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NONHOMOGENEOUS BOUNDARY VALUE PROBLEM FOR
A SEMILINEAR HYPERBOLIC EQUATION

Abstract. We discuss the solvability of a nonhomogeneous boundary
value problem for the semilinear equation of the vibrating string xtt(t, y)−
∆x(t, y) + f(t, y, x(t, y)) = 0 in a bounded domain and with a certain type
of superlinear nonlinearity. To this end we derive a new dual variational
method.

1. Introduction. Throughout the paper, Ω will be a general open
bounded domain in Rn, with boundary Γ , assumed to be smooth. The aim
of the paper is to study the existence, in a finite interval [0, T ], of a solution
of the following second order hyperbolic semilinear problem with Dirichlet
boundary condition:

(1)
xtt(t, y)−∆x(t, y) + f(t, y, x(t, y)) = 0,
x(0, y) = x0(y), xt(0, y) = x1(y), y ∈ Ω,
x(t, y) = u(t, y), (t, y) ∈ Σ = (0, T )× Γ.

It is worth noting here that the nonlinearity f, generally, may drive the
solution of (1) to blow up in finite time [4], [10], [5], [1] (see also discussion
in [2] and [11]). We exclude such a case assuming hypothesis G4, which
imposes some bound on the growth of f at time T . The importance of the
problem with control on the boundary can be seen in optimal control theory
(see e.g. [8]).

We shall study (1) by the classical variational method, i.e. we shall con-
sider (1) as the Euler–Lagrange equation of the action functional
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J(x) =
T�

0

�

Ω

(
1
2
|∇x(t, y)|2 − 1

2
|xt(t, y)|2 + F (t, y, x(t, y))

)
dy dt(2)

−
�

Ω

x(T, y)x1(y) dy,

where Fx = f , defined on some subspace of C([0, T ];H2(Ω)) discussed below.
The last integral in (2) relates to the fact that we consider initial conditions
instead of, as is usual in the calculus of variations, the two-point boundary
problem. In many papers (see e.g. [11] and the references therein) another
functional is considered, the so called energy functional, associated with (1),
to get some estimates for solutions of (1).

Our purpose is to investigate (1) by studying the critical points of the
functional (2). To this end we apply a new duality approach which is based
on ideas developed in [9]; however, we drop some unpleasant assumptions
appearing in [9], e.g. convexity of F (t, y, ·). As mentioned above, the func-
tional (2) is unbounded in C([0, T ];H2(Ω)) and this is why we are looking
for critical points of J of min-max type. Our aim is to find a subset X of
C([0, T ];H2(Ω)) and study (2) only on X. The main difficulty in our ap-
proach is the construction of X. The one-dimensional case of (1) under the
convexity assumption of F (t, y, ·) was described in [9].

The plan of the paper is as follows: in the Preliminaries we define all
objects we need later, give hypotheses we use and recall the linear case
from [6]; in the next section we prove auxiliary results; then the duality
theory is developed for our problem and necessary conditions for a minimizer
of J in X to exist are proved. In the last section we prove the existence of a
minimizer of J in X.

2. Preliminaries. Let L={g∈L1(0, T ;H1(Ω)) : gt∈L1(0, T ;H0(Ω))},
x0 ∈ H2(Ω), x1 ∈ H1(Ω) and let

U1 = C([0, T ];H2(Ω)), U2 = C([0, T ];H1(Ω))

and

U=
{
x∈C([0, T ];H2(Ω)) :

∂x

∂t
∈C([0, T ];H1(Ω)),

∂2x

∂t2
∈ C([0, T ];H0(Ω)),

x(0, ·) = x0(·), xt(0, ·) = x1(·), x(t, y) = u(t, y), (t, y) ∈ Σ = (0, T )× Γ
}
.

Observe that each x ∈ U has the derivatives ∂2x/∂t2, ∂2x/∂y2
i , i = 1, . . . , n,

for almost every (t, y) ∈ [0, T ]×Ω. Since we are looking for solutions of (1)
in some subset of U , by a solution of (1) we mean x ∈ U which satisfies (1)
almost everywhere. We shall consider L with the norm

|g|2L = |g|2L1(0,T ;H1(Ω)) + |gt|2L1(0,T ;H0(Ω)),
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U with the norm

|x|2U = |x|2C([0,T ];H2(Ω)) + |xt|2C([0,T ];H1(Ω)) + |xtt|2C([0,T ];H0(Ω))

and U1, U2 with the norms

|x|2U1 = |x|2C([0,T ];H2(Ω)), |x|2U2 = |x|2C([0,T ];H1(Ω)).

In our notation Theorem 2.2 from [6] has the following form:

Theorem 1. Let g ∈ L, u ∈ H2(Σ), x0 ∈ H2, x1 ∈ H1. Then there
exists a unique solution x ∈ U to

xtt(t, y)−∆x(t, y) = g(t, y),

x(0, y) = x0(y), xt(0, y) = x1(y), y ∈ Ω,(3)
x(t, y) = u(t, y), (t, y) ∈ Σ,

such that

|x|U1 ≤ B(|g|L + |u|H2(Σ) + |x0|H2(Ω) + |x1|H1(Ω)),(4)

|xt|U2 ≤ D(|g|L + |u|H2(Σ) + |x0|H2(Ω) + |x1|H1(Ω))(5)

with some B,D > 0 independent of g and with the compatibility conditions
u|t=0 = x0|Γ , ∂u∂t |t=0 = x1|Γ .

The fact that x ∈ C([0, T ];H2(Ω)) is explained in [6, pp. 153–154].
The solution x from the theorem may also be estimated by

|x(t, ·)|H1(Ω) ≤ |x(t, ·)|H2(Ω) ≤ TB sup
τ∈(0,T )

|g(τ, ·)|H1(Ω) + E,(6)

|xt(t, ·)|H1(Ω) ≤ TD sup
τ∈(0,T )

|g(τ, ·)|H1(Ω) +A,(7)

where E = B(|u|H2(Σ) + |x0|H2(Ω) + |x1|H1(Ω)) and A = D(|u|H2(Σ) +
|x0|H2(Ω) + |x1|H1(Ω)) and we will just use these last estimates.

We assume the following hypotheses:

G1. There exists a function z ∈ C([0, T ];H2(Ω)) such that Fx(z) ∈ L
(Fx(h) = Fx(·, ·, h(·, ·))); put

I = [−E − TB sup
τ∈(0,T )

|z(τ, ·)|H2(Ω), TB sup
τ∈(0,T )

|z(τ, ·)|H2(Ω) + E],

G2. F is differentiable with respect to the third variable.
G3. Fx(t, y, 0) 6= 0 for a.e. (t, y) ∈ (0, T ) × Ω; (t, y) 7→ F (t, y, 0) is

integrable on (0, T )×Ω; Fx(t, y, ·) is continuous in R for a.e. (t, y) ∈
(0, T )×Ω.

G4. For x ∈ U such that |x(t, ·)|H2(Ω) ∈ I for all t ∈ (0, T ), we have
Fx(·, ·, x(·, ·)) ∈ L, Fx(·, ·, x(·, ·)) ∈ L2(Σ), and
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|Fx(t, ·, x(t, ·))|H1(Ω) ≤ sup
τ∈(0,T )

|z(τ, ·)|H2(Ω), t ∈ (0, T ),(8)

F (t, y, x) ≥ a(t, y)x+ b(t, y),

for some a, b ∈ L2((0, T )×Ω) and all x ∈ R.

CC. u ∈ H2(Σ) and u|t=0 = x0(·)|Γ , ∂u
∂t |t=0 = x1(·)|Γ .

It is clear that the form of Fx depends (locally) strongly on the function z.
Moreover, G4 guarantees that the functional (2) is bounded in the set X
defined below (see Lemma 2) and that solutions to (1) (if they exist) are
bounded (see Lemma 1). An example of Fx satisfying G1–G4 is given below.

Example. Choose Fx(t, y, x) = a(t)(x5 − (1/2)x4), x0 and x1 such that
|x0|H2(Ω) = 1/8 and |x1|H1(Ω) = 1/8, u = 0, Ω = (0, π), T = 1, 0 <

a(t) < 1/3, a(·) ∈ C3(0, T ), z such that supt∈(0,T ) |z(t, ·)|H2(Ω) = 0.7 and
B = 1. Then E = 1/4 and I = [−0.95, 0.95], so |x(t, ·)|H2(Ω) ∈ I means that
|x(t, ·)|H2(Ω) < 1 and thus |x(t, ·)|H1(Ω) < 1, |x(t, ·)|L2(Ω) < 1. Hence, for
those x(·, ·),

|f(t, ·, x(t, ·))|H1(Ω) ≤ |a(t)| |x(t, ·)|4H1(Ω)|x(t, ·)− 1/2|H1(Ω) < |a(t)|2 < 0.7

= sup
t∈(0,T )

|z(t, ·)|H2(Ω).

Moreover,

a(t)x5((1/6)x− 1/10) ≥ −1, x ∈ R, t ∈ [0, 1], y ∈ (0, π).

Since, for each t ∈ [0, 1], y ∈ (0, π), x 7→ a(t)x5((1/6)x − (1/10)) is convex
in R, the functional

x 7→
T�

0

�

Ω

a(t)x5((1/6)x− 1/10) dy dt

is convex in the space L2(0, T ;L2(Ω)) and has nonempty subdifferential for
x ∈ L2(0, T ;L2(Ω)) (see the assumptions of Theorem 2).

Define X = {x ∈ U : |x(t, ·)|H2(Ω) ∈ I, t ∈ (0, T )}. We shall consider the
functional J of (2) on

Ũ = {x ∈ C([0, T ];H2(Ω)) : ∂x/∂t ∈ C([0, T ];H1(Ω)),
x(0, ·) = x0(·), xt(0, ·) = x1(·)}.

Note that J is bounded on X (see also Lemma 2), thus we need to look
for a kind of “critical point” in X. To this end we shall consider the dual
functional, which will be investigated together with (2):
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JD(p, q) = −
T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt(9)

− 1
2

T�

0

�

Ω

|q(t, y)|2 dy dt+
1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt

+
�

Ω

x0(y)p(T, y) dy dt−
�

Σ

u(t, y)〈q(t, y), ν(y)〉 dy dt,

where ν = (ν1, . . . , νn) is the unit outward normal to Γ , F ∗ is the Fenchel–
Young conjugate to F (h∗(s∗) = sups{〈s∗, s〉 − h(s)}; see e.g. [3]) and

JD : UD = {(p, q) : p ∈ C([0, T ];H1(Ω)), ∂p/∂t ∈ C([0, T ];H0(Ω)),
p(0, ·) = x1(·), q ∈ L2(0, T ;H1

n(Ω))} → R.

We will consider two kinds of relationship between the functionals J and
JD on X: the Duality Principle and the Variational Principle. The former,
Theorem 3, relates the critical values of both functionals, while the latter,
Theorem 4, provides necessary conditions that must be satisfied by the so-
lution to problem (1).

3. The auxiliary results. Now we construct the sets on which J and
JD will be considered. In view of the definition of X and Theorem 1 the
following lemma can be formulated:

Lemma 1. There exist constants C1, C2, C3, C4 independent of x ∈ X
such that

|v|L∞(0,T ;H2(Ω)) ≤ C2, |vt|L∞(0,T ;H1(Ω)) ≤ C1,

|vtt|L∞(0,T ;L2(Ω)) ≤ C3, |∆v|L∞(0,T ;L2(Ω)) ≤ C2,

|v|H2((0,T )×Ω) ≤ C4,

where v is the solution of the problem

vtt(t, y)−∆v(t, y) = −Fx(t, y, x(t, y)) a.e. on (0, T )×Ω,
v(0, y) = x0(y), vt(0, y) = x1(y), y ∈ Ω,(10)
v(t, y) = u(t, y), (t, y) ∈ Σ,

with x ∈ X.

Proof. Fix x ∈ X. Since x ∈ U and by the assumptions on F (see G4),
it follows that Fx(·, ·, x(·, ·)) ∈ L. Hence by Theorem 1 and (6) there exists
a unique solution v ∈ U of problem (10) satisfying

|v|U1 ≤ TB|Fx(x)|L∞(0,T ;H1(Ω)) + E.
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Taking into account G4 we get the following estimate for some C, indepen-
dent of x ∈ X:

T |Fx(x)|L∞(0,T ;H1(Ω)) ≤ C.
Moreover, by (6) we get

|v|L∞(0,T ;H2(Ω)) ≤ TB|Fx(x)|L∞(0,T ;H1(Ω)) + E ≤ BC + E.

By (7),

|vt|L∞(0,T ;H1(Ω)) ≤ TD|Fx(x)|L∞(0,T ;H1(Ω)) +A ≤ DC +A.

Since |∆v|H0(Ω) ≤ |v|H2(Ω), we have |vtt|L∞(0,T ;H0(Ω)) ≤ (BC + E) + C/T .
Hence, putting

C2 = BC + E, C1 = DC +A, C3 = (BC + E) + C/T,

C4 = T 1/2(3BC + E) + (BC + E) + C/T + (DC +A),

we obtain the assertion of the lemma.

Proposition 1. For every x ∈ X the relations

x̃tt(t, y)−∆x̃(t, y) = −Fx(t, y, x(t, y)),
x̃(0, y) = x0(y), x̃t(0, y) = x1(y), y ∈ Ω,(11)
x̃(t, y) = u(t, y), (t, y) ∈ Σ,

imply that x̃ ∈ X.
Proof. Fix x ∈ X. Since x ∈ U and by the assumptions on F (see G4),

it follows that Fx(·, ·, x(·, ·)) ∈ L. Hence by Theorem 1 there exists a unique
solution x̃ ∈ U of problem (11). Moreover, x̃tt −∆x̃ ∈ L. Indeed, by G4, it
follows that

(12) |Fx(t, ·, x(t, ·))|H1(Ω) ≤ sup
t∈(0,T )

|z(t, ·)|H2(Ω).

Further, by (6) we get |x̃|U1 ≤ TB supt∈(0,T ) |Fx(t, ·, x(t, ·))|H1(Ω) + E. Now
by (12) it follows that

(13) |x̃|U1 ≤ TB sup
t∈(0,T )

|z(t, ·)|H2(Ω) + E.

Hence

|x̃(t, ·)|H2(Ω) ≤ TB sup
t∈(0,T )

|z(t, ·)|H2(Ω) + E, t ∈ (0, T ).

So |x̃(t, ·)|H2(Ω) ∈ I, t ∈ (0, T ). Thus for every x ∈ X there exists an x̃ ∈ X
satisfying (11).

Let H be the map assigning to x ∈ X the solution x̃ ∈ X of (11). Define
X = H(X).

Corollary 1. Every {xn} ⊂ X has a subsequence converging weakly
in L2(0, T ;H2(Ω)) and H2((0, T ) × Ω) and strongly in L2(0, T ;H1(Ω)).
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Moreover , there is a subsequence {xnj} of {xn} such that {xnjt}, {xnjyi},
i = 1, . . . , n, (y = (y1, . . . , yn)) are strongly convergent in L2((0, T )×Ω).

Proof. Let {xn} ⊂ X. Then by the above proposition each xn is a so-
lution of problem (11). Hence by Lemma 1 the sequence {xn} is bounded
in H2((0, T ) × Ω), in L∞(0, T ;H2(Ω)) and so in L2(0, T ;H2(Ω)), {xnt}
in L∞(0, T ;H1(Ω)) and {xntt} in L∞(0, T ;H0(Ω)). Therefore {xn} has a
weakly convergent subsequence in L2(0, T ;H2(Ω)) and in H2((0, T ) × Ω).
Since all xnt are bounded by the same constant, the above-mentioned subse-
quence converges strongly in L2(0, T ;H1(Ω)). Moreover xntt, xnyiyj , xntyj ,
i, j = 1, . . . , n, are also bounded in L2((0, T ) × Ω) by the same constant.
Hence there is a subsequence {xnj} of {xn} such that {xnjt}, {xnjyi}, i =
1, . . . , n, are strongly convergent in L2((0, T )×Ω).

Now we define the set on which the dual action functional will be con-
sidered. Define

W 1
t = W 1

t ((0, T )×Ω)

= {p ∈ C([0, T ];H1(Ω)) : pt ∈ C([0, T ];H0(Ω)), p(0, ·) = x1(·)}

and

W 1
y = W 1

y ((0, T )×Ω)

= {q ∈ L2(0, T ;H1
n(Ω)) : div q ∈ L2(0, T ;H0(Ω))}.

Definition 1. We say that an element (p, q) ∈W 1
t ×W 1

y belongs to Xd

provided that there exists x ∈ X such that for a.e. (t, y) ∈ (0, T )×Ω,

(14) −pt(T − t, y)− div q(t, y) = −Fx(t, y, x(t, y)) with q(t, y) = ∇x(t, y)

or else

(15) p(T − t, y) = xt(t, y) with q(t, y) = ∇x(t, y).

Remark 1. The definition of Xd says that for each x ∈ X there exist
in Xd two pairs of (p, q): one defined by (14), the other by (15).

We will use the sets

Xd
1 = {p ∈W 1

t : (p, q) ∈ Xd}, Xd
2 = {q ∈W 1

y : (p, q) ∈ Xd}.

We observe that neither X nor Xd is a linear space. Thus even standard
calculations using convexity arguments—the tool which is indispensable if
one wants to apply the variational approach—are rather difficult. What helps
us is a special structure of the setsX andXd which despite their nonlinearity
makes these calculations possible.

Notice that the functionals J and JD are well defined on X and Xd.
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Lemma 2. There exist constants M1, M2 such that , for all x ∈ X,

(16) M1 ≤
T�

0

�

Ω

F (t, y, x(t, y)) dy dt ≤M2.

Proof. The first inequality in (16) is a direct consequence of G4. By the
mean value theorem and G4 we have, for some 0 < θ < 1,

F (t, y, x(t, y)) ≤ F (t, y, 0) + |x(t, y)| |Fx(t, y, θx(t, y))|
≤ F (t, y, 0) + |x(t, ·)|H1(Ω) sup

v∈X
|Fx(t, ·, v(t, ·))|H1(Ω)

≤ F (t, y, 0) + sup
t∈(0,T )

|z(t, ·)|H2(Ω){TB sup
t∈(0,T )

|z(t, ·)|H2(Ω) + E}.

Hence we infer the boundedness from above in (16).

Now we may state the main result of the paper which is the following
existence theorem.

Theorem 2. There exists x ∈ X such that infx∈X J(x) = J(x). Assume
that the functional x 7→

	T
0

	
Ω F (t, y, x(t, y)) dy dt is subdifferentiable at the

point x (the subdifferential in the sense of convex analysis is taken in the
space L2(0, T ;L2(Ω))). Then there exist (p, q) ∈ Xd such that

(17) JD(p, q) = inf
x∈X

J(x) = J(x)

and

xt(t, y) = p(T − t, y),(18)
∇x(t, y) = q(t, y),(19)

−pt(T − t, y)− div q(t, y) = −Fx(t, y, x(t, y)).(20)

The system (18)–(20) may be viewed as a system of Hamiltonian equa-
tions and its existence will be obtained with the aid of a duality theory.

Remark 2. The system (18)–(20) is equivalent to (1). Indeed, as x ∈ X
we have x ∈ U. Hence x satisfies the initial and boundary conditions.
Of course, by (18), xtt(t, y) = −pt(T − t, y), and by (19), div∇x(t, y) =
div q(t, y). Putting both equalities in (20) we get (1). The converse implica-
tion is obvious.

4. Duality result. We shall construct a duality theory for the functional
JD : Xd → R. To avoid the calculation of the Fenchel–Young transform with
respect to a subset we introduce a perturbation functional defined on the
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whole space. Let Jp : Xd × L2((0, T )×Ω; Rn)→ R be given by the formula

Jp(p, q, v) =
T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt

−
�

Ω

x0(y)p(T, y) dy dt+
1
2

T�

0

�

Ω

|q(t, y) + v(t, y)|2 dy dt

− 1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt+
�

Σ

u(t, y)〈q(t, y), ν(y)〉 dy dt,

where u ∈ H2(Σ) is the function occurring in (1), and ν is the unit out-
ward normal to Γ . It is clear that, for each fixed (p, q) ∈ Xd, Jp(p, q, ·) is
well defined on L2((0, T )× Ω; Rn) and finite. We observe that Jp is convex
and lower semicontinuous in the third variable for a fixed (p, q) ∈ Xd and
Jp(p, q, 0) = −JD(p, q).

We define a kind of Fenchel–Young transform (see e.g. [3]),

J#
p : Xd ×X → R,

with respect to a duality pairing for the space L2 = L2((0, T )×Ω; Rn) by

J#
p (p, q, x) = sup

v∈L2

{T�
0

�

Ω

〈∇x(t, y), v(t, y)〉 dy dt+
�

Ω

x0(y)p(T, y) dy dt

− 1
2

T�

0

�

Ω

|q(t, y) + v(t, y)|2 dy dt
}
−

�

Σ

u(t, y)〈q(t, y), ν(y)〉 dy dt

+
1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt−
T�

0

�

Ω

F ∗(t, y, pt(t, y) + div q(t, y)) dy dt.

Using the Fenchel–Young transform in L2 of the quadratic functional

v 7→ 1
2

T�

0

�

Ω

|q(t, y) + v(t, y)|2 dy dt

(see [3]) we obtain

J#
p (p, q, x) = −

T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt

+
T�

0

�

Ω

x(t, y) div q(t, y) dy dt+
T�

0

�

Ω

x(t, y)pt(T − t, y) dy dt
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+
1
2

T�

0

�

Ω

|∇x(t, y)|2 dy dt+
1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt

−
T�

0

�

Ω

xt(t, y)p(T − t, y) dy dt−
�

Ω

x(T, y)x1(y) dy dt.

We now provide two lemmas which will be used in the proof of the Duality
Principle.

Lemma 3. For any x ∈ X,
sup
q∈Xd

2

inf
p∈Xd

1

J#
p (p, q, x) ≤ J(x).

Proof. Fix x ∈ X. There exists a pair (px, qx) ∈ Xd such that
px(T − t, y) = xt(t, y) and ∇x(t, y) = qx(t, y).

Therefore, using the Fenchel–Young transform of the quadratic functional

v 7→ 1
2

T�

0

�

Ω

|v(t, y)|2 dy dt

in L2((0, T )×Ω; R), we have

inf
p∈Xd

1

{
−
T�

0

�

Ω

xt(t, y)p(T − t, y) dy dt+
1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt
}

= −1
2

T�

0

�

Ω

|xt(t, y)|2 dy dt

and

(21) sup
q∈Xd

2

{T�
0

�

Ω

x(t, y)(pt(T − t, y) + div q(t, y)) dy dt

−
T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt
}
≤

T�

0

�

Ω

F (t, y, x(t, y)) dy dt.

Hence we obtain the assertion of the lemma.

Lemma 4. For any (p, q) ∈ Xd,

inf
x∈X

J#
p (p, q, x) = JD(p, q).

Proof. As for any (p, q) ∈ Xd there is x ∈ X such that ∇x(t, y) = q(t, y),
we have
T�

0

�

Ω

〈∇x(t, y), q(t, y)〉 dy dt− 1
2

T�

0

�

Ω

|∇x(t, y)|2 dy dt =
1
2

T�

0

�

Ω

|q(t, y)|2 dy dt

(Fenchel–Young equality, see [3]). Hence from the definition of J#
p (p, q, x) we

get the assertion of the lemma.
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5. Duality and variational principles

Theorem 3.
inf
x∈X

J(x) ≥ sup
q∈Xd

2

inf
p∈Xd

1

JD(p, q).

Proof. By Lemmas 3 and 4, since

inf
a∈A

sup
b∈B

I(a, b) ≥ sup
b∈B

inf
a∈A

I(a, b),

we obtain

inf
x∈X

J(x) ≥ inf
x∈X

sup
q∈Xd

2

inf
p∈Xd

1

J#
p (p, q, x)

≥ sup
q∈Xd

2

inf
p∈Xd

1

inf
x∈X

J#
p (p, q, x) = sup

q∈Xd
2

inf
p∈Xd

1

JD(p, q).

We state the necessary conditions, i.e. conditions which the minimizers
of the functional J over the set X should satisfy. We observe that due to
Corollary 1 it follows that a minimizing sequence of J over the set X may
be assumed to be weakly convergent in L2(0, T ;H2(Ω)) and H2((0, T )×Ω)
and strongly in L2(0, T ;H1(Ω)).

Theorem 4. Assume that infx∈X J(x) = J(x) for some x ∈ H2((0, T )×
Ω) and that the functional x 7→

	T
0

	
Ω F (t, y, x(t, y)) dy dt is subdifferen-

tiable at x (the subdifferential in the sense of convex analysis is taken in
L2(0, T ;L2(Ω))). Then there exist p ∈ Xd

1 and q ∈ Xd
2 such that for a.e.

(t, y) ∈ (0, T )×Ω,

p(T − t, y) = xt(t, y),(22)
q(t, y) = ∇x(t, y),(23)
− pt(T − t, y)− div q(t, y) + Fx(t, y, x(t, y)) = 0(24)

and J(x) = JD(p, q).

Proof. Let x ∈ H2((0, T ) × Ω) be such that J(x) = infxj∈X J(xj) and
let {(pj , qj)} ⊂ Xd denote the sequences corresponding to {xj} according to
the definition of Xd. We define −pt(T − t, y) = div q(t, y)− Fx(t, y, x(t, y)),
with q given by q(t, y) = ∇x(t, y), for a.e. (t, y) ∈ (0, T )×Ω. It is clear that
(p, q) is the limit of a sequence {(pj , qj)} ⊂ Xd. By the definitions of J , JD,
relations (23), (24) and the Fenchel–Young inequality it follows that

J(x) =
T�

0

�

Ω

(
1
2
|∇x(t, y)|2 − 1

2
|xt(t, y)|2 + F (t, y, x(t, y))

)
dy dt

−
�

Ω

x(T, y)x1(y) dy dt
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≤ −
T�

0

�

Ω

xt(t, y)p(T − t, y) dy dt+
1
2

T�

0

�

Ω

|p(t, y)|2 dy dt

+
T�

0

�

Ω

〈∇x(t, y), q(t, y)〉 dy dt− 1
2

T�

0

�

Ω

|q(t, y)|2 dy dt

−
�

Ω

x(T, y)x1(y) dy +
T�

0

�

Ω

F (t, y, x(t, y)) dy dt

= −
T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt

+
�

Ω

x0(y)p(T, y) dy −
�

Σ

u(t, y)〈q(t, y), ν(y)〉 dy dt

− 1
2

T�

0

�

Ω

|q(t, y)|2 dy dt+
1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt

= JD(p, q).

Therefore J(x) ≤ JD(p, q). By Remark 1 there are two possible sequences
{(pj , qj)} ⊂ Xd corresponding to the sequence {xj} with qj = ∇xj , namely

(25) qj(t, y) = ∇xj(t, y), pj(T − t, y) = xjt (t, y)

or

(26) −pjt (T − t, y) = div qj(t, y)− Fx(t, y, xj(t, y)), qj(t, y) = ∇xj(t, y).
First we investigate the convergence of both sequences. For the sequence
(25) we obviously see, by Corollary 1, that (possibly up to a subsequence)
xjt → xt = p, ∇xj → ∇x = q. Therefore the system (22), (23), (24) is
satisfied.

In the case of the sequence (26) we have similarly qj → q = ∇x and
div qj ⇀ div q = ∆x in L2, possibly up to a subsequence. Moreover,

(27) −(−pjt (T − t, y)− div qj(t, y)) = Fx(t, y, xj(t, y)).

By G4 we know that {Fx(t, y, xj(t, y))} is bounded in L∞(0, T ;L2(Ω)) and
so in L2((0, T ) × Ω). From (27) we infer that the sequence {pjt + div qj}
is bounded in L2 and up to a subsequence it is also weakly convergent to
some Fx(t, y, x(t, y)). Since xj converges almost everywhere pointwise to x,
it follows that {pjt + div qj} also converges almost everywhere pointwise to
Fx(t, y, x(t, y)). We first investigate the convergence of {pj}. By (27) we get

−pjt (T − t, y) = −Fx(t, y, xj(t, y)) + div qj(t, y).

Hence {pjt} and consequently {pj} are bounded in L2. Therefore {pj} is
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weakly L2 convergent to p, possibly up to a subsequence. We assume that
the subsequences has been selected and denoted by j. By Theorem 3, we
have

(28) J(x) ≥ lim inf
j→∞

JD(pj , qj).

We observe that in both cases lim infj→∞ JD(pj , qj) ≥ JD(p, q). Indeed, by
the properties of the sequence {qj},

lim inf
j→∞

(
1
2

T�

0

�

Ω

|pj(T − t, y)|2 dy dt− 1
2

T�

0

�

Ω

|qj(t, y)|2 dy dt
)

= lim inf
j→∞

1
2

T�

0

�

Ω

|pj(T − t, y)|2 dy dt− lim
j→∞

1
2

T�

0

�

Ω

|qj(t, y)|2 dy dt

≥ 1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt− 1
2

T�

0

�

Ω

|q(t, y)|2 dy dt.

Moreover, since {pjt + div qj} converges pointwise, we have

(29) lim
j→∞

(T�
0

�

Ω

F ∗(t, y, pjt (T − t, y) + div qj(t, y))
)

=
T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt.

The inequality (28) implies equality, i.e. J(x) = JD(p, q). Since J(x) =
JD(p, q), we have

T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt(30)

+
T�

0

�

Ω

F (t, y, x(t, y)) dy dt
1
2

T�

0

�

Ω

|q(t, y)|2 dy dt

+
1
2

T�

0

�

Ω

|∇x(t, y)|2 dy dt−
�

Ω

x(T, y)x1(y) dy

=
1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt+
1
2

T�

0

�

Ω

|xt(t, y)|2 dy dt

+
�

Ω

x0(y)p(T, y) dy −
�

Σ

u(t, y)〈q(t, y), ν(y)〉 dy dt.

The functional x 7→
	T
0

	
Ω F (t, y, x(t, y)) dy dt is convex in L2 at x by the
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assumption of the theorem, and therefore by (24),
T�

0

�

Ω

F ∗(t, y, pt(T − t, y) + div q(t, y)) dy dt+
T�

0

�

Ω

F (t, y, x(t, y)) dy dt

=
T�

0

�

Ω

x(t, y)(pt(T − t, y) + div q(t, y)) dy dt;

similarly we get, by (23), the equality

1
2

T�

0

�

Ω

|q(t, y)|2 dy dt+
1
2

T�

0

�

Ω

|∇x(t, y)|2 dy dt =
T�

0

�

Ω

〈∇x(t, y), q(t, y)〉 dy dt.

Hence from (30) we deduce that

1
2

T�

0

�

Ω

|p(T − t, y)|2 dy dt+
1
2

T�

0

�

Ω

|xt(t, y)|2 dy dt =
T�

0

�

Ω

〈xt(t, y), p(T − t, y)〉.

Hence we obtain (22).

6. The proof of Theorem 2. By definition of X and Lemma 2, we
see that the functional J is bounded in X. We denote by {xj} a mini-
mizing sequence for J in X. By Corollary 1 this sequence has a subse-
quence, denoted again by {xj}, converging weakly in H2((0, T ) × Ω) and
strongly in L2(0, T ;H1(Ω)), hence also strongly in L2((0, T ) × Ω) to an
element x ∈ H2((0, T ) × Ω). Moreover, {xj} is also convergent almost ev-
erywhere and the sequence {xjt} is strongly convergent in L2((0, T ) × Ω).
Hence lim infj→∞ J(xj) ≥ J(x). Thus infx∈X J(xj) = J(x). By Theorem 4
we know that x along with the corresponding p and q satisfies (22), (23),
(24) and thus equation (1) (see the Remark following Theorem 2). Since the
RHS of (1) for that x belongs to L, from Theorem 1 we infer that x ∈ U
and so x ∈ X. This finishes the proof of Theorem 2.
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