{. . . } = Λ(x, u, v)H2
u|∇u|2 + Λ(x, u, v)HuHv(∇u∇v) + Λ(x, u, v)H2

v |∇v|2

= Λ(x, u, v)|∇H(u, v)|2.

In virtue of hypothesis (2.7) for the second curly brackets we have

{. . . }(H − k)+ ≥ 0.

We also have

a1Hu + a2Hv = ΛHu, b1Hu + b2Hv = ΛHv.

Hence, making use of hypotheses (2.4), (2.5), Young’s inequality, Hölder’s
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inequality, and assumptions (2.2), we get

(3.2)
�

K%

(H − k)2+ζ
2(x, t0 + τ) + (Λ1/2)

� �

Q(τ,%)

|∇(H − k)+|2ζ2

≤
�

K%

(H − k)2+ζ
2(x, t0) + C

{ � �

Q(τ,%)

(|∇ζ|2 + ζ|ζt|)(H − k)2+

+
[ t0+τ�

t0

|Ak,%(t)|
]2(1+κ)/q}

.

The case of (−H − k)+ is self-evident. According to [8] this proves that
H ∈ B2(Q,M,C, q, δ, κ). Considering the sets K% ∩ Ω and Q(τ, %) ∩ Q we
similarly get

(3.3)
�

K%∩Ω
(H − k)2+ζ

2(x, t0 + τ) + (Λ1/2)
� �

Q(τ,%)∩Q

|∇(H − k)+|2ζ2

≤
�

K%

(H − k)2+ζ
2(x,max[0, t0]) + C

{ � �

Q(τ,%)∩Q

(|∇ζ|2 + ζ|ζt|)(H − k)2+

+
[ t0+τ�

max[0,t0]

|Bk,%(t)|
]2(1+κ)/q}

.

According to [8] this proves that H ∈ B2(Q ∪ ∂Q′,M,C, q, δ, κ). Hence
H1,2 ∈ Hα,α/2(Q ∪ ∂Q) with α depending only on the data. From the as-
sumption (2.10) it follows that (u, v) ∈ Hα,α/2(Q ∪ ∂Q).

Now let us show how to obtain Hölder continuity of u and v for the case
described in the Example. Subtracting H2 from H1 we get (k1 − k2)v =
H1 −H2 and hence v is Hölder continuous. From the expression for H1 we
get

|u(x′, t′)− u(x, t)| − |k1| |v(x′, t′)− v(x, t)|
− |δ|(|u(x′, t′) + u(x, t)| |u(x′, t′)− u(x, t)|

+ |v(x′, t′) + v(x, t)| |v(x′, t′)− v(x, t)|

+ |ε| |u(x′, t′)| |v(x′, t′)− v(x, t)|+ |ε| |v(x, t)| |u(x′, t′)− u(x, t)|)

≤ |H1(x′, t′)−H1(x, t)|.

Substituting here |v(x′, t′)−v(x, t)| ≤ C(|x′−x|+|t′−t|1/2)α for (x′, t′), (x, t)
∈ Q, and making use of the assumptions upon δ and ε, we get

|u(x′, t′)− u(x, t)| ≤ C(|x′ − x|+ |t′ − t|1/2)α for (x′, t′), (x, t) ∈ Q.

4. Full regularity. In this section we additionally assume that ∂Ω
belongs to C2,α and that
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gµ ∈ BC2+αg ,1+αg/2(S),(4.1)
u0, v0 ∈ BC2+α0(Ω × {0}),(4.2)

f1, f2 ∈ BCαf ,αf/2(Q),(4.3)

and there exists Λ1 > 0 such that

(4.4) |a1 −Λ1|, |b2 −Λ1|, |b1|, |a2|, |a, bju|, |a, bjv|, |a, bjuu|, |a, bjuv|, |a, bjvv|
≤ β = 2−7(1 + C)−1(1 + [u]α;Q + [v]α;Q)−1

× (1 +M2 + |ũ0|22+α;Q + |ṽ0|22+α;Q + |f1|2α;Q + |f2|2α;Q)−1,

where C is the constant obtained from the constant in estimate (4.5) by
equating in the latter the Hölder norms of the coefficients to zero.

Theorem 4.1 (Schauder estimates [9, Theorem 4.28]). Let u be a solu-
tion in BC2+α,1+α/2(Q) of a linear parabolic equation

ut + L(u) = f for (x, t) ∈ Q
satisfying u = ũ0 a.e. on ∂Q. Suppose that Ω is of class C2,α, α ∈ (0, 1),
the coefficients aij , bi, c, and the right hand side f belong to BCα,α/2(Q),
and the boundary values belong to BC2+α,1+α/2(Q). Then

(4.5) |u|2+α;Q ≤ C(‖u‖∞ + |f |α;Q + |ũ0|2+α;Q),

where the constant C depends only on n, α, the constants in the ellipticity
condition, Ω and the norms of the coefficients of L in BCα,α/2(Q).

We make use of the following lemma.

Lemma 4.2. Let Ω be bounded domain, and u ∈ C2,α(Ω) (α ∈ (0, 1)).
Then for any ε > 0,

[u]2 ≤ ε[u]2+α + C̃1[u]0,(4.6)

[u]1 ≤ ε[u]2+α + C̃2[u]0,(4.7)

where C̃1, C̃2 depend on n, α,Ω, and ε.

For the proof see [3, Theorem 1.2, p. 18]. Also we use the following lemma
(see [3, Lemma 1.1, p. 18]):

Lemma 4.3. Let u, v ∈ Cα(Q). Then

[uv]α ≤ [u]0[v]α + [v]0[u]α ≤ |u|α|v|α.
Theorem 4.4. Let (u, v) be a solution to system (4.4) and let assump-

tions (4.1)–(4.4) be satisfied. Then

|u|2+α;Q + |v|2+α;Q ≤ C
(
‖u‖∞ + ‖v‖∞

+
∣∣∣∣f1

1√
1 + |u|+ |v|

∣∣∣∣
α;Q

+
∣∣∣∣f2

1√
1 + |u|+ |v|

∣∣∣∣
α;Q

+ |ũ0|2+α;Q+ |ṽ0|2+α;Q+1
)
,
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where the constants C and α depend only on the data. This implies the full
regularity of the solution.

Proof. Let us rewrite system (2.1) in the form
ut + L1(u, v) = f1

1√
1 + |u|+ |v|

,

vt + L2(u, v) = f2
1√

1 + |u|+ |v|
, a.e. (x, t) ∈ Q.

Consider the approximation of the solution (u, v) by smooth functions
(uk, vk) ∈ BC2+α,1+α/2(Q) such that (uk, vk)→ (u, v) as k →∞ a.e. in Q.
Without loss of generality we may assume that |uk|2+α;Q ≥ |uk−1|2+α;Q and
|vk|2+α;Q ≥ |vk−1|2+α;Q. Adding and subtracting ukt +L1(uk, vk, uk−1, vk−1)
and ukt +L2(uk, vk, uk−1, vk−1) respectively, to each equation of system (2.1),
we can see that every such approximation satisfies the system

(4.8)



ukt + L1(uk, vk, uk−1, vk−1)
= (ukt + L1(uk, vk, uk−1, vk−1)− ut − L1(u, v))

+ f1
1√

1 + |u|+ |v|
,

vkt + L2(uk, vk, uk−1, vk−1)
= (vkt + L2(uk, vk, uk−1, vk−1)− vt − L2(u, v))

+ f2
1√

1 + |u|+ |v|
, a.e. (x, t) ∈ Q,

where

L1(uk, vk, uk−1, vk−1) = a1(uk−1, vk−1)∆uk + b1(uk−1, vk−1)∆vk

+ a1(uk−1, vk−1)u∇uk−1∇uk−1 + a1(uk−1, vk−1)v∇vk−1∇uk−1

+ b1(uk−1, vk−1)u∇uk−1∇vk−1 + b1(uk−1, vk−1)v∇vk−1∇vk−1,

and analogously for L2.
From each equation of system (4.8) we extract the principle diagonal part

ukt − Λ1∆u
k or vkt − Λ1∆v

k (by adding and subtracting Λ1∆u
k or Λ1∆v

k

in each of the equations) and apply to it Theorem 4.1 treating the rest of
the terms as the right hand side. After making use of the Young inequality,
Lemma 4.2 and Lemma 4.3, we get for these approximations an estimate
analogous to the estimate from Theorem 4.1:

(4.9) |uk|2+α;Q + |vk|2+α;Q ≤ C
(
‖uk−1‖2∞ + ‖vk−1‖2∞

+
∣∣∣∣f1

1√
1 + |u|+ |v|

∣∣∣∣
α;Q

+
∣∣∣∣f2

1√
1 + |u|+ |v|

∣∣∣∣
α;Q
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+ |ukt + L1(uk, vk, uk−1, vk−1)− ut − L1(u, v)|α;Q

+ |vkt + L2(uk, vk, uk−1, vk−1)− vt − L2(u, v)|α;Q

+ |ũk−1
0 |2+α;Q + |ṽk−1

0 |2+α;Q + β|uk−1|22+α;Q + β|vk−1|22+α;Q

)
.

After using the above estimate recurrently we get on the right the sum
|ukt + L1(uk, vk, uk−1, vk−1)− ut − L1(u, v)|α;Q

+ β2|uk−1
t + L1(uk−1, vk−1, uk−2, vk−2)− ut − L1(u, v)|2α;Q + · · ·

+ β2k−122k−1|u2
t + L1(u2, v2, u1, v1)− ut − L1(u, v)|2k

α;Q

and analogously for L2. Choose approximations (u1, v1) and (u2, v2) such
that the term |u2

t + L1(u2, v2, u1, v1) − ut − L1(u, v)|α;Q in this sum is ma-
jorized by 1 + |f1|α;Q. The next approximations, (u2, v2) and (u3, v3), are
still closer to (u, v), so |u3

t + L1(u3, v3, u2, v2) − ut − L1(u, v)|α;Q is all the
more less than 1 + |f1|α;Q. The next approximation is still closer to (u, v),
and so on. Thus |ukt + L1(uk, vk, uk−1, vk−1)− ut − L1(u, v)|α;Q is less than
1 + |f1|α;Q, and we find that this sum forms a convergent series as k →∞.
A similar result is valid for the sum with L2:
|ukt + L2(uk, vk, uk−1, vk−1)− ut − L2(u, v)|α;Q

+ β2|uk−1
t + L2(uk−1, vk−1, uk−2, vk−2)− ut − L2(u, v)|2α;Q + · · ·

+ β2k−122k−1|u2
t + L2(u2, v2, u1, v1)− ut − L2(u, v)|2k

α;Q.

According to (4.4) the iterated estimate yields a convergent series.
Choosing the first approximation such that |u1|2+α;Q+ |v1|2+α;Q ≤ 1 and

passing to the limit in (4.9) gives the sought-for estimate.

5. Global existence. Given the estimates of L∞ norms of a solution
(u, v) we have the following consequence of [1, Proposition 4.3] and [2,
Theorem 2].

Corollary 5.1. Let (u, v) be a classical solution of (2.1) with boundary
conditions (2.12). If there is a bound for (u, v) in Cα,α/2(Q) with
α > n/(n+ 1), which may depend on T and the data, then the unique solu-
tion exists globally in time.

From the results of Section 4 it is easy to check that the hypotheses of this
theorem are satisfied and so the nonnegative weak solution of (2.1)–(2.12)
with conditions (2.2)–(2.10), (4.4) is in fact classical and global in time.
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