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NEW UNIFYING CONVERGENCE CRITERIA
FOR NEWTON-LIKE METHODS

Abstract. We present a local and a semilocal analysis for Newton-like
methods in a Banach space. Our hypotheses on the operators involved are
very general. It turns out that by choosing special cases for the “majorizing”
functions we obtain all previous results in the literature, but not vice versa.
Since our results give a deeper insight into the structure of the functions
involved, we can obtain semilocal convergence under weaker conditions and
in the case of local convergence a larger convergence radius.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the equation

(1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a closed convex subset
D of a Banach space X with values in a Banach space Y .

Most problems in applied sciences (like systems of equations, differential
equations, integral equations, integro-differentiable equations and others)
can be brought in the form (1) for a suitable choice of the corresponding
spaces.

Newton-like methods

(2) xn+1 = xn − A(xn)−1F (xn) (n ≥ 0)

have been used extensively under various hypotheses to generate a sequence
converging to x∗ [3]–[7], [9], [10], [17], [18].

We present local and semilocal convergence theorems under very general
conditions on the operators involved. This way we can handle a wider range
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of problems than was possible before. Moreover by choosing special cases for
the “majorizing” functions, we obtain all previous results in the literature
but not vice versa. Furthermore since our results give a deeper insight into
the structure of the functions involved, we can in particular obtain semilocal
convergence under weaker conditions and in the case of local convergence a
larger convergence radius.

2. Semilocal convergence analysis. It is convenient for us to define
the non-negative number a by

(3) ‖A(x0)−1F (x0)‖ ≤ a
for some x0 ∈ D such that A(x0)−1 ∈ L(Y,X).

We suppose

(4) ‖A(x0)−1[F ′(y)− A(x)]‖ ≤ w1(‖y − x‖) + v1(‖x− x0‖) + v0

for all x, y ∈ U(x0, R) = {x ∈ X : ‖x− x0‖ ≤ R} and R ≥ 0 such that

(5) U(x0, R) ⊆ D,
where v1, w1: [0,∞)→ [0,∞) are increasing, v0 ∈ [0, 1),

(6) ‖A(x0)−1[A(x)− A(x0)]‖ ≤ w0(‖x− x0‖)
for all x ∈ U(x0, r) (0 ≤ r ≤ R),

where again w0: [0,∞)→ [0,∞) is increasing and

(7) lim
r→0

w1(r) = lim
r→0

v1(r) = lim
r→0

w0(r) = 0,

with w0(r) = w0(r) + v0, r ∈ [0, R], for some v0 ∈ [0, 1). Define functions
on [0, R] by

w(r) = sup{w1(t1) + v1(t2) + v0 + w0(t2) :(8)

t1 + t2 = r, t1 ≥ 0, t2 ≥ 0},

ϕ(r) =
r�
0

w(t) dt− r + a(9)

and a sequence

(10) r0 = 0, rn+1 = rn +
ϕ(rn)

1− w0(rn)
(n ≥ 0).

With the notation introduced above we can show the following semilocal
convergence theorem for Newton-like methods:

Theorem 1. Suppose that a function ϕ has a unique zero r∗ ∈ [0, R]
and ϕ(R) ≤ 0. Then:

(i) The scalar sequence {rn} (n ≥ 0) converges monotonically to r∗.
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(ii) A Newton-like method {xn} (n ≥ 0) is well defined , remains in
U(x0, r

∗) for all n ≥ 0 and converges to a solution x∗ of the equation F (x)
= 0. Moreover the following error bounds hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ rn+1 − rn(11)

and

‖x∗ − xn‖ ≤ r∗ − rn.(12)

(iii) If r∗ = R then the solution x∗ is unique in U(x0, r
∗) provided that

(13) w1(r∗) < 1.

If r∗ < R then the solution x∗ is unique in U(x0, R0) provided that

(14) R0 ≤ R and
1�
0

w1[tR0 + (1− t)r∗] dt < 1.

Proof. (i) This follows exactly as in the proof of Lemma 1 in [12, p. 214]
(see also [10], [19]).

In particular note that since r∗ is the only zero of ϕ on [0, R], this
function is strictly positive on [0, r∗). The same is true for the function
r → 0 < −ϕ′(r) ≤ 1− w0(r) (by (8)). Moreover the map

r 7→ r +
ϕ(r)

1− w0(r)

is increasing on [0, r∗) (as can easily be seen by showing the non-negativity
of the derivative). The rest of the proof is standard.

(ii) We show (11) and (12) by induction on n ≥ 0. For n = 0 inequality
(11) holds as equality. Indeed,

‖x1 − x0‖ = ‖A(x0)−1F (x0)‖ ≤ a ≤ r1 = r1 − r0.

Suppose (11) holds for all n < k. Then we have

‖xk − x0‖ ≤
k∑

j=1

‖xj − xj−1‖ ≤
k∑

j=1

(rj − rj−1) = rk ≤ r∗.

That is, xk ∈ U(x0, rk) ⊆ U(x0, r
∗).

Using (6) and (9) we obtain

(15) ‖A(x0)−1[A(xk)− A(x0)]‖ ≤ w0(‖xk − x0‖) ≤ w0(rk) < 1

(see part (i)). It follows by (15) and the Banach lemma on invertible oper-
ators [14] that A(xk)−1 exists and

(16) ‖A(xk)−1A(x0)‖ ≤ [1− w0(‖xk − x0‖)]−1 ≤ [1− w0(rk)]−1.

Moreover, by (2), (4)–(10) and (16) we obtain in turn
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(17) ‖xk+1 − xk‖
= ‖A(xk)−1F (xk)‖ ≤ ‖A(xk)−1A(x0)‖ · ‖A(x0)−1F (xk)‖
≤ ‖A(xk)−1A(x0)‖
× ‖A(x0)−1[F (xk)− F (xk−1)−A(xk−1)(xk − xk−1)]‖

≤ ‖A(xk)−1A(x0)‖

×
1�
0

‖F ′[xk + t(xk − xk−1)]− A(xk−1)‖ · ‖xk − xk−1‖ dt

≤ 1
1− w0(rk)

×
1�
0

{w1[rk−1 + t(rk − rk−1)− rk−1] + v1(rk−1) + v0}(rk − rk−1) dt

≤ 1
1− w0(rk)

1�
0

{w(rk−1 + t(rk − rk−1))− w0(rk−1)}(rk − rk−1) dt

≤ ϕ(rk)− ϕ(rk−1)− (w0(rk−1)− 1)(rk − rk−1)
1− w0(rk)

= rk+1 − rk,

which shows (11) for n = k. Furthermore, for m > n we get

(18) ‖xm − xn‖ ≤ rm − rn.
It follows from (18) that {xn} (n ≥ 0) is a Cauchy sequence in the Banach
space X and hence it converges to some x∗ ∈ U(x0, r

∗) (since U(x0, r
∗) is

a closed set). By letting n → ∞ in (2) we obtain F (x∗) = 0 and by letting
m→∞ in (18) we obtain (12).

Finally to show uniqueness, let y∗ ∈ U(x0, R0) be a solution of equa-
tion (1). We have, by (4),

1�
0

‖A(x0)−1[F ′(x+ t(y − x))− A(x0)]‖ dt

≤
1�
0

w1[‖x+ t(y − x)− x0‖] dt

≤
1�
0

w1[t‖y − x0‖+ (1− t)‖x− x0‖] dt

≤
1�
0

w1[tR0 + (1− t)r∗] dt < 1.
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Hence, the inverse of the linear operator

L =
1�
0

F ′(x∗ + t(y∗ − x∗)) dt

exists. But we can write

0 = F (y∗)− F (x∗) = L(y∗ − x∗),
which shows that under (13) or (14),

x∗ = y∗.

Remark 1. (a) Let A(x) = F ′(x) (x ∈ D) and set

v0 = v0 = 0, v1(r) = 0 (0 ≤ r ≤ R).

Then Theorem 1 reduces to Theorem 2 in [12, p. 215]. Moreover, if we choose
w1(r) = w0(r), r ∈ [0, R], we obtain the main theorem in [1]. Note however
that uniqueness results are not given in either [1] or [12]. Furthermore, choose

w1(r) = `r, r ∈ [0, R], ` > 0.

It follows by (8) that
w(r) = `r, r ∈ [0, R],

and (9) becomes
ϕ1(r) = 1

2`r
2 − r + a.

In this case the function ϕ has a zero if and only if

(19) 2`a ≤ 1.

We set

R =
1
`

and r∗ =
1−
√

1− 2`a
`

.

Condition (19) is the Newton–Kantorovich hypothesis for the convergence
of Newton’s method given in [14].

(b) Assume there exist increasing functions w2, w3: [0,∞)→ [0,∞) such
that

‖A(x0)−1[F ′(y)− F ′(x)]‖ ≤ w2(‖y − x‖),(20)

‖A(x0)−1[F ′(x)−A(x)]‖ ≤ w3(‖x− x0‖) + v0(21)

for all x, y ∈ U(x0, r), and

lim
r→0

w2(r) = lim
r→0

w3(r) = 0.

Define functions on [0, R] by

w4(r) = sup{w2(t1) + w0(t2) : t1 + t2 = r, t1 ≥ 0, t2 ≥ 0},

ϕ2(r) =
r�
0

w4(t) dt+ rw3(r) + v0r − r + a,
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and an iteration

s0 = 0, sn+1 = sn +
ϕ2(sn)

1− w0(sn)
(n ≥ 0).

Based on the identity

F (xk) =
1�
0

[F ′(xk−1 + t(xk − xk−1))− F ′(xk−1)](xk − xk−1) dt(22)

+ [F ′(xk−1)− A(xk−1)](xk − xk−1)

instead of (17), the conclusions of Theorem 1 hold if we replace ϕ, {rn} by
ϕ2, {sn} (n ≥ 0) respectively. Moreover, if we set, for all x, y ∈ U(x0, r),
`i ≥ 0, i = 1, . . . , 5,

w2(‖y − x‖) = `1‖y − x‖,(23)

w3(‖x− x0‖) = `2‖x− x0‖, `3 = v0,(24)

w0(‖x− x0‖) = `4‖x− x0‖+ `5, `5 = v0,(25)

we obtain the theorem due to Yamamoto [17]. For A(x) = F ′(x) (x ∈ D)
and w3 = 0 we again obtain Theorem 2 in [12].

(c) Consider the iteration

(26) xn+1 = xn −A(xn)−1(F (xn) +G(xn)) (n ≥ 0)

for approximating a solution of the equation

(27) F (x) +G(x) = 0,

where F is as in Theorem 1 and G: D → Y is a continuous operator.
Assume there exists a continuous, non-decreasing function w5: [0,∞)→

[0,∞) such that

(28) ‖A(x0)−1[G(x)−G(y)]‖ ≤ w5(r)‖x− y‖
for all x, y ∈ U(x0, r), and set

w6(r) =
r�
0

w5(t) dt.

Define a function ϕ3 by

ϕ3(r) = w6(r) +
r�
0

w(t) dt− r + a

and an iteration {bn} (n ≥ 0) by

b0 = 0, bn+1 = bn +
ϕ3(bn)

1− w0(bn)
(n ≥ 0).
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Then the conclusions of Theorem 1 concerning (26) and (27) hold with ϕ,
{rn} replaced by ϕ3, {bn} (n ≥ 0) respectively. If we let

w0(‖x− x0‖) = w7(‖x− x0‖) + c0,

w1(r + t) = w8(r + t)− w7(r) + c1, t ≥ 0, r ∈ [0, R],

for some c0, c1 ≥ 0 and continuous non-decreasing functions w7, w8(r+ t)−
w7(r) (t ≥ 0), then we obtain the main theorem in [10].

(d) Theorem 1 can be further generalized (similarly for cases (a)–(c)) if
instead of (4) we assume that

‖A(x0)−1[F ′(y)−A(x)]‖
≤ v2(‖x− y‖, ‖x− x0‖, ‖y − x0‖) + v3(‖x− x0‖) + v4(‖y − x0‖) + v5

for all x, y ∈ U(x0, r) ⊆ U(x0, R), where v2: [0,∞)3 → [0,∞), v3, v4: [0,∞)
→ [0,∞) are increasing, v5 ∈ [0, 1) and

lim
r→0

v2(r, r, r) = lim
r→0

v3(r) = lim
r→0

v4(r) = 0.

Define functions on [0, R] by

v(r) = sup{v2(t1, t2, t1) + v3(t2) + v4(t1) + v5 + w0(t2) :

t1 + t2 = r, t1 ≥ 0, t2 ≥ 0},

ϕ3(r) =
r�
0

v(r)− r + a

and a sequence

p0 = 0, pn+1 = pn +
ϕ3(pn)

1− w0(pn)
(n ≥ 0).

Then the conclusions of Theorem 1 hold with ϕ, {sn} replaced by ϕ3, {pn}
(n ≥ 0). If we let

v2(r, r, r) + v3(r) + v4(r) + v5 = w0(r), r ∈ [0, R],

we essentially obtain the results in [5].
(e) Consider a Newton-like method (2) in the form

(29) xn+1 = xn − A(xn)#F (xn) (n ≥ 0)

for solving the equation

(30) A#F (x) = 0,

where a A# is a bounded outer inverse of A(x0), and A(xn)# denotes an
outer inverse of A(xn), i.e., A(xn)#A(xn)A(xn)# = A(xn)# (n ≥ 0). The
conclusions of Theorem 1 hold for (29) and (30) if we simply replace A(x0)
by A# in the hypotheses of the theorem, and set

A(xn)# = [I + A#(A(xn)−A(x0))]−1A#(x0),
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with uniqueness holding in U(x0, r
∗) ∩ {R(A#(x0)) + x0}, where

R(A#(x0)) + x0 = {x+ x0 : x ∈ R(A#(x0))}.
In the special case when the functions w2, w3, w0 are given by (23), (24), (25)
respectively, we obtain Theorem 3.1 in [9, p. 241] concerning the convergence
of Newton-like methods using outer inverses.

(f) With the exception of the uniqueness part (iii) in Theorem 1 the rest
of the conclusions hold if we replace condition (4) by the Mysovskĭı-type
condition

1�
0

‖A(x0)−1[F ′(x+ t(y − x))− A(x)](y − x)‖ dt

≤ [w1(‖y − x‖) + v1(‖x− x0‖) + v0]‖y − x‖
for all x, y ∈ U(x0, R), where w1, v1, v0 are like w1, v1, v0 respectively. Since
‖L(x)‖ ≤ ‖L‖ · ‖x‖ for any linear operator L, it is expected that w1 ≤ w1,
which leads to smaller error bounds on the distances ‖xn+1 − xn‖ (n ≥ 0).

3. Local convergence analysis. We complete this study by showing
the following local convergence theorem for Newton-like methods.

Theorem 2. Suppose there exist : a simple zero x∗ ∈ D of the equation
F (x) = 0 with A(x∗)−1 ∈ L(Y,X); increasing functions α, α1, β: [0,∞) →
[0,∞) with

lim
r→0

α(r) = lim
r→0

α1(r) = lim
r→0

β(r) = 0;

and non-negative parameters α0, β0 with α0 + β0 ∈ [0, 1) such that

‖A(x∗)−1[F ′(y)− A(x)]‖ ≤ α(‖y − x‖) + α1(‖x− x∗‖) + α0,(31)

‖A(x∗)−1[A(x)−A(x∗)]‖ ≤ β(‖x− x∗‖) + β0(32)

for all x, y ∈ D. Suppose also that the equation

(33)
1�
0

α(tr) dt+ β(r) + α1(r) + α0 + β0 − 1 = 0

has a minimum non-negative zero R1 such that

(34) U(x∗, R1) ⊆ D.
Then the Newton-like method {xn} (n ≥ 0) generated by (2) is well defined ,
remains in U(x∗, r) (r < R1) for all n ≥ 0 and converges to x∗ provided
that x0 ∈ U(x∗, r). Moreover the following error bounds hold for all n ≥ 1:

(35) ‖xn − x∗‖ ≤ γn‖xn−1 − x∗‖,
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where

(36) γn = � 1
0 α(t‖x∗ − xn−1‖) dt+ α1(‖x∗ − xn−1‖) + α0

1− [β(‖x∗ − xn−1‖) + β0]
.

Proof. Clearly, x0 ∈ U(x0, r). Assume xk−1 ∈ U(x0, r) for all k < n.
Using (32) and (33) we obtain

(37) ‖A(x∗)(A(xk)− A(x∗))‖ ≤ β(‖xk − x∗‖) + β0 ≤ β(R1) + β0 < 1.

It follows from (37) and the Banach lemma on invertible operators that
A(xk)−1 exists and

(38) ‖A(xk)−1A(x∗)‖ ≤ 1
1− [β(‖xk − x∗‖) + β0]

≤ 1
1− [β(R1) + β0]

.

Using (2) we get in turn

xk − x∗ = xk−1 − x∗ − A(xk−1)−1F (xk−1)(39)

= A(xk−1)−1[F (x∗)− F (xk−1)−A(xk−1)(x∗ − xk−1)]

= [A(xk−1)−1A(x∗)]A(x∗)−1

·
1�
0

[F ′(xk−1 + t(x∗ − xk−1))− A(xk−1)](x∗ − xk−1) dt.

Moreover, by (31), (38) and (39) we obtain

‖xk − x∗‖
≤ ‖A(xk−1)−1A(x∗)‖

×
1�
0

‖A(x∗)−1[F ′(xk−1 + t(x∗ − xk−1))− A(xk−1)‖ · ‖x∗ − xk−1‖ dt

≤ γk‖x∗ − xk−1‖,
which shows (35) for all n ≥ 1. Furthermore, by the choice of R1, r and
by (33) there exists

γ = � 1
0 α(tr0) dt+ α1(r0) + α0

1− [β(r0) + β0]
∈ [0, 1)

such that
γk ≤ γ (k ≥ 1).

That is,

(40) ‖xk − x∗‖ ≤ γ‖xk−1 − x∗‖ ≤ γk‖x0 − x∗‖ ≤ γkr (k ≥ 1).

It follows from (40) that xk ∈ U(x∗, r) and limn→∞ xn = x∗ (since γ ∈
[0, 1)).
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Remark 2. Let A(x) = F ′(x) (x ∈ D). Choose:

α(‖x− y‖) = δ1‖x− y‖, α1(r) = 0, r ∈ [0, R1), α0 = 0,

and
β(‖x− x∗‖) = δ2‖x− x∗‖, β0 = 0.

Consequently, equation (33) becomes
1
2δ1r + δ2r − 1 = 0,

which gives

R1 =
2

δ1 + 2δ2
.

It was shown in [16] that the convergence radius for Newton’s method under
the Lipschitz condition:

‖F ′(x∗)−1[F ′(y)− F ′(x)]‖ ≤ δ1‖y − x‖
for all x, y ∈ D, is given by

R1 =
2

3δ1
.

However, since
δ2 ≤ δ1 (in general),

we obtain
R1 ≤ R1.

Let X = Y = R, D = U(0, 1) and define a function F on D by

F (x) = ex − 1.

Then it can easily be seen that δ1 = e and δ2 = e − 1. Consequently, we
obtain

R1 = .245252961 < R1 = .254028662.

That is, we obtain a wider range of initial guesses x0 than before. This obser-
vation is very important in the construction of very efficient mesh refinement
strategies and in projection methods [3], [8], [15], [18].

Note that several other local convergence theorems can be generated
along the lines of Theorem 1 and Remark 1.
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