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HENRYK KOLAKOWSKI and JAROSEAW LAZUKA (Warszawa)

THE CAUCHY PROBLEM FOR THE SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS
DESCRIBING NONSIMPLE THERMOELASTICITY

Abstract. The aim of this paper is to derive a formula for the solution
to the Cauchy problem for the linear system of partial differential equations
describing nonsimple thermoelasticity. Some properties of the solution are
also presented. It is a first step to study the nonlinear case.

The theory of nonsimple elastic and thermoelastic materials was studied
in various papers. R. A. Toupin [4] derived for the first time the equations
of motion, constitutive equations and boundary conditions of the strain-
gradient theory in general nonlinear form. On the basis of the conservation
principle, R. D. Mindlin and N. N. Eshel [2| obtained the linear theory of
elasticity in which the potential energy density depends not only on the strain
but also on the gradient of the strain. G. Ahmadi and K. Firoozbakhsh [1]
derived the strain-gradient theory of thermoelasticity based on the Clausius—
Duhem inequality.

In this paper we consider the following initial value problem:

g + ABAM + (A1 — E13)V div Au
(1) —l—mVé?—c%Au—(c%—c%)Vdivu:f,
o
k T
0, — "0+ 'y, =g fort >0,
c c
(2) U(O,.ﬁ) = uo(x)a ut(ovx) = Ul(ZL'), 9(0,1‘) = 90(1‘)7

where z € R?, v : Ry xR® — R3, 0 : R, x R3 — R, u denotes the
displacement, 6 the temperature disturbance, f is a given vector-valued
function on [0,00) X R™ and g is a given function also on [0,00) x R™;
c1,¢o,l1,lo,m, k, c, 0, Ty are some constant physical parameters.
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The main results of this paper are the exact formula for the solution
(u, ) of the Cauchy problem (1)-(2) and the following theorem:

THEOREM 1. Let u®,ut, 0y be in the Sobolev space H5T1(R3) with norm
|l-llsc1 and f,g € C([0,], HSTH(R3)). Then the problem (1)—(2) has a unique
solution u € C%([0,t], H*(R3)), 6 € C([0,t], H*(R®)). This solution satis-
fies, for some constant C, the estimates

lull2 < Cr(+ ) ([u®lZ + llat 12 + 1160311

+ sup [f(7)Z+ sup [g(n)]Z41),
T€[0,t] T€[0,¢]

10112 < CL1+ ) ([ull1241 + llut241 + 16012

+ sup [f(7D)Z1 + sup g(r)741)-
T€[0,t] T€[0,1]

Now we derive the formulae for the Fourier transform of the solution
to the Cauchy problem (1)-(2). Let u; = v. Then the system (1) can be
rewritten in the form

Ut = v,

vy = — A3 A — (313 — 313)V div Au — e+ c3Au
0

+ (3 = &)Vdivu + f,

k T,
0, = A0 - 201Gy 4g,
C C

or briefly
(3) V, = P(D,)V +F,
where
Dy =10 v, F=[0,f "
xj - iaxJJ - M M M - ) 79 *

We denote by P(D,) the differential operator with symbol P(§). It can be
shown that

[ 0o 0 -1 0 0 1
0 A 0 0 -1 0 0
0 A 0 0o -1
M—-PE)=| a1 a2 a3 A 0 0 B&1 ;
a1 az az 0 A 0 B&2
a1 azx azz 0 0 A &
| O 0 0 a&1 aly a&s A+ D |

where

{aij} =al + b6 @& (E@E = {&¢&;}),
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ar = GIRIEN" + clel? b= (el *C2l2)|§|2 +(cf - &),
B:i%, a:iTOTm, D:Eyg\?
The characteristic polynomial of the matrix P(£) has the form
det[M\ — P(€)] = [\> 4+ DA? + (a1 + C)\ + Day (A2 + a»)?,
where C' = %\5 |2. Tt will be shown that the polynomial
(4) k(M) = X3+ DA% + (a1 + C)\ + Day

does not have multiple roots for all £ except possibly at most twelve values
of [£] > 0, and the roots have negative real parts (for £ # 0). Let w = rot u.
Applying the rotation operator to the first equation of the system (1) we get
the equation

(5) wy + AIEA%w — 2 Aw = 1ot f
with initial data
w(0,z) =rotu’(z), w(0,z) = rotul(z).

Thus for the Fourier transform of w with respect to the spatial variables we
obtain the Cauchy problem

Att—i-ag@:@ for t > 0,

=rotu®, w;=rotul fort=0.

£)

The initial-value problem (6) has, for appropriate functions f,u" u!, the
unique solution

rot ul { sin[y/aa(t — s)Jrot /(s)
(7) rotuocos\ﬁth \/» sm\ﬁt—kg NG ds.

Now, when applying the divergence operator to the first equation of the
system (1) and using the notation e = divu, we obtain the system

ey + BB A% + (312 — cA3) A% + E A — c2Ae — (2 — c3)Ae = div f,

T
915 k om

=g (e=divu).
Hence
e + B A% — 2 Ae + — AG =div f,

T
9,5 k om
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Applying the Fourier transform with respect to the spatial variables we get

ett+clz2|s|4A |£|29+c%|£|%=divf,

Oy + =~ |§|9+ Te =3
Let e; = 0. Then
=7,

vy = —a16+—|£]29+dlvf,

Q)

T,
=—*|£| 9—Lmv+g

This system can be expressed in the simple form
(8) Y; = AY 4+ G,
where Y = [e, ﬁ,é\]T, G = [0,m,§]T, and A is the matrix of coeflicients.
It can be easily seen that
det[\] — A] = k(\) = A + DN + (a1 + C)A + Day.

The polynomial k() is stable, i.e. all its roots have negative real parts (for
&€ # 0). This follows from [3, Theorem 6|. According to that theorem, if all
principal minors of the matrix

di d3 0
dy da O
0 di ds

are positive, then the polynomial doA3+di A2 +da\+d3 with dy > 0 is stable.
Clearly, for the polynomial x(\) this condition is fulfilled. The polynomial
#x(A) has three distinct roots (almost everywhere with respect to ¢ € R3).
Indeed, put A = z — %D into k(). We obtain

2 +pz+q,
where )
= —-D? _p-1p — D3,
p=a1+C s D% a= 3 (a1+0)+27
Recall that the polynomial 23 4 pz + ¢ and also x(\) has multiple roots iff

4p 4+ 27¢% = 0.

The last equation as an equation of order 12 (with respect to |£| # 0) has
at most 12 positive roots. Putting G = 0 in the system (8) we obtain the
following initial-value problem:

=AY, Y(0) = [éo, o, 00]”.
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The solution of this problem is

9) Y = 1Y) + Y2 + ¢33,
where
T
Y, — Ak(D + Ar) +TM’7(D+>\1<:)’1 it
pay H
m Tom
T=— ’§‘27 = :
0 c
The coefficients in (9) can be calculated by using Viéte’s formulas:
1 [ X ta o]
= - A 6
1 Do — M) — A1) _a1€0 1Vo + 0_ )
—H [ ~ )\g +ar ~ |
= - A 6
C2 Do — M) (0 — o) _a1€0 200 + 0_ 5
1 [ A ta o]
= - A 0o |-
C3 s — o) O — M) _aleO 3Vo + 0—

Puting f = 0 in formula (7), from the definition of the function e we get

N — sin y/ast —

H = = t 0 v 1

&€ X u=cos/agt (& xul) + = (& x ul),
Hy:=¢-1 = —ie.

Then @ can be expressed as follows:

7/1,\ . H x f-i- H4 . f
€12
Hence for f =0, g = 0 we obtain
(10) @= <cos JastI - ﬂif cos /ast + hfﬁf)ﬂa
i t i t — hy ~
+ (Sm‘/@ [ SVElEet h2§®2§>u1 + 0o,
Vaz Vvaz  [¢] 1] €]
é\: Elguo + ngul + 77/350,
where
hl _ /\2)\3 — a1 e>\1t_ )\2/\3 — a1 6)\2t )\1)\2 — a1 €>\3t
(A2—=A1)(Az—A1) (A2—=A1)(A3—A2) (As—=A2)(Az—A1)
D+ X\ At D+ Xy Aot D+ X3 Ast
ho = et + e+ et
e M)A T e=A)s—2a) T (= Ae) (s =)
hae —i (A + a1)(AeAs — an) Mt _ (A3 + a1)(MiA3 —ar) ot
al()\g — )\1)()\3 — /\1) al()\g — /\1)()\3 — )\2)

(A3 +a1)(M A2 — ay) At
a1 (Az — A2)(A\3 — A1)
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and
=~ ) pai At Hay Aot
hi1 =1 et — e?
' [()\2 — A1) (A3 — A1) (A2 = A1) (A3 — A2)
Hai Ast
+ e,
(A3 = A2)(A3 — A1) ]
7 . pAL At PA2 Aot
ho =1 | — et + e’?
’ [ (A2 = A1)(Az — A1) (A2 = A1) (A3 — Ag)
- :U')‘3 )\3t1|
(A3 = A2)(A3 — A1) ’
"};/3 _ A%"‘a]_ e)‘lt_ )\%"‘(11 e)‘2t
(A2 = A1)(A3 — A1) (A2 = A1)(A3 — A2)
4 )\g +CL1 A3t

g — A2) (0 — A1) ©

Now we construct a solution of the initial value problem (1) with null Cauchy
data. We know that (cf. (7))

f

_ S sinly/@s(t — s)lrot f
w =

To find the fundamental solution of (8) one has to solve the problem

Y = AY,
Y(0) = I,

S.

where Y = {H;;} is a matrix with columns Y, Yo, Y3. After a simple cal-
culation we get

pay pay pay
Y, = Yi— Yo+ Ya,
e s - T Qe A)s—A2) T s = A —A)
pAL P2 PA3
Yo= — Yi+ Yo — Ya,
? Qo= A)Ps=A) 1 e A —A2) 0 a—A)(ha— A1)
A2 + a1 A2 + a1
Y3= 1 Y; — 2 Y
T e M) —A) T e = A)s— )
2
+ )\3 + G;l }/é

(Az = A2)(Az — A1)
Therefore the fundamental solution is equal to H = h(t){H;;}, where h
denotes the Heaviside function. The solution of (8) with G = [0,div f,g]7 is

t
Y =\ {H;(t — 5)}G(s) ds.
0
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Let —iw = S = [S1, S, S3]7, Sy = —ie. We have

—~ 554 SXE
YR TR

and consequently

ST €OV €58 )z

A —r @ v i
t

(1) +§f113|(§|;5’)<—i>@ds,
0

t
0 =\ [Hsa(t — s)i& f + Hss(t — 5)g] ds.

0
The solution of the problem (1) is of course the sum of the solutions of (10)
and (11).

For further investigation of this solution we derive the asymptotic be-
haviour of the roots Ay, )\2 and Az. For [{| — 0 we get

_ 2
b= TR+ Ol

)\273: j:ivc1+a|§\—

and for |£| — oo,

W €12+ O(l¢]?),
B 2, ad
/\1 - 6’5‘ 2l2 52
ad
Nog = — ———— +ic2l?|E]> + O(1),
2,3 CEETD ictli €17 + O(1)
where § = k/c, a = Tym?/c.
Proof of Theorem 1. Let (§) = /1+ &%, || - |z, = || - || and let C;
denote a large constant. Note that hy;—g = 1, and in view of the asymptotic
behaviour and the properties of A1, A2, A3, the function h1 is bounded. Hence

S (cosft] TR cos\/>t—i-h15 f) (€)% de¢
) € €
< 1 | (&)%ud2de = Oy |2

R3
Note that haj—g = 0, ha = hy(0t)t, 6 € (0,1), and hence

+0(lg]™h),

. . 2
S 5111\/\C/T;Tgt 7 sm\/\%Tgt f‘jf 4 hy §|§2f |u1|2<£>25 d¢

]RZS
< O1(1+2) [ (©)%|ul|de = C1(1 + )|
R3
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Now h3|t_0 =0, so

S

T2 590

<£>2S de < Cy(1+%) | |60/ (€)™ d¢
R3
< C1(1+12) | [Bo2(€)* 2 de = Cr(1 +13)]16o|24,.
R3

Moreover, E1|t:0 = 0, and therefore
| magulP(€)® de < Cr(1 + %) |u’]21-
R3
Also, 77,2‘25:0 =0, ﬁg)% is bounded, and so
| [hagul (€)% de < Cr(1 + %) w1241
R3
Next, ﬁ3|t:0 =1, and therefore
| 1380]%(€)>* dg < [1602-
R3
Since Hygy—9 = 0 we have

t
g{sm t_s)]f—ﬂif sinfy/az(t — s)]
R3'0
§®¢ ol s 2 2 4 2
+ P Hiao(t —s) ¢ f(s)ds| (£)*d§ < Cr(1+1t) sx[lopt]llf(T)Hs,
7€|0,
and similarly Hy3;—o = 0 implies
tH (t—s) — 2
i 13|5|2 (—i)€g(s) ds| (£)*ds < C1(1+1") sup [|g(7)]|21,
R3'0 T€[0,t]

and Hsp;—o = 0 implies

¢
[ |] Ho(t — s)ieFs) ds| (% de < u+ #1124
R3 0
Finally, Hs3 is bounded, and hence
t

[ | ] Fss(t — s)gls) ds| (€% de < u(1+ ) sup gm)]2a
R3 0 TE[O,t]

The other elements of ||ul|?, ||#]|? can be estimated by using the inequality
ab < %(a2 +b?).
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