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NONLOCAL ROBIN PROBLEM FOR ELLIPTIC SECOND
ORDER EQUATIONS IN A PLANE DOMAIN WITH A
BOUNDARY CORNER POINT

Abstract. We investigate the behavior of weak solutions to the nonlo-
cal Robin problem for linear elliptic divergence second order equations in
a neighborhood of a boundary corner point. We find an exponent of the
solution’s decreasing rate under minimal assumptions on the problem coef-
ficients.

1. Introduction. Our article is devoted to the nonlocal Robin problem
in a plane domain with a boundary corner point. This problem often appears
in different fields of physics and engineering. For example, nonlocal elliptic
boundary value problems have important applications to the theory of dif-
fusion processes and the theory of turbulence. Various problems in this field
have been studied by many mathematicians. We refer to [3], [10] for the his-
tory and extensive literature. Solvability of nonlocal elliptic value boundary
problems was considered by Skubachevskii [10]. He also obtained a priori
estimates of solutions in Sobolev spaces, both weighted and unweighted. All
results in [I0] relate to equations with infinitely differentiable coefficients.
Gurevich [3] considered the asymptotics of solutions for nonlocal elliptic
problems for equations with constant coefficients in plane angles. A princi-
pal new feature of our work is the consideration of estimates for equations
with coefficients of minimal smoothness.

We establish global and local estimates of weighted and unweighted
Dirichlet integrals as well as the modulus of weak solutions to our prob-
lem, employing methods different from those in [3, [10]: we investigate the
behavior of weak solutions in a neighborhood of the boundary corner point
by means of integro-differential inequalities and Kondratiev’s ring methods.

2010 Mathematics Subject Classification: 35J15, 35J25, 35J70, 35B10.
Key words and phrases: elliptic equations, nonlocal Robin problem, corner points.

DOI: 10.4064/am38-4-1 [369] © Instytut Matematyczny PAN, 2011



370 M. Borsuk and K. Zyjewski

For this purpose we derive a new Friedrichs—Wirtinger type inequality, which
is adapted to our problem.

Setting of nonlocal problem. Let G C R? be a bounded domain
whose boundary G = I'y U I'_ is a smooth curve everywhere except at
the origin O € 9G, near O the curves Iy are the lateral sides of an angle
with measure wy € [0,27) and vertex at O. Let Xy = G N {xa = 0}, where
O e Xy.

We will use the following notation:

e S': the unit circle in R? centered at O;

e (r,w): the polar coordinates of z = (1,72) € R? with pole O: z; =
rCosSw, T9 = rsinw;

e C: the angle {z1 > rcos (wp/2), —00 < x2 < oo} with vertex O;

e JC: the lateral sides of C: x; = rcos (wy/2), x2 = £rsin (wy/2);

e (2: the arc obtained by intersecting the angle C with S': 2 =CNnS! =
(—wo/2,wo/2);

e G'={(r,w):0<a<r<bwe N}NG: aring domain in R?;

eI’ ={(rw):0<a<r<b w=4wy/2} NOG: the lateral sides
of G¥;

[ GdZG\Gd; Tyt :F:t\Féji, d>0;

e 2,=Gin{|z| =0}, 0<0<d;

e meas G: the Lebesgue measure of the set G.

A
x1
2o
'\ Qg 1y
d
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We shall consider an elliptic equation with a nonlocal boundary condition
connecting the values of the unknown function u on the curve Iy with its
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values on X:

£l = aii(a“(a»uxj) ¥ (@)ua, + e(z)u = f(z), € G
W B =Ga s i) =g, eer
GACE 5“ ﬂ_,‘f—w), rel.:

here:

e 9/0v = a¥(z) cos(it, r;)0/0z, and 7i denotes the unit vector outward
with respect to G normal to 0G \ O (summation over repeated indices
from 1 to 2 is understood);

e 7 is a diffeomorphism of I'y onto Xy; we assume that there exists d > 0
such that in the neighborhood Fg+ of O the mapping ~ is the rotation

by the angle —wg/2, that is, 'y(Fd ) = E[‘)l = Gd N Xo.
REMARK 1.1. We observe that
U("}/(:IZ))|F0(1+ =u(r,0), 0<r<d.
In fact, y(z) = y(z1,22) = v(rcos (wo/2),rsin (wo/2)) = (r,0), because in
Fgﬁr the mapping + is the rotation by the angle —w/2.
We use also standard function spaces:
e C*(G) with the norm .z

e the Lebesgue space L,(G), p > 1, with the norm ||Ju|, q,
e the Sobolev space W*P(G) with the norm

k
/
Julleor = (§ 32 1DPup )"

G |8]=0

We define the weighted Sobolev space nga(G) for integer k£ > 0 and real «
as the space of distributions v € D'(G) with the finite norm

i 1/p
G|B|=0

and V}fa_ 1/p (0G) as the space of functions ¢, given on dG, with the norm
H<p||vpk,;1/p(8G) = inf [|?]|y_(q), where the infimum is taken over all functions
@ such that @|pc = ¢ in the sense of traces. We write W#(G) for W*2(Q),
WE(G) for VEL(G), and Wa(0G) for V', 2 (0G).

Let us recall some well known formulae related to polar coordinates (7, w)
in R? centered at O:



372 M. Borsuk and K. Zyjewski

dx = rdrdw, df2, = pdw,

ou\? 1 [/0u)\?

2 [CU Il Bt
Vul® = <8r) +7‘2 (8w> ’
o Au ?u 1 0u 1 0%

= "o T2 g
ds denotes the length element on 0G.

C =C(...), ¢c = ¢(...) denote constants depending only on the quantities
appearing in parentheses. In what follows, the same letters C, ¢ will be used
to denote various constants depending on the same set of arguments.

Without loss of generality we can assume that there exists d > 0 such
that G¢ is an angle with vertex O and measure wy € (0, 27), thus

I = {(z1,29) : &1 = Fa9 cot (wo/2), |z| < d}.
By a direct calculation we obtain
LEMMA 1.2.
— . Wo N o
cos(n,x1)|pgi =-—sino5 @ cos(n,wi)|pézi =0; x;cos(7, z)|n, = 0.

DEFINITION 1.3. A function u is called a weak solution of problem (L)
provided that u € C°(G) N W{(G) and u satisfies the integral identity

(H) S{aij(x)ua:jnxi - bl(x)uzzn(x) - C(x)u(x)n(ﬂf)} dx

G
484§ u@)/ra(e)ds +0 § Sulr()al)ds + 5 | u@)/ra(r) ds
Iy Iy r
— | glam(@)ds + | h@)n(z)ds - | f(@)n() de
I I G

for all n € CY(G) N Wol(G)

LEMMA 1.4. Letu be a weak solution of (L). For anyn € Co(é)ﬁﬁ/ol(G),
and a.e. p € (0,d), we have

(Moe | {07 @)ume, + (f (@) = U (2)ug, — c(x)u(@))n(x)} da

Gg
= S a" (z)ugz,m(x) cos(r, z;)d2, + S <h(x) _ﬁ_u(rx))n(x) ds
2, e
+ (9(”5)—5+u(x)/7‘—iuw(w))>n(fﬁ)d8-
I‘Q

0+
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Proof. Let x, be the characteristic function of G§. Replacing in (II) the
function n(z) by n(z)x,(x), we obtain

V{0 (@)ua,me, + (f(2) = V' (2)us, — cl@)ul@))n(z)} d

Gg
= — S a”(m)uzjn(x)axg/ﬁxi dz
€5
: u(x)
# 1 (o0 - 5" = Lty 0) o) as
To+
+ S <h(:n) —ﬁ@)n(:ﬂ) ds.
g
By [2, Ch. 3, §1, Subsect. 3, formula (7') g—ﬁf = —76(0 — ), where

d(o — r) is the Dirac distribution lumped on the circle r = g, we get (see |2}
Ch. 3, §1, Subsect. 3, Example 4|)

_ ng a” (2)uq,n(z) gif dr = Ggg aij(x)uxjn(x)%(s(g —r)dx
= | a9y n(z) cos(r, z;) de2,.
“QQ
Hence the required statement follows. m
We will make the following assumptions:
(a) (uniform ellipticity)
v€? < aV(x)&&; < p€?, Va € G, V€ €R? v, = const > 0
(without loss of generality we can assume that v < 1),
a(x) =d'(z), VxeG, da(0)= 51‘.7 (1,7 =1,2),
where 55 is the Kronecker symbol;
(b) a¥ € C°(G), ¥ € Ly(G), ¢ € Ly/o(G) N La(G) for all p > n > 2; the

inequality

2 y 1/2 2 1/2

(X a7 @) =a P ) " +lal (T @)P) " +laPle(@)] < Aal)
ij=1 i=1

holds for all z € G, where A(r) is an increasing nonnegative function,
continuous at 0 and A(0) = 0;

(¢) ¢(z) <0inG;b>0, 8L >0

(d) f € Lyp(G)NLa(G), g € Loo(I'y), h € Loo(I-);
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(e) there exist numbers fy > 0, go > 0, hg > 0, s > max{1;2 — 4/p}
such that
[f(@)] < folz[*72, lg(x)] < gole™",  |h(2)] < holz[*™;
(f) My = max, ¢ [u(x)| (see e.g. Section .
Our main results are the following theorems.

THEOREM 1.5. Let u be a weak solution of problem (L) and let assump-
tions (a)—(f) be satisfied with A(r) Dini-continuous at zero. Let A\ = \*,
where \* is defined by Lemma [2.6] Suppose, in addition,

7'(2
152 _6-1—5— 1
4%7; — W+ V24 2vwfy) o,

0<b<mini vV2- -
2TJO+B* wo

2
T
B+B- < <2> .
wo
Then there are d € (0,1/e), where e is the Euler number, and a constant
C > 0 depending only on v, 1, p, || 3271 [0 () Pllpje.60 wo, b, B+, B, Mo,

fo, ho, go, s, measG, meas [y, meas [ and the quantity S(l)/e (A(r)/r)dr
such that for all x € G&,

(1.1)

|| M if s> Ak,
(1.2) lu(z)] < C < |z|MIn(1/|z]) if s =Mk,
|z|® if s <Ak,
where
(1.3) . B+ B4 +b— /(B +b— B)2+ Bbiwy c (0.1,

2B
and B = B()\) is as in (2.6)).
REMARK 1.6. Because of (2.4), we can observe that if b = 0, then k = 1.

THEOREM 1.7. Let w > 0 be a weak solution of problem (L), and let
assumptions (a)—(f) be satisfied with A(r) Dini-continuous at zero. Let f_ =
By = B, b > b*, where b* is defined by and let X € (m/wy, 2w /wp) be
a root of equation . Then there are d € (0,1/e) and a constant C' > 0
depending only on v, 1, p, || 327 [0(2)|ly/2,6, wo, b, B, fo, ho, go, s, Mo,
meas G, meas Iy, measI_ and S(l)/e (A(r)/r)dr such that for all x € G,

|| if s> A,
u(@)| < €3 P n(1/lal) if 5= A,
|x|® if s<A.
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THEOREM 1.8. Let u be a weak solution of problem (L), and let assump-
tions (a)—(f) be satisfied with A(r) Dini-continuous at zero. Suppose, in ad-
dition, that

By (@), + B-u®(@)|r. + bu(@)|r, - uly(2))|r, =0,
T By + 6o 2 2
b:JOT and u (CC)|]"+:U(Z')‘]"_
Then there are d € (0,1/e) and a constant C' > 0 depending only on v, u, p,
wo, b, B, fo, ho, 90, 8, My, meas G, meas Iy, meas I and S(l)/e (A(r)/r)dr

such that for all x € G,

||/ o if s > m/wo,
u(@)] < C§ a7 m(1/[z]) if s = 7/wo,
|z|® if s < m/wp.

2. Preliminaries

2.1. Eigenvalue problem. In what follows we need some statements
and inequalities. We consider the following eigenvalue problem:

(W) + XNY(w) =0, we L,
(EVP) ¥ (wo/2) + B (wo/2) + bp(0) = 0,
' (~wo/2) + B-(~wo/2) =0,
with B+ > 0, b > 0, which consists in determining all values A\? (eigenvalues)

for which (EVP) has nonzero weak solutions (eigenfunctions) 1 (w).

DEFINITION 2.1. A function ¢ is called a weak solution of problem (EVP)
provided that ¢ € W(£2) N C%(2) and

(21) @ @) (W) = NP(w)n(w)) dw + Biib(wo/2)n(wo/2)

2
+ bp(0)n(wo/2) + B-(—wo/2)n(—wo/2) =0 for all n € WH(02)NC(12).

We are interested in the smallest positive eigenvalue of (EVP). Solving
the equation of (EVP) we find

(2.2) P(w) = B-sin AM(w + wp/2) + Acos A(w + wp/2)
and A is defined by the transcendental equation
(2.3) FO) == A(By + B-) cos dwo + (B4 8- — A?) sin Awy
A A
+ b</\cos;j0 + 6= sin;do> =0.

REMARK 2.2. From ({2.2) it follows that in fact v € C>(£2).
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REMARK 2.3. Let A = m/wp. Then

f(m/wo) =0 &

_ T B +B _ wo\ _ ™ _wo\ _ T
b_JOT’ ¢(0)—57a ¢(2>— WO’ ¢< 2>_(.U()

2.2. The Friedrichs—Wirtinger type inequality

THEOREM 2.4. Let A? be the smallest positive eigenvalue of problem
(EVP) and 1) the corresponding eigenfunction. Then for any u € W(£2) N
CY(£2), u # const # 0, we have

(2.4) N | v (W) dw < [ u(w) dw + Bu?(wo/2) + B-u’(—wo/2),
2 2
where H(0)
=y T

Proof. At first, we assume that u € C%(2) N W1(£2) N C°(N). Setting

u(w) = Y (w)v(w) we obtain
[/ ()]* = [(¥(w)v(w))]?

= (W) (W) + 20/ (W)Y (W) (W) + P (W) (W)

P (" (@) + P ()Y (W)Y (@)] = v (W) (W) ()
> [0 () ()i )] = v (@)e(w)y" ().
Integrating over {2 and recalling that 1 is an infinitely differentiable solution
of (EVP) we have

(25) | uP(w)dw > (W)W (@), — | oA (@) (W) (@) dw
02 2

— 2w Y’ (w) w=wo/2 2 { w2(w) dw

B ( )ww) w—wo/2+)\_§2 ( )d

(
(e (0)
= P (=~ )
— B_u?(—wo/2) + N\ S u?(w) dw.
Q

Then from (2.5) we get . The extension of tou € WH2)NCO(2)
follows directly by approximation.

Further, for A\ = 7/wp, by Remark , from it follows that B = —_
and therefore inequality is false for u = const # 0. u

REMARK 2.5. Inequality (2.4)) is the best possible, i.e. the constant \?
in this inequality is sharp.
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In fact, putting n = ¢ in (2.1) we obtain

N (W) dw = | 9 (w) dw
Q Q
+ 849 (wo/2) + B-1* (~wo/2) + b(0)¢(wo/2)
for any solution (A2,) of (EVP). Now we see that the equality sign in (2.4)
is attained for u = ¥, i.e. for the eigenfunction of (EVP).

Now we establish under what conditions the parameter B is positive.
From the first boundary condition of (EVP) and (2.2)) we get

., ¥(0) =P (wo/2) — Byyp(wo/2) P (wo/2)
B0 B =t T = of2) EETPYE)
_ A(Asin dwg — [- cos Adwyp) — B\,

0B— sin Awgy + A cos Awyg

LEMMA 2.6. Let (A2,9) be a weak solution of (EVP) and let f(\) be
defined by (2.3)). Suppose that

iz — B 2
4wg ™
(27) /Bi > O, O < b < \/5 ‘ W, ﬂ+,87 < (2(4)0) 9

and let X € (0,7/(2wo)) be a solution of

(2.8) tan(Awo) = ﬂ/\

Then the interval (X, 7/(2wo)) contains the least positive zero \* of the func-
tion f(A\) for which B(\*) > 0. Moreover, (\*)? is the least eigenvalue of
(EVP) and the corresponding eigenfunction 1 is nonnegative.

Proof. Let A € (0,7/(2wo)]. Then from ({2.6) it follows that B(\) > 0
if Asin Adwp — B cos Adwg > 0. From (2.8) for all A € (0, ) we have (by the
graphical method)

_ A
tan Awg < N SO COS Awg > ﬂ— sin Awy.

Therefore from (2.3]) we get

fA) > (ng)\Q + ﬁ+ﬁ> sin\wg >0, VA€ (0,)].

2
T T b T
— | = e — = _ ] <0
f<2w0> oep <2w0> i \@<2w0 +ﬂ ) ’
by (2.7). Hence, by (2.2) and because f(\) is continuous, the statement of
the lemma follows.

Further,



378 M. Borsuk and K. Zyjewski

REMARK 2.7. A\? = 0 is not an eigenvalue of (EVP). In fact, the solution
of problem (EVP) with A2 = 0 has the form (w) = Ajw + As, where
Ay, As are unknown constants. From the boundary conditions we obtain a
homogeneous algebraic system for Aj, Ao,

{ A1 + BJF(AlCUO/Q + Ag) + bA2 =0,
Al + ﬁ,(Ale/Q — Ag) = 0.
The determinant of this system is

Y
1+p- -6
since B4, - > 0 and b > 0. Thus ¢(w) = 0 for any w € (2.

LEMMA 2.8. Let A2 be the smallest positive eigenvalue of problem (EVP)
with B4 = B— = B and let ¢ be the corresponding eigenfunction. Let b > b*,
where

#0,

WO(X2 + ﬁ2) + 20
VQ%(X?+—52)+—4ﬂwo+—4

and X € (7 Jwo, 27 Jwo) is a root of tan (Awp/2) = —Awo/(2 + Bwp). Then A
satisfies the transcendental equation

(2.9) b =2

A A
(2.10) ﬂsin%—i—)\cos%zo, AE <,>,

and B(\) = (3.

Proof. By the assumption §y = f_ = 3 and trigonometrical properties
we can rewrite (2.3)) in the form

F(A) = 2B cos Mwp + (8% — A?) sin Awp + b()\ cos % + Bsin >\;UO>
A A A A
— 2)\/8((305 wO o 2 ;jo) + Q(ﬁ )\2) SIH%COS%

)\ /\WO
+b<)\c052+ﬁ > )

_ /\Ldo . )\wo Aw wo )\wo .
—()\cos 5 + Bsin 5 )<b+26 0s 5 2\ si 5 >—0.

We now establish that

Awo

A
xX(A\) ::b—i—Qﬁcos%—Z)\sin >0

for all A € (0,27 /wp). In fact, by calculation, we find that x'(A) = 0 and
X" (A) > 0 for X € (7/wp, 27 /wp) satisfying tan(Awg/2) = —Awp/(Bwo + 2).
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Therefore

inf (N =x(\) =b—2 wo(A\* + %) + 28

AE(0,27 /o) \/wg(Xz + B2) + 4fBwp + 4

by assumption. Thus (2.10)) is proved.
Now, we calculate B()) for A satisfying (2.10). By (2.2),

> 0,

Awp Awo
¥(0) = Acos T + Bsin 5 =0,
P(wo/2) = Bsin Awp + A cos Awp
Aw wo )\wo 2 )\ 2 )\wo
—2Bs1n700 T—F)\ - — Asin
. . )\(A)o )\wo 2 /\ )\wo 2 )\wo
= f(Bsin 5 co 5 + Acos? =0 4 Gsi cos 5 Asi 5
Awp A A
= —\cos® == 5 — Asin? (;0 +c <ﬁ sin 222 + X cos ;UO> =-X#0.
: .3 —p_ %0 _
Hence we get the desired result: B = b¢(wo/2) +06=0.n

Taking into account Lemmas and Remark[2.3] we get the following
formulations of Theorem [2.4] for the Friedrichs—Wirtinger type inequality:

COROLLARY 2.9. Let the assumptions of Lemma [2.0] be satisfied, and
A = A", where A* is defined by that lemma. Then

Q1) [l WSAZ{S(?Z) o+ B2 + B2 |

9
for all uw € WY(2) N C°(Q) with B = B(\*) defined by (2.6).

COROLLARY 2.10. Let By = - =0 >0 and b > b*, where b* is defined
by (2.9). Then
ou

212)  [v’(w)dw < )\2{ | <8w> dw + Bu(wo/2) +ﬁu2(—w0/2)}

2
for allu € WH(02)NCO($2), where X € (/wo, 27 /wo) is the smallest positive
root of equation (2.10)).

COROLLARY 2.11. Let b= T - mﬁ%ﬁ* Then

2
(2.13) ”z | u?(w) dw + B-u?(wo/2) < | (a“> dw + B_u?(—wy/2)

Wi 5 4 ow
for all w € WH(2) N CY(2), u # const # 0.

Now using the well known Hardy inequality (see Theorem 330 of [4]) we
get:
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PROPOSITION 2.12 (The Hardy-Friedrichs-Wirtinger inequality). Let
u € CO(Gg)ﬂWal_Q(Gg), a <2, and let \? be the smallest positive eigenvalue
of problem (EVP) and ¢ € W1(02)NCO(2) the corresponding eigenfunction.
Then

(214) | P (2)de < !

a—2 2d
_(2_a)2/4+>\2{xr |Vul|*dx

Gy

+B S r 302 (x) ds + [ S 302 (x) ds}
g, r.
with B defined by ,
Proof. For the proof we refer to [I, Theorem 2.34|. =
COROLLARY 2.13. Let the assumptions of Lemma be satisfied, and

let X = X*, where \* is defined by that lemma. Let u € CO(CTg) NWL (G,
a < 2. Then

1
a—4, 2 a—2 2
C§dr u”(x)dr < 2= a)2/AF N {GSdT |Vul|*dx
0 0
+B S r 3% (x) ds + B S 3% () ds}
rg rg
0+ 0—

with B = B(\*) defined by (2.6)).
Proof. Apply [I, Theorem 2.34| together with Corollary [2.9] =

COROLLARY 2.14. Let By = - = 3 > 0, b > b*, where b* is defined

by |D and u € C’O(CTg) N W;Q(Gg), a < 2. Then we can rewrite the
Hardy—Friedrichs—Wirtinger inequality (2.14]) as

1
(2.15) S re 2 (z) de < CESEE

{ S ro‘_z\VuP dx

Gd Go
+8 § o @) ds + 8§ o (@) ds},
r, ri.

where X € (m/wo, 2w /wo) is the smallest positive root of equation (2.10)).
Proof. Apply [1, Theorem 2.34] together with Corollary [2.10| =

COROLLARY 2.15. Let b = - - 67%67 and u € CO(ES) NWL (G,

a < 2. Then we can rewrite the Hardy—Friedrichs—Wirtinger inequality (2.14))
as
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1
2.16 o=hy2(z) dx < 2|\ Vul?d
( ) C§d7“ u”(x) x_(2—0¢)2/4+7r2/w8 {Gs’dr |Vul|* dz
0 0
- f[- S r 3% (x) ds + - S e 3u? () ds}.
s, ry.

Proof. Apply [I, Theorem 2.34] together with Corollary n
LEMMA 2.16. Let the assumptions of Lemmal[2.6] be satisfied, let X = \*,
where X* is defined by that lemma, and let B be defined by (2.6). Let u €
CoUGD N W (GY). Set
2 2
(2.17) U(o) = S \Vu*dx + B S L(x)ds—i-ﬁ_ S L(Jj)ds<oo
Ge re, e
for o € (0,d). Then
ou 0,
-~ < £ )
o) <u37"> dw < 3 U0)

0 r=e

Proof. Writing U(p) in polar coordinates,
4 2 2 Qe 9
1 2
U(o) = |r| (g“ L1 )dwdr—i—BSu (r.w0/2) 4
r r? | dw r

0 0

o 2

— 2

+ﬂ_xu (r, —wo/ )dr

5 r

and differentiating with respect to ¢ we obtain

oul®>  1]|oul?
(2.18) U'(o) = (Q — == > dw
;} or 0| 0w r—o
P plesnl2) ) o)

Moreover, by Cauchy’s inequality, we have

ou e o 1 5(0u\”
<z il -
Par =32" + 2:" <87">

for all € > 0. Thus, choosing € = A we obtain, by the Friedrichs—Wirtinger

inequality (2.11)),

QS ( 6u> dw
s o) |—,
€ ou|? 9 9 0% ¢ |oul?
< el _ =\ ==
< 2A2{§2 ¥ rzgdw—l—Bu (0,w0/2) + B_u?(o, w0/2)}+ 25!52 o), dw
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2

2 20, _ 2
_ o [putew/?) | 5 vle, w0/2)+§ L) Ou|™ |0u dw
2\ 0 0 0| 0w or _
n r=e
— 2000
_2)\U(g).

Applying Corollaries and repeating word for word the proof of
Lemma [2.16| we derive the following corollaries:

COROLLARY 2.17. Let By = f— = (3> 0, b > b*, where b* is defined by
l) and u € CO(GEH) N W&(Gg). Set

(219)  Uple) = | [Vul*dz + 8 | s+ 3 |

G¢ g, Iy
for 0 € (0,d). Then
ou 0 .,
i < =
Q§2 <u87“> T:de < 2)\UJF(Q),

where X € (m/wo, 2w /wo) is the smallest positive root of (2.10)).
COROLLARY 2.18. Let b= = - Bt0 yng oy e CO(GI) N W (GY). Set
wo B

u®(x) u®(z)

u®(x)

u®(x)

r

ds < oo

ds < oo

(220)  U-(o)= | |Vul?dx — 8- | ds+ 8- |
G§ gy g

for o € (0,d). Then
QS <u8u>
S or

We also need the well known inequalities (see e.g. [5, Chapter I, (6.23),
(6.24)] or |7, Lemma 6.36])

Vvds < C\(lv]+|Vo])dz, YveW"Y(G), VI C0G,
r G
1
(2.21) S vids < S (5]VU\2 + 6COU2) dz, YveWh(G), Vs >0,
oG G
and the following lemma.

LEMMA 2.19. Letu € CO(CTg) N Wal_Q(Gg). Then

dw < QﬂUl_ (0).
r=o 2m

(2.22) S o Su(z)u(y(z)) ds = S 392 (x) ds

d d
s, g,

d wo/2
_ ou(r,w)
—\r3u(r, w/2) ———dw | dr
5 ’ ( § 9 )

w
0



Nonlocal Robin problem 383

and
d “of2 ou(r,w) €
Sro‘*gu(r, w0/2)< S — dw> dr < = S 2| Vu)? da
w 2
0 0 Gg
+ % S r3u? () ds, Ve > 0.
: gy

Proof. Because u<x)|F€+ = u(r,wp/2), and u(’y(aj))]Fng = u(r,0) by Re-
mark using the representation u(r,0) = u(r,wo/2) — 8320/2 W dw we
h29)

obtain

Next, by the Cauchy inequality, we have

Lfr‘”‘%(r, wo/2) <WOS/2 Oulr,w) dw) dr

5 5 ow
< [t a“g;“) ‘ [u(r,wo/2)| dz
Gj
2
€ { o_a|Ou(r,w) 1 9
§§Sr S ‘ d +2—€Su(r,wo/2)daj
G§ Gy
€ 1Y /2
< 3 S re 2]Vu\2d:c+2—x S 302 (1, wo /2) dw dr
Gg € 0—wp/2
<< S 12| Vul? do 4 — S r3u?(z)ds, Ve >0.m
2 G ry
0 0+

2.3. The Cauchy problem for a differential inequality
THEOREM 2.20. Let U be an increasing, nonnegative differentiable func-
tion defined on [0, d] and satisfying
{U’(Q) —P(0)U(0) +Q(0) 20, 0<o<d,
U(d) < U07

where P, Q are nonnegative continuous functions defined on [0,d], and Uy is
a constant. Then

(CP)

(2.23) U(o) < Uy exp(— [SJZP(T) dT) + il Q(7) exp(— §P(a) da) dr.

Proof. For the proof we refer to [I, §1.10, Theorem 1.57|. m
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3. Maximum principle. The goal of this section is to derive an a priori
L (G)-estimate of a weak solution to problem (L).

THEOREM 3.1. Let u be a weak solution of (L) and let assumptions
(a)—(c) be satisfied. In addition, suppose that j > 1, t > p/2, p > 2,
h? € Lj/(j—l)(F+)) 92 S Lj/(j—l)(Ff); f2 S Lt(G), and C(.CU) < —cp <0
for all x € G, where ¢ is large enough, positive and depends only on v,
p, and || Y7, 6" (-)?[lp/2,c- Then there exists a constant My > 0, depend-
ing only on meas G, meas I'y ,meas I'_, v, p, |h?|;/i-1).r,» 19°;/G-1).r_
12lec, b, By, B, wo, such that ||[ullsec < Mo.

Proof. Set A(k) = {z € G : u > k} for k > kg > 0 (without loss
of generality, we can assume kg > 1). We note that A(k + d) C A(k) for
all d > 0. Taking n(x) = max(u(z) — k,0) as a test function in (II), by
assumption we get

(3.1) v S |Vu)? dz + ¢o u(z)(u(z) — k) dx

A(k) A(K)
+ By S U(x)(ugx) L)) ds
Iy NA(k)
+b L (@) () — K ds+ 5| u(x)(uix) -0
(k) I_nA(k)

lg(@)|(u(@) —k)ds+ | [h(@)|(u(x) = k) ds.

Iy NA(K) I NA(k)
Now, we estimate the first integral on the right of (3.1)). By assumption (b),
the Cauchy inequality and the Holder inequality with exponents ¢ = p/2
andq’zI%,p>2,

(3.2)

IN

2
v 1 i p/2 2/p
TV veldr+ S (F (OC @A) da) - @) = kI3, 2,00
A(k) A(k) i=1

IN
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Next we apply the inequality
||UH22p ¢ SOIVul3g +c(6,p,Gllull3 g, p>2,¥5>0,
(see for example [6, Ch. II, §2, (2.19)]). From (3.2) it follows that

2
33) | Y @) Vul(ulz) — k) de < T | |V de
At V=t A(k)

B

+2 Z BOP], g § I +lh G)ule) =) 50

We choose
2

CAEL Ol
Since b 4 ) (L/m)u(y(z))(u(z) — k)ds > 0, from f it follows

that
FOR], 0]

S \Vu|? dz + [co - c(v,p, G

A(k)

< | ) - kyde g, | UUDZR
A(k) I nA(k)

L4 S u(w)(uia;) — k) ds

I_nA(k)
< | 1f@)lu@) - k) de

A(k)

+ | lg@l(u(z) —k)yds+ | |h(@)|(u(z) — k) ds.
Iy NA(k) T_NA(k)

Next, since cg is large enough and positive, we can rewrite the above inequal-
ity as

ul@)(l@) — k)

(3.4) g | VuPde+py |
A(k) Iy NA(K)
s S u(a;)(uix) —k) d
I'_nA(k)

< | If@)(u(z) — k) do

S
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Now we estimate every term on the right hand side of (3.4)) by the Cauchy
inequality:

[ Il - 8= § ("5 i) i

A(K) A(K)
€ u(z) — k)2 diam G)?
<3 | Wd:w(%) | fPx)de, ve>o,
A(K) A(k)
u(z) — k
|l -Rds< | (M) gl ds
I NA(k) Iy NA(K)
: )2
< diam G S () ds + €1 S (u(z) — k) ds
261 i NA(K) 2 TiNA(K) "
< diam G S P(x) ds + &1 S u(z)(u(x) — k) s
2e1 2 r
I NA(k) Iy NA(k)
for all e; > 0. In the same way
diam G
| Ih@)(u(z) — k) ds < o | r*(x)ds
I_NA(k) > rLnA(k)
MERNCUCEL
I_NA(k)

for all e9 > 0. Then if we choose 1 = f+ and €2 = _, inequality (3.4)) takes
the form

(3.5) g S ]Vu\2dx+%ﬁ+ S wd

S
A(k) Ty NA(K)
I S I
2 T
I_nA(k)
e ¢ (u(x) —k)?
< B S 2 dx
A(k)
: 2
+(dla2mG) | P@dete | @f@dste | #(2)ds
S Aw Iy NA(k) I_NA(k)

for all € > 0, with ¢; = diam G/(264), c2 = diam G/(24-).

Now we estimate the first integral on the right of . First we use the
representation G = G& U Gy. The integral over G is estimated by
with a = 2; to estimate the integral over (G4 we use the Friedrichs inequality
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(see [9, (30.5)])

(3.6) S n(z)dx < Kl{ S \Vn|? dx + S n?(x) ds},
G G oG

where K depends on meas G and diam G. Then from (3.5)) and the definition
of n we obtain

1
SN
2 2 r r
A(k) Iy nA(k) I NA(k)

1 |
< 26)\2{ S |Vn|? dz + B S —n?(z)ds + B_ S —n?(z) ds}
A(k) AL Aynr.
+ ;Kld‘2{ | IViPds+diamG | i) ds}
A(k) AGAA(K)

G GO paydere | P@dste | K@

2e A(k) Iy NA(K) I'_nA(k)
for all € > 0, where B, A are defined according to Proposition [2.12] Now, if
we choose

0<E§min{ Y By . b },

1
25+ Kid?) 2 B BdgnG 57 0 Kidima

then we get

(3.7) S V|2 dx + S n2£x) ds

A(k) GNA(k)
gc{ | Pa@yde+ | Pa)yds+ | h2(a:)d3},
A(k) LNA(k) _NA(k)

where C depends only on A, b, B4, 6—,wo, d, v, meas G and diam G. Further,

because {,-n*(x)ds < diamG -, (n*(x)/r)ds, from (3.6) and (3.7) it
follows that

(3.8) | (vl +n*(2)) do
A(k)

< (E{ | @+ | F@ds+ | w2 ds}.
A(k) TiNA(K) I_NA(k)
By the Sobolev embedding theorem (see [0, §2, Ch. II| or [I1])

()™ 4 (] wa) <o § (vt ape)
AlK) 8GNA(K) A(k)
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for all 7* > 1 and p > 2; from (3.8) we obtain

p=2 N2~
(3.9) ( S nzﬂ% d:r) 4 ( S i ds) T < EC{ S (z) dx
A(k) OGN A(k) A(k)
+ S g (z) ds + S h%(z) ds}, Vit >1,p>2.
Iy nA(k) I NA(K)
Let now [ > k > ko. By the definitions of n(z) and A(k) we have

2p

2p 2p
| n2dz > | 02 do > meas[A()] - (I — k)2,
A(k) A(l)
S " ds > S 7’ ds > meas[dG N A(l)] - (I — k).
AGNA(k) GNA(l)
Further by the Holder inequality we get

| 2@ da < (meas[AR)) 0 (1 F2 e agy, > 1,
A(k)

S 9*(z) dz < (meas[I"y N A(k)])"/7 - ||92||j’,F+ﬂA(k:)>
rnA(K)

| hP(x)de < (meas[T- 0 AN - 1B 1.1 naw)s
I'_nA(k)
for all 7,5 > 1 (with 1/5 +1/j' = 1). From these inequalities and (3.9)) we
get
(3.10) (meas[A(l)])% (1= k)2 + (meas[0G N A(D)])?/7" - (1 — k)?
< {1 le,aqr) - (meas[A(k)])' " + (meas[ I’y N A(k)])"7
X |1g% M7 1y nagy + (meas[I- NV AE)D)Y - |h2 0 r nag ), ¥p > 2.
Now, by the Jensen inequality ([4, Theorem 65|), from (3.10) it follows that

(3.11)  meas[A(l)] + (meas[dG N A(1))) TG
E (t=Dp
< ——{(meas A(k)) @2

(I —k)r=2
+ (meas[I'} N A(k;)])ﬁ + (meas[I_ N A(k)])ﬁ}, Vp > 2,

where C' depends only on b, By, 8-, wo, v, t, p, | f*|le,. [l9° [l 7,1y 1R? N 2 ).
A, d, meas G and diam G. Now we set

2p

(k) = meas[A(k)] + (meas[A(k) N IG]) =2,
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Then from (3.11f) we obtain
1 (t=1)p

~ i

(3.12) Y1) < O (W)= + [y (k)] %)
(I —k)r2

forall I > k > ko, p > 2 and t > 1. Choosing j* > 2j, we observe that
f((;:g, %) > 1, since ¢t > p/2 by assumption. Then from (3.12)) we get

C

V() < ——— R, B>1 1>k >k, p>2
(I —Fk)r2
and therefore, by the Stampacchia Lemma (see Lemma 3.11 of [8]), (ko +9)
= 0 with § depending only on the quantities in the formulation of Theo-
rem [3.1] This means that u(z) < ko + 6 for almost all z € G.
Similarly, we derive u(z) > —ko—9 if we set A(k) = {x € G : u(z) < —k}

forall k > ko > 0 and choose in (IT) n(z) = min(u(x)+k,0) as a test function.
Thus, Theorem [3.1] is proved. =

min (

4. Local estimate at the boundary

THEOREM 4.1. Let u be a weak solution of problem (L) and let assump-
tions (a)—(d) be satisfied. Suppose, in addition, that either
(i) 0<b< %O(V + /2 + 2vwfy), or
(ii) w(x) >0 forz € G, or
(iii) Byu?(z)|r, + B-v?(@)|re + bu(@)|r, - u(y(x))|r, = 0.
Then
@1 s (@) € o g + 0
#€Gy? T (L= oY !
+ olllglloo g, + Illoc.re )}

foranyn > 2, p >n, > € (0,1) and ¢ € (0,d), where C is a constant
depending on u, v, p, || Z?Zl 6" (-) %[0, and the domain G.

Proof. We apply the Moser iteration method. We consider the integral
identity (IT) and make the coordinate transformation x = pz’. Let G’ be the
image of G, I'}. the image of I';, and I"" the image of I'_. Then dz = p*dz’,
ds = pds’. In addition, we denote

v(@') = u(ez’), w(y(@')) =u(v(ez)), n(a") =nlex’),
F(a') = *flex)), G(a) = og(ea’), H(a' :
Then from (II) we get

~—
I
=)
=>
—
U
8
—



390 M. Borsuk and K. Zyjewski

() Y {a¥(0a")var 1y — ob (02" Yvan(a’) — o%c(o)o(a (')} da’
o

w5 (Zrote)+ ot Jue)as + 6. § S5t as
ry rr
= | G )m)ds'+ | H(2')(2')ds' = | F(a')n(a') da’
Fjr I’ G’

for all n € CO(G") N W(G'). We define

1
(4.2) m =m(e) = —(IFllp2.c8 + 1Glloc,rg, + 1Mlls,rz )
and
(4.3) v(z') = |v(2")| +m.

We observe that
Fa)oa') = —|F@)] - mite!) = Fa)|@) - @) - v(@)

m

= LFE)] T — - F )] o))
(4.4) !
< | P @)

H(2")[o(2) %|H(l‘/)|'@2(:ﬂ/); G(=")[v(a") < —|G(2)] - 7*(a)

IN

1
m
in the same way. As a test function in (II)" we choose n(z') = ¢2(|2’|)v(z),
where ((| - |) € C§°([0,1]) is a nonnegative function to be further specified.
By the chain and product rules, 7 is a valid test function in (II)" and also
Ny = vy C2(|2']) + 2¢(J2']) ¢ v(2'), so that by substitution into (II)’, in view
oflc(gaz’)l <0in G’ and v < Z|v| < v, we obtain

v2(2)

2 ! /
o ) ds

S aij(gm’)vm;vZ;CQ(\m’]) dx’' + By S
Gl Fl
0 0+

o | @) s + 6 |
Iy Iy
< 0 | 608" v [5(a")C2 (o) i’ +2 | Ja¥ (02" oy [0/ o’
G G
© | HEEC( ) ds + | G\ ds + | Fayo(e!) da.
Iy Ioy G}

By ellipticity and (4.4]) it follows that

v2(z")

||

¢*(a']) ds'
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Uz(x/) 2017 /
o) a

45) | vIVP(lo/]) da’ + 84 |
a3 g,

/ U2 !
oG ds + 5o | U as
r}

2
< § o 1)) Il A ') da
G(l) i=1

/ o / / 1 P / / /
+2p | V70l - [V'¢o(2)¢(|2']) de +E||g\|oo,p01+ | 9@ (12') ds
Go

Ioy

+%HHHOO,pgf J 7)) ds’ + — S\f( No* ()¢ (|2"]) da’

Iy_ G(l,

It is obvious that if assumption (ii) or (iii) is satisfied, then

2( 2(
o § Sl as v o | S a
Iy I
#0 | LG 2 o0
Iy,

We now estimate the last integral on the left hand side of . in case (i).

Because v(z )|F1 = v(r’,wp/2) and, by Remark v(y )]F1 =v(r',0),

using the representation v(r’,0) = v(r’',wy/2) — 530/2 av(g w) dw we obtain

v(a Co2(r w
4oy § e = | S ) o
Iy 0

Next, by the Cauchy inequality,

Lol w wo/2 v(r’', w
(47) Sv(rv 0/2)C2(T’,)< S 0 ( ) )dw) dr'!
0

7/ 5 ow
(Y| dv(r,w

< | T(,Q) (a oo, woy2) d’

Gy

€ C2(T,) 811(7”,&)) 2 / 1 201 /
< Z il
—2 S 7’2 Ow dx+2€ Sv(r,w0/2)dac

Gl al
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N wo/2
¢(r') S vQ(TI,w0/2)dwdr'

1
<5 | VP (el da’ + o

O e =

2e r!
Gé —w0/2
< - [ IvoP(aly da’ + 20 v2($/)C2(|x’|)ds' Ve > 0.
-2 2e || ’
Go Ioy
Choosing € = v/b in (4.7)), from (4.5)—(4.7) it follows that
1 1027200 / b2w0 v2(xl) 201,/ /
37 ) VP (e da’ + (B +b— 572 ) § = 5m¢ (') ds
o Iy
V2 (2!
oo | LS as
-
2 % YV 1/2 Loz o -2 / /
< Jo( X Wier) ) TIVofpa)¢ (|2 da
G(l) i=1
1
+2u | Vol - IV C@)¢(a’]) dz’ + —IGlloo,ry, | 2% (|2')) ds’
Go Toy

b Mgy § P S + | IFER () d

Iy G
By (i), we can easily verify that 8y + b — b;% > . Therefore, in any case,
from (4.5) we get
1
(48) v | IV/oPP¢(2)) do’
Go
& ) /\|2 1/2 1o = (ol 2 / /
< §o( D Wtea)?) "IV ula(a)¢(la')) da
Gy =1

_ 1 _
+2u | [V'o]- V'¢[o(2")C(12"]) da’ + —[1Glloo, g, | 2°()3(|2']) ds’
G oy
1 _ 1 _
R L I W ) T (0 Pl W ) e CO Tl (P RS
r} G}
We estimate every term by the Cauchy inequality for any ¢ > 0:
2p/ V0| [VCIC(l2")o(a) = 2(IV"0] - ¢(|2'])) (o () V<))
2
< e[ VoPC (') + o) VP
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2

o( Y10 (er)P) v el 1)
=1
= () (vt Z () 2) ) 197

< Za(@) () (Zw o)) + 59023,

To estimate the boundary integrals on the right in (4.8) we apply (2.21]) to
get

(19)  gv | VP (e do

G
3e _
<5 | Iv7ulPe(a’]) da’ + - S IV'¢*0% (") da’
G} G1
0

2 2
+ ;’g (g b (02)?) 7 (a)¢2(|a') do’

1

+— | 12 )P (@) () do’
m
Go
1 1\ |2 1 =20\ 2 / !
+ — 1y +Mlorg) § (SIVCOP + Seov*(@)c (') da
Go
for all £, > 0. From
(4100 VP <2ACIVIP+TE)IVEP), VP = [Vl
it follows that
(4.11) V(D) < 29"0°¢? + 25 (@) V¢

Now, by (4.9)—(4.11]), choosing e =v/6in (4.9) and using (4.2)), we find that

v 6
2L IVl de’ < 2 Ve da
G} Gl
0 0

ay =l G}
+ 260 | P (@) VP da’ + 52§ 7(2')¢ (o)) da’
G} G}
+ = | 17@) 0 (@) P(|2) da’, Vo > 0.
™m
G
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Now we choose ¢ = 1/16. Then by (4.10), the last estimate yields

1124201 ’ 48,U2 11220 1 /
| [V (|2']) da’ < 2 | V¢ () da
G G
240 21‘/2—2/2/ ' =20 NI (2 g0
+ = § (X W) T @)l da’ + § 7(a') V¢ da
gy i=1 G}

8
+128¢ | 9°(2')*(|2]) da’ + — | |F(@)[0*(2')¢*(|2f]) da’.
Gl e
The above inequality can be rewritten as
412) | [VoPC(a')) da’ < Cr § (IV'CP + C(1'))0? (o) da
G G

= |7 ()]
+Cs | (@2 S (b (o')|? + )v2<x’><2<|x'\> da’,
Gl i=1 m
where the constants C7, Cy depend only on ¢y, w, v. The desired itera-
tion process can now be developed from (4.12)). By the Sobolev imbedding
theorem (see [0, Ch. II, §2|) we have
(4.13)  [|¢0)% o0 < CF J((IVCP + G2 ) + GV da!, 7> 2,
n—2'-0 G(l)

where the constant C* depends only on 7 and the domain G. The Holder
inequality yields

2 /
419§ (@ Wi+ TN i ar
1 =1

Go

2
2 (o + 1

i=1
and from (4.12)—(4.14) we get

(4.15) 0%z gy < C V (V¢ + ¢ (la')))o? (2') da’
Go

2
Y we)p + ZU
=1

m

g ‘

||C6||227P Gl b > 2,
p/2,G} p=2770

+Cy

ol s P> 2.
p/2,G} p-2:%0

By the interpolation inequality for L,-norms,

1122, oy < el6Tl 2, gy + &7 P GTlo gy P> 7> 2, Ve >0,
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where ¢ = pp” (p) = , and by (4.2) from (4.15) it follows that

(4.16) |GVl 21 1 < VC5-[I(C+ VD,

2 1/2 -
2 7 2 — ~ = _
VG (| W], ¢ +v) T 2+ T T

for all p > n and € > 0. Choosing

1 2 : i 2 -1/2
pEven (G ILICRL W)
in (4.16)) we obtain
(4.17) I16o]l 22 1 < CINC+VCDDllga 7> 2,

where C' depends only on ¢y, p, v, p, diamG, || 2?21 16"(-)?[|,p/2,;- This
inequality can now be iterated to yield the desired estimate.

For » € (0,1) we define G’(j) = G64+(17%)27j, j =0,1,2.... It is easy
to verify that G = G( ) C .-+ C G{;;4) C G C -+ C G, = G}
Now we consider the sequence of cut-off functions (; € COO(G’(j)) such that
0<¢ <1inGj,), ¢ =1nG| and (j(z') = 0 for [a/| > »+277(1— ).

Hence

(j+1)°

j+1

2 . )
[V'¢i(a")| < T for se 4279711 — 3) < |2/ < e+ 279 (1 — ).

We also define ¢; = 2( ) j=20,1,.... Now we rewrite (4.17)) replacing
¢(|2']) by Gz ") to obtam

(4.18) 71l 25_c

€] +1>

Putting w = ]E\(ﬁ) , by (4.18)) and the definition of ¢;, we get

=2 (n=2)j

_ 20 2%
Hthj+1,G,(].+1) = ( S wn—2 dx’) n

Gjt1y

F-2\;
9i+2 \ (77 (B=2ys C \%t iz
< , = — 4"
B <Cl—%> Hw||2G(> <1—%> > ol e,

After iteration, we find that

oo 1
C P
v ’ << —

(4.19) 1olless.67,,) < { 1— %}
Notice that the series Y72 (j + 2)/t; is convergent by the d’Alembert ratio

test, and Z;io 1/t; = n/4 as a geometric series. Therefore from 1 we
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get

HEHtijl,G/(j+1) < WWHZG%-
Consequently, letting j — oo, we have

sup |v(x')] <

—||v .
o, TSRS
Hence, by the definitions (4.3]) and (4.2)), we get
C

/
xlsélgg v(a)] < W(HUHQ,G}) + 1 Flp2.68 + 1900, rz, + 1Mooz )-

Returning to the variables x and u we obtain the required estimate (4.1)). m

5. Global integral estimate. Now we shall obtain a global estimate
for the weighted Dirichlet integral.

THEOREM 5.1. Let u be a weak solution of problem (L), A% be the smallest
positive eigenvalue of problem (EVP) and let assumptions (a)—(d), (f) be
satisfied. Suppose, in addition, that 0 < b < (1/wg)(v + /v? + 2vwofy).
Then

’LLQJ;‘ U2.’1§‘
r(g)derS 7E)ds

5.1 | Vude+ |
G

G oG

< C’{|u|§7G—|—§;f2(x) dx + S g*(x)ds + S h%(z) ds},
r. r

where the constant C > 0 depends only on b, wo, B+, || Z?Zl |bi(-)|2||Lp/2(G),
p, v and the domain G.

Proof. Setting n(z) = w(z) in (II) and using the Holder inequality, by
assumptions (a), (c¢) we get

u’(x)

u\xr U2 xr
52) v |Vufdz+ | <ﬂ+ +b(r)u('y(x))> ds+ 8- | v @) g

r

G Iy I
< T[S W @2 ful [Vul de
G =1
+ § fullg(@)l ds + § ul [h(@)] ds + § Jul |£(2)| dz.
I, I G

Now, by assumption (b), the Cauchy inequality with ¢ = /2 and the Holder
inequality with ¢ = p/2, ¢ =p/(p —2), p > 2 we have
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2
> b (@) 2 ul) de
=1

2
% S |Vu)? dw+iéz;bl z)[2u? dz

v 2 1 2 i 2\P/2 \2/p 9
TVl dr s (§ (W @P)" de) ™l
G G =1

Further, we apply the Sobolev inequality
HuH2 < 6| Vul3 g +c@.p. Oul3g,  p>2,¥0>0

2
3 P ul [Vl = § vl

=1

IN
Q

IN

2p G
(see for example [6, Ch. II, §2, (2.19)]); hence

2

(53) || i) ful [Vul do < © g Vul?dz + - HZW ) H .
G =1
X S(5|Vu]2 + ¢(6,p, G)u?(z)) dz, V5 > 0.
G
We choose § = v2/(8]| 322, 16" (-)[2[lp/2,c:)- As a result from f we
obtain
2
(5.4) %” [19ufde + 6, | g
G Iy r
u(z) u?(x)
—l—bS . u(y(x))ds + [- S Tds
ry I
<C\uP(z)dz+ | |u|lg()|ds+ | |u||h(2)ds+ | u]|f(z)|dz,
G Iy I G

where C' = C(p, v, || S0, [b(-)]? Ip/2.6> G). Now we consider I'y = I, UTyy
and estimate the third integral on the left hand side of (5.4 . We estimate
the integral over F0+ by Lemma [2.19 with @ = 2 and ¢ = v/b. And, by
assumption (f), we estimate the integral over Iy, as follows:

b | @) ds <5 e

Fd+

meas [}

Thus from (5.4]) we get
b wo

(5.5) gg\vu|2dx+(ﬂ —+b> |
G Iy

u?(x)

r

ds

uzix) ds + B S

I_

2

<c{luo+ § ol ds + § fulwGo)lds-+ ] ol )] de .
G

Iy I
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From 0 < b < w—lo(l/—i— V2 + 2vwp ), we can easily verify that 34 — b22°‘;° +b
b2wq

> 0. Now, by the Cauchy inequality with ¢ = 3 —>2+b and assumption (c)
we obtain

= M rlg(x s

V llseas = § (1) rlgna
1/, b wz) diam G 201 4o
§2<ﬁ+ 2 +b)}§+ r d+2(ﬂ+_b22°;o+b)§+g()d,

in the same way we have

1 2 i
| lulln(e)ds < o= | & (2) g 4 dam G | h2(z)ds;
2 r 20_
I r I
1 2 1 2
J lul 1f ()] do < 3§ uf? dz+ o £ de.
G G G
Hence and from (/5.5 we get the inequality
2
(5.6) | |Vul>dz + | w1 g
G oG r
2 2 2 2
< C{|u|07§+8f (x)dx + S g°(z)ds + S h (x)ds}.
€] Iy r-

Finally, by the Hardy—Friedrichs—Wirtinger inequality (2.14)) with o = 2, we
get the desired estimate (5.1)). »

THEOREM 5.2. Let u > 0 be a weak solution of problem (L), let A €
(7 /wo, 2T /wo) be the smallest positive root of and let assumptions
(a)—(d), (f) be satisfied. Suppose, in addition, that B+ = f_ = 3 and b > b*,
where b* is defined by . Then

(5.7) Syvuﬁdxﬂ“i(f) de+ | “i@ ds
G G oG
<O{lullg+ | F)de+ | P@)ds+ | B (a)ds},
G AN I

where the constant C' > 0 depends only on b, wo, B, || Y2, ]bi(-)leLp/Q(G),
p, v and the domain G.

Proof. As in Theorem we get with G4 = 6_ = . By assump-
tion w(z) > 0 and estimating integrals on the right , by the Cauchy
inequality with e = 1, we obtain . Next, by the Hardy—Friedrichs—
Wirtinger inequality with a = 2, we get . "
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THEOREM 5.3. Let u be a weak solution of problem (L) and let assump-

tions (a)~(d), (f) be satisfied. Suppose, in addition, that b= 7 - mﬁ%ﬁ* and

5T2u2(93)lr+ +Bw?(@)|r- +bu(@)|r, - u(y(@))lr, =0, w?(@)|r, = u*(@)|r_.

2 u?(z)
5.8) | |IVu?da+ | o da
G G
< C{|u|(2)7é+8f2(x) dx + S g% () ds + S h?(x) ds},

G Iy I

where the constant C' > 0 depends only on b, wo, B+, || Yo, \bi(-)\QHLP/Z(G),
p, v and the domain G.

Proof. As in Theorem we get (5.4). Further, by Biu?(z)|r, +
B_u®(x)|r_ + bu(z)|r, - u(y(®))|r, =0 and estimating the integrals on the
right of (5.4]) using the Cauchy inequality with e = 1 we obtain

(5.9) | IVadr < c{\u|g§+§f2(x)dx+ | ?(@)ds+ | h2(@) ds}.
G G Iy I

Next, by u?(z)|r, = v*(z)|r_ and the Hardy-Friedrichs-Wirtinger inequal-

ity (2.16]) with o = 2, we get (5.8)). m

6. Local integral weighted estimates

THEOREM 6.1. Let u be a weak solution of problem (L), let A = X\*, where
A* is defined in Lemma and let B be defined by . Let assumptions
(a)—(f) be satisfied with A(r) Dini-continuous at zero. Suppose, in addition,
that is satisfied. Then there are d € (0,1/e) and a constant C > 0
depending only on s, \, v, b, B+, B_, d, the domain G and S(l)/e (A(r)/r)dr
such that for a.e. o € (0,d),

2 2 2
| (v + “rgm>)dx+3 | = ff“) ds+p- | ° 7@ ds
Gs i, .
1 1
< (g + sy + b+ 5+ 1B+ laler, + Il )
0N if s > Ak,
x Q0PI (1/0) if s = Ak,
0% if s < Ak,

where k is defined by (|1.3).
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Proof. Setting n(z) = u(x) in (II),,., we obtain

u?(x)

loc?

2
(61) | |VuPdr+py | —=ds+ 0 | “?E”““)ds

Gg Igy g

) (v05)

dw + S (a¥ (x) — a¥ (0))u(z)ug; cos(r,x;) df2,
r=g 2,

gy gy Iy
+ S {—(aij(x)—aij(O))umuwj—i—bi(x)u(:v)uxi+c(x)u2(x)—u(x)f(:v)} dx.
Gg

We estimate the integral SFOQ (u(x)/r)u(vy(x))ds by Lemma|2.19|with o = 2.
+
Thus we get

(6.2) <1 — b;) GSQ IVu|? do

h— bwo 2 2
+B<B++B25> g uim)derﬁ_ | “T(,‘T)ds

<of (u3)

+ S u(z)g(z)ds + S u(z)h(x)ds
I5' Iy

+ | {0 (@) = a7 (0) Ju, g, + b (@)ul@) g, +c(w)u? (z) —u(e) f(2)} da.
Go

Now, if we choose

V(By +b—B)? + Bbwy — 31 —b+ B
Bb
in (6.2), then since ¥ < 1 we can verify that

b +b— b 1
1_£:ﬁ+728>0 for 0 < b < —(v+ V2 + 2vwpBy).
2 B wo

From definitions (2.17)), (1.3)) we obtain

63w <ol (unfh)|

Q r=e
+ | (aY(2) — a"(0))u(x)uz, cos(r, z;) di2,
2,
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+ | {= (0" (z) — a"(0))u,ua; + V' (2)u(@)te, + c(z)u?(z)} do

G§
- S u(x) f(x)dx + S u(x)g(x)ds + S u(x)h(zx)ds.
Go Igy Iy

Now we estimate the integrals on the right hand side of (6.3)). The first one is
estimated by Lemma [2.16} and the next, by assumption (b) and the Cauchy
inequality:

J (@7 (2) = @ (0)u(w)uz, cos(r, ;) 2, < 0A(o) | [u(w)| [Vu] dw,

64) T y | .
[ (0 (@) — ¥ (0))tz,ta, + b (2)tz, (@) + c(2)u(2)} do
cs

< Ao) | {|VU|2+1ﬂ?ff)}dx.

G§
Thus, from (6.3))—(6.4) it follows that
4
(6.5)  kU(0) < 5:U'(0) + 0A(0) | [u(@)| |Vul dw

2 5
u? ()
+ A(o) \Vu|? + —= | dx
§ (v 55)
+ | Ju@)|lg@)ds+ | |u@)| |h(z)|ds+ | |u()]|f(2)| de.
Iy, Ig- Go

Further we bound the integrals on the right of (6.5)). First, applying the
Cauchy and Friedrichs—Wirtinger inequalities (see (2.11))) with the use of

, we have
(6.6) A(0) | olu(x)| |Vu|dw < %A(Q) V(@1 Vul® + Ju(@)[?) dw

9] 2

1 2 || Ou 1 |oul?
< = | 2=
—2A<9>5@[ar 92&”} a

9} r=e
1 1 ou |? o  wo 2 wo
+2A(Q))\2{§2 0 dw + Bu (g, 2> +6-u (Q,—2>}
1 oul®  1]|oul?
Fples ;o)
0 o

< ¢1(b, B+, wo, ) oA(0)U' (o).
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Next, using the Cauchy and the Hardy—Friedrichs—Wirtinger inequalities (see

(2.14) for a = 2), by (2.17) we obtain

Juf?
6.7 Alo) \ (IVul*+ = | d
§ (190 5)

< <1+1)A(g){ | [Vu?dz+B | u () ds+ 8- | ui(fz) ds}

)\2 e o r 4
Go Ty To-

S CQ(bv /Bﬂ:u wo, )‘)A(Q)U(Q)7
and for all § > 0 we get

FS u(@)| lg(@)] ds = FS (/2 @) (/5 b )
1

< 9B+ S U2(1’)d

s+ S rg?(z) ds;
+

=2 ) 256, )
(6.8) Fo+ﬂ Ioy
§ o) n@lds = | (% @) ([ ol )
rg. I -
5B 2
< g Fg} uix)d +2515— i rh?(z) ds;
U2 Xz
(6.9) | |u(a:)|\f(x)\da:§g | (2 )4 +% | 7 () da
a a a
< Sealb, s NU(0) + 55 | 2 2(x)da
as

by (2.14) and (2.17). Thus from (6.5)(6.9) we get

(6.00) (k= ca(6+ A@)U(0) < 57 (1 + 5 AU (0)

+%{ | 7"2f2(:76)d$+51+ | TgQ(x)d8+gl | r*@ds}, v

G§ I, IRt
But, by condition (e),

(6.11) 81"2]‘2(39)d:v—|—i S 7“92(;10)015—1—i S rh?(z) ds

Gg & I'yy b~ g
1 1 1
é* w0f2+92+h2> 2s
23< TR
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Now we take into account that, by ([1.3]), we have 0 < k& < 1 and therefore
k—cs(0 + A(0)) _ 1—k+ca(d+ Al0)) + c5.A(0)
1+ c5.A(0) 1+ ¢5.A(0)
> k[l — cgd — 7 A(0)], V6> 0.
Thus, from (6.10]), we have the differential inequality (CP) of Subsection 2.3
with

P(Q) 22k [1—665—67,/4( )]
(6.12) Q(@)=%<wof§+ﬁl+gé+ﬁ_ ) §1o® 7t W >0,
Uy=C(1+B+p4-)
X {|u|gﬁ+gf2(1:) dzr + S g*(x)ds + S h(x) ds},
G

Iy r.
by (2.17)) and (5.1). We shall consider three cases:

CASE 1: s > A\k. Choosing § = ¢° with £ > 0 we obtain

Plo) = 2% +[1 - cod” — erAlo),
A 1
Q(Q) = 2 < OfO + ﬂigo + 6_h2) . 025—1—5.

Since P(0) = 2Ak/o — K(0)/0, where K(p) satisfies the Dini condition at
zero, we have

_gp(s) ds — —2\k ln<;) n § M) s < 1n<9> o + ‘f 'Cis) ds,

4

SO
T 20k d 22k
K
exp(—gp(a) da) < <T> exp((&)fjd > = Ky (f_) :
d 27k d 20k
K
exp<—§)77(7') dT) < (g) exp((xj 7(_7—) dr) = K()(s) )
Moreover,
d T
S Q(7) exp(— S P(o) da) dr
’ ’ < @ w f2+ 1 +7h2 Ak(§T252)\k51 dr
=2\ T )e )
s—Ak

AKy 2 2 d 20k
< — +
- 2s <WOfO ﬁJrgO 67 h ) S — )\k‘g ’

since s > Ak and we can choose ¢ = s — \k.
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Now we apply Theorem then from (2.23), by the above inequalities
and ([2.14) for o = 2, we obtain the statement of Theorem for s > Ak.

CASE 2: s = M\k. Taking in (6.12)) any function §(o) > 0 instead of § > 0,
we obtain problem (CP) with

P(Q) — 2)‘k<1 _0065(9)) _ CSAEOQ)’

0(0) = A(ofo - go+ho) 51 (0)g™ 1.

We choose (o) = 1/(2¢c¢Ak1n(ed/ o)), 0 < o < d, to obtain

T T ¢ do dA(U)
—SP(J)dag—D\kln——i—SW—i—%S do
) e 0 n(ed/o) 5o
2k lng d
:1n<g> +ln< Z>+08SA(U) do.
T ln% 0
Then
T 20k p &d 44
exp(—SP(a) do) < (f) . lné -exp(csx ((70) da),
0 T 0
d 27k d
exp —SP(T) dr | < o -In ed | exp CSS AlT) dr |.
) d 0 0 7

In this case we also have

1 1
—g5 + h2>

§Q(T) exp(—gp(o) da) dr < %(wofg A — g

o

d d
x 02\ exp (CSS Al) dO’) In ed. 8(5_1(7)7'_171% dr
0

g
0

d
§09<w0f02+ﬂ1 —i-ﬁ_hz) 0> 1n? <e@>'

Now we apply Theorem and from ([2.23)), by the above inequalities,

we obtain
2, 1 5 2) 2k 91 1
U(o) < cio| Up+wofy + g5 + h In“=, O0<pop<d<-.
ﬂ+ B— 0 e

Thus we have proved the statement of Theorem for s = Ak.
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CASE 3: 0 < s < Ak. Now as in Case 1, using (6.12)) we have

exp<—§’P(a) dg) . Cll<f>2,\k(1_c65) exp<§l Ao )dr> . 2(@)2)\/6(1065)
0 0

-
and
d 2Mk(1—cg0) dA - 22k (1—cg)
exp (— S P(1) dT) < ci3 (Z) exp(s 7(_ ) d7'> = cl4<§) )
14 0
In this case we also have
d T
S Q(r) exp(— S P(o) do’) dr
0 0 J
A 1 1
<= wﬂfg + 793 + 7]’1;(2) . 5—1Q2/\k(1—665) ST25—2>\]€(1—CG(S)—1 dr
28 ,8+ _

0
1
<eis <w0f2 + g5 + h2> 0,
0T BT
if we choose § € (0, L(1 - —))
Now we apply Theorem . and then from ([2.23)), by the above inequal-

ities,

1 1
U(o) < 616{U0Q2>\k(1_656) + <wof§ + 579(2) + ﬂh%> : QQS}
+ —_

G-
Thus we have proved the statement of Theorem [6.1] for 0 < s < \k. =
THEOREM 6.2. Let 31 = _ = [ and b > b*, where b* is defined by (2.9)),

and let uw > 0 be a weak solution of problem (L). Let assumptions (a)—(f) be
satisfied with A(r) Dini-continuous at zero. Then there are d € (0,1/e) and

a constant C' > 0 depending only on s, wo, v, b, 3, d, G and | /e( A(r)/r)dr
such that for a.e. p € (0,d),

S <|VUI2+ui(2$)>d:p+ﬁ S u2£x) ds

1 1
<ci7 (Uo + 13+ EQ% + h%) 0%

Ge aGE
1
< (Il + w0ff + 56 +13) +lblEr )
o if s> A,
X< 0P 1n?(1/p) ifs=A
0% if s <A,

where X € (7 /wo, 2 /wg) is the smallest positive root of (2.10)).
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Proof. As in Theorem we get equality (6.1) with 8 = gy = f_. By
the assumption u(x) > 0 and definition (2.19) we obtain

(6.13)  Ui(o)
ou . L
< u(r)— df2+ \ (a”(x) — a"(0))u(z)us, cos(r,z;) df2,
o) (05| 2+ §
+ [ {= (0" (2) — a7 (0)ug,ua; + V' (2)u(@)uy, + c(z)u?(2)} do
G§
~ Vu@)f@)de+ | u(@)g@)ds+ | u(x)h(z)ds.
G§ gy Is-

Now as in Theorem [6.1| we estimate the integrals on the right of (6.13). The
first one is estimated by Corollary [2.17} the next one, by (6.4). Thus from

it follows that
(6.14) Ui (0) < - UL(0) + 0A(0) | [u(x)| [Vuldw+ | [u(x)]lg(x)| ds

—2x Tt P E
U2 X
# ] @l as+A@) | (19 + 5 ) as
g el
+ | Ju@) | (@)] do.

G§

Further we bound each integral on the right of (6.14]). First, applying the
Cauchy and Friedrichs—Wirtinger inequalities (see (2.12])) similarly to ,

we have
(6.15) A(0) | olu(x)] |Vu|dw < c1(b, B,wo, N 0A(0) U, (o).
2
Next, using the Cauchy and the Hardy—Friedrichs—Wirtinger inequalities (see

(2.15)) for a = 2), by (2.19), similarly to (6.7) we obtain
616 A | (1 + ) dr < 0.0 0 AU 0

Go
Thus from (6.14)(6.16]) and (6.8), we get

(6.17) (1= ca(d + A(@))Us(0) < 5 (1+ e A(@)UL (o)

1 1 1
+25{ S 2 (x )d:c+ﬁ S rgQ(a:)ds—i-E S th(ar)ds}, Vo > 0.

GO F(f—ﬁ— I é)

Then by (6.11)) from (6.17) we deduce the differential inequality (CP) of
Subsection for the function U4 (o), with
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P(o) = 22+ 11 - cod — cr (o)}
A 1
A0) = 5, (cuofo2 + B(gg + h%)) 0T, e > 0
Up=C(1+ ﬁ){|u|§7§ +{ P@)de+ | P@)ds+ | h2(a) ds},
G Iy I

by and . Next, repeating the proof of Theorem for the Cauchy
problem (CP) with the function Uy (p) we get the desired result. m
THEOREM 6.3. Let b = - - %%ﬁ‘, By (z)|r, + Bou?(x)|r. +
bu(z)u(y(x))|r, =0, v?(z)|r, = v?(2)|r. and let u be a weak solution of
problem (L). Let assumptions (a)—(f) be satisfied with A(r) Dini-continuous
at zero. Then there are d € (0,1/e) and a constant C > 0 depending

only on s, wg, v, b, B, B, d, G and Sl/e( A(r)/r)dr such that for a.e.
€ (0,d),

2
S <|Vu|2 + UT(2$)> dz
Go
1
e (R 2+ Wil )
o if s>\
X < 0P n?(1/0) if s =\
0% if s <A,

where A = Jwy.

Proof. As in Theorem we get (6.1). By our assumptions and ([2.20))

we obtain

ou
(6.18) U-(o) < u(x)— dasf?
¢ Q(S} ( 6r>

r=e

7(0))u(x)us, cos(r, x;) d2,

+

e

J (@
9]

T § {0 (@) — 0 (0)) g,z + Vi (@)u(@)ta, + e(@)u(2)} do
G

— Vu@)f(@)de+ | u(@)g(z)ds+ | u(z)h(z)ds.
G¢ g, reg

Now similar to Theorem [6.1] we estimate the integrals on the right hand side
of (6.18)). The first integral is estimated by Corollary the next one, by

©.4). Thus, from (6.18) it follows that
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(6.19)  U-(e )SﬁU’( 0) + 0A(0) | [u(@)| [Vuldw + | |u(x)||g(x)| ds
(7 FQ

u
# § @l i@l s+ Al0) | (1902 + 55 Yot | utol 1),
re e e
where A = 7/wg. Further we bound the integrals on the right of (6.19).
First, applying the Cauchy and Friedrichs—Wirtinger inequalities (see ([2.13))
similarly to , we have
(6.20) A() | olu(@)||Vul dw < c1(b, B, wo) 0A(Q)U” (o).
9]

Next, using the Cauchy and the Hardy—Friedrichs—Wirtinger inequalities (see

(2.16) for oo = 2), by ([2.20]), similarly to (6.7) we obtain

2
020 A@ | (904 ) o < b b AU (o)

Gg
Thus from (6.19)—(6.21]) and we get
4

(6.22) (1 —ea(d+.A(0))U-(0) < 51 (14 ¢5A(0))UL(0)

1 1 1

26{ S r2f2(z) dx + N S rg*(x) ds + 5 S th(w)ds}, A= 1,

a4 g g

for all 6 > 0. Then by (6.11) from (6.22)) we have the differential inequality
(CP) of Subsection [2.3 for the function U_(p) with

2
Plo) = , (L — 6 — erA(o)], A:wio,
_i 2 i 2 -1 2s 1 _ T
Q(Q)—2$<w0f0+ﬁ+go+ﬁ_ ) § : A—wO,5>0,
Us :c{\uygg+§f2(x)dx+ | $?(@)ds+ | n*(x) ds},
e ry r

by (2.20)) and (5.8)). Next, repeating the proof of Theorem [6.1]for the Cauchy
problem (CP) with the function U_(g) we get the desired result. =

7. The power modulus of continuity at a conical point for weak
solutions

Proof of Theorem[I.5. We define

oM if s > Ak,
(o) =4 M n(1/0) if s =k,
0° if 1 <s < Ak,

for 0 < o < d.



Nonlocal Robin problem 409

By Theorem we have
(7.1) sup u(z)| < C{o  lulla.ge + 2PN fllp .

e + 09l rg, + 1Allorg )}
where C' = C(v, p,p, | 7 [6'()*|l,/2.6-G) and p > 2. Then, by Theo-
rem [6.1],

l2ce < ( | @dw) 1/2

(72) o M u
G§

1 1
< c(ufnw gllors + Wloerr + V@5fo + —mmgo + ho)w@.
; VBT R
Further, by assumption (e) and s > 2 —4/p, we get

(73) O flynce + ollglloore, + I1llore )

1 1
< C(fo + go + h0)¢(9)
V B+ vV B-
for p > n > 2. From (7.1)—(7.3) it follows that

sup |u(z)]
xeGgﬁ
<C<Hf T llglloors + hlloor + fo+ —mgo + — h)w(m
= 2,G oo, I oo, [ 0 0 0 .
i VB VB-

Then putting |z| = %Q we obtain the desired estimate (D "
Proof of Theorem[1.7]. We repeat the proof of Theorem by taking

o if s > A,
v(e) = § o*In(1/0) ifs= A,
0° ifl<s<A,

and applying Theorem instead of Theorem [6.1] =

Proof of Theorem [1.8 We repeat the proof of Theorem [I.7] applying
Theorem [6.3] instead of Theorem [6.2] =

8. Example. We consider the corner
Go = {(r,w) :r >0, —wp/2 < w < wp/2, wp € (0,7)} C R?
with 0G = QUL UT_, where I'y = {r > 0, w = +wy/2}. Let b = wlo.ﬁ?:ﬁf_
Then the function

utre) = (1) o)
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where ¥ (w) = [- cos(Aw) — Asin(Aw) and A = 7/wp, is a solution of the
problem

9 i
a%i(aj( Juz;) + c(z)u = 0, r € Gy,
ou u(x) b
el = I
a ﬁ+ | | +|J)| ( (l’)) g(ﬂ;’), HAIS +
+0-—= u( ) h(z) xel_
kal/ ’ | ) )
where
2 x2
11 4 A 2
@ @) =1 A+1 r2Inl’
2 1T
12\ _ 21/ _ L 12
a (x)_a (':U)_)\+1 7'2111%,
2 x2
22 -1 .1
(@) A4+1 r2lnl’

a¥(0) =6/ (i,j=1,2),
2 1 1 A—1
= = (An=-Z2—=
@) =-13 r21n27{<)‘nr )\+1>’
1

B 2w 3_ A
o) = o) = 5 e

for r > 0. In the domain GO, d < e the equation is uniformly ellip-
tic with ellipticity constants p = 1 and v = 1 — 1n(1 Ty Further, A(r) =

A+l In~Y(1/7), i.e., A(r) does not satisfy the Dini condition at zero. More-
over, a”/(x) are continuous at the point O, c(z) < 0 and the conditions

Be®(@)|ry + B-u*(@)|r_ + bu(@)|ry - u(y(2))lr, =0, v*(2)|r, =u?(z)|r
of Theorem are fulfilled. This example shows that the Dini-continuity
condition in Theorem [[.8] is essential.
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