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GLOBAL EXISTENCE FOR NONLINEAR SYSTEM OF
WAVE EQUATIONS IN 3-D DOMAINS

Abstract. We study the initial-boundary problem for a nonlinear system
of wave equations with Hamilton structure under Dirichlet’s condition. We
use the local-in-time Strichartz estimates from [Burq et al., J. Amer. Math.
Soc. 21 (2008), 831–845], Morawetz–Pohožaev’s identity derived in [Miao
and Zhu, Nonlinear Anal. 67 (2007), 3136–3151], and an a priori estimate
of the solutions restricted to the boundary to show the existence of global
and unique solutions.

1. Introduction. Numerous works have been devoted to the study of
Cauchy problems for the semilinear wave equation

(1.1)

{
utt −∆u+ u|u|p−1 = 0, (t, x) ∈ R× Rd,

u(0, x) = φ(x), ∂tu(0, x) = ψ(x), x ∈ Rd,
1 < p ≤ pc, d ≥ 3,

where pc ≡ d+2
d−2 corresponds to the energy critical growth of the nonlinearity.

For d = 3 and 1 < p < pc, Jörgens [9] proved the existence and unique-
ness of global-in-time smooth solutions of problem (1.1). In the critical case
p = pc, Rauch [12] proved an analogous result for smooth solutions under a
small energy assumption, i.e. for

E(φ, ψ) =
�

Rd

(
1
2
|∇φ|2 +

1
2
|ψ|2 +

1
p+ 1

|φ|p+1

)
dx� 1.

Next, Struwe [19] established the existence and uniqueness of a global smooth
solution to (1.1), u(t, x) ∈ C2(R×R3) for radial initial data φ(x) = φ(|x|) ∈
C3(R3), ψ(x) = ψ(|x|) ∈ C2(R3). Finally, Grillakis [8] removed Struwe’s
radial assumption using Morawetz’s estimate.
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For finite energy solutions, Ginibre and Velo [6, 7] obtained the global
existence and uniqueness of solution to (1.1) when 1 < p < pc. Later on,
Shatah and Struwe [15] proved the same result for finite energy solutions in
the critical case p = pc. We refer to the excellent book [10] for a compre-
hensive discussion of the history and results on problem (1.1), ranging from
smooth solutions to finite energy ones and from low dimensions to higher
dimensions including well-posedness and scattering theory.

A study of initial-value problems for the energy critical problem posed
in the exterior of a smooth, compact and strictly convex obstacle Θ ⊂ R3 is
due to Smith and Sogge [16], who considered the problem

(1.2)


utt −∆u+ u5 = 0, (t, x) ∈ R+ × (R3 \Θ),

u(0, x) = φ(x) ∈ C∞(R3 \Θ),

∂tu(0, x) = ψ(x) ∈ C∞(R3 \Θ),
u(t, x) = 0, x ∈ ∂Θ,

with φ and ψ satisfying a necessary compatibility condition. They explored
several basic Strichartz type inequalities analogous to those for Cauchy prob-
lems by exploiting L2 continuity of certain operators. As a consequence, they
proved the existence and uniqueness of global smooth solutions to (1.2).

Those results were extended by Burq, Lebeau and Planchon [1], who
proved the global existence of solutions for the same semilinear wave equa-
tion posed on a general smooth compact domain with the Dirichlet boundary
condition. The main ingredient in their proof was a local-in-time Strichartz
type estimate without loss of derivative, which is based on the Lp estimates
for the associated spectral projector on manifolds obtained by Smith and
Sogge [17]. This local-in-time space-time estimate is sufficient for the global
existence theory. Shortly after, Burq and Planchon [2] proved the same re-
sult under the Neumann boundary condition; for this, they developed a
meticulous analysis to control the behavior of the solution on the boundary
due to the failure of the uniform Lopatinski condition.

In this article, we are going to prove analogous results for the repulsive
nonlinear system of wave equations

(1.3)

{
utt −∆u+ (|u|4 + |v|2)u = 0,

vtt −∆v + (|v|4 + |u|2)v = 0.

This system appears naturally in the description of the interaction of
two distinct scalar fields, where the constants have been assumed to be 1.
More general systems similar to (1.3) describe the motion of charged mesons
in an electromagnetic field. More details on the physical background can be
found in [13] and in the references therein.
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Let Ω ⊂ R3 be a bounded domain with smooth boundary ∂Ω, and
−∆D the corresponding Dirichlet-Laplacian. We consider the coupled wave
equations (1.3) for (t, x) ∈ Rt ×Ω, supplemented with the initial data

(1.4)

{
u|t=0 = φ1, ut|t=0 = ψ1,

v|t=0 = φ2, vt|t=0 = ψ2,

and subject to Dirichlet’s boundary condition

(1.5) u|∂Ω = v|∂Ω = 0.

We assume that u(t, x) and v(t, x) are real-valued functions for simplicity
(so the initial data are real functions).

Remark 1.1. As in [11], the nonlinear terms in equations (1.3) may
have a more general form. Given F (λ, µ), we denote

F1(λ, µ) =
∂F (λ, µ)

∂λ
and F2(λ, µ) =

∂F (λ, µ)
∂µ

.

Then the inhomogeneous terms in (1.3) can be replaced respectively with

F1(|u|2, |v|2)u and F2(|u|2, |v|2)v,

where F (|u|2, |v|2) satisfies conditions from [11]; our method can be adapted
to handle this general case.

First, notice that problem (1.3)–(1.5) satisfies the following conservation
of energy (see [11] for details):

E(u, v)(t) =
�

Ω

(
1
2

(|∇t,xu|2 + |∇t,xv|2) +
1
6

(|u|6 + |v|6) +
1
2
|u|2|v|2

)
dx

= E(u, v)(0),

where ∇t,x := (∂t,∇x).
Our main result can be stated as follows.

Theorem 1.1. For any initial datum (φj , ψj) ∈ H1
0 (Ω) × L2(Ω), j =

1, 2, there exists a unique global solution (u, v) to problem (1.3)–(1.5) in the
space

X = C0(Rt;H1
0 (Ω)×H1

0 (Ω)) ∩ C1(Rt;L2(Ω)× L2(Ω))

∩ L5
loc(Rt;L10(Ω)× L10(Ω)).

The local existence and uniqueness of solution to (1.3)–(1.5) is based on
the Strichartz estimate. To get the existence of global and unique solutions,
we need to deduce a priori boundary estimates following [1]. The idea and
underlying techniques come from [1] but we need a careful analysis of the
nonlinear interacting waves in (1.3) in order to get a global solution.

This paper is organized as follows. We introduce some basic notation at the
end of this section. In Section 2, the existence and uniqueness of local-in-time
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solutions is sketched by a fixed-point argument. In Section 3, we prove a priori
space-time L2 boundedness for the exterior normal derivative of the finite en-
ergy solution to the system on the boundary. Section 4 is devoted to proving
the global existence of (u, v) by an argument based on the Morawetz–Pohožaev
identity derived in [11]; this completes the proof of Theorem 1.1.

We define the norm for the vector (u, v) in the product space L5(I;L10(Ω)
× L10(Ω)) by

‖(u, v)‖L5(I;L10(Ω)×L10(Ω)) := ‖u‖L5(I;L10(Ω)) + ‖v‖L5(I;L10(Ω));

in the same way we define the norms ‖(u, v)‖C0(I;H1
0 (Ω)×H1

0 (Ω)) etc., where
I is a time interval.

We shall also write the norms as ‖(u, v)‖L5(I;L10(Ω)) and ‖(u, v)‖C0(I;H1
0 (Ω))

etc. for short. Unimportant constants in inequalities may vary and we denote
them by a capital letter C for convenience, unless further notation is speci-
fied. Finally, for harmonic analysis tools with applications to wave equations,
we refer the reader to [10].

2. Local existence of solutions. Here, we use the following Strichartz
estimate which is proved in [1].

Proposition 2.1 (Burq–Lebeau–Planchon [2, Prop. 3.1]). If u, f1, f2

satisfy

∂2
t u−∆Du = f1 + f2, u|∂Ω = 0, u|t=0 = φ, ∂tu|t=0 = ψ,

then

‖u‖
L5((0,1);W

3/10,5
0 (Ω))

+ ‖u‖C0((0,1);H1
0 (Ω)) + ‖ut‖C0((0,1);L2(Ω))

≤ C(‖φ‖H1
0 (Ω) + ‖ψ‖L2(Ω) + ‖f1‖L5/4((0,1);W 7/10,5/4(Ω)) + ‖f2‖L1((0,1);L2(Ω))).

This section is devoted to the proof of the local existence of solutions to
the boundary value problem (1.3)–(1.5). It is well known that the problem
is equivalent to the following integral equations:

u(t) = cos t
√
−∆D φ1 +

sin t
√
−∆D√
−∆D

ψ1(2.1a)

−
t�

0

sin (t− s)
√
−∆D√

−∆D
((|u|4 + |v|2)u)(s) ds,

v(t) = cos t
√
−∆D φ2 +

sin t
√
−∆D√
−∆D

ψ2(2.1b)

−
t�

0

sin (t− s)
√
−∆D√

−∆D
((|v|4 + |u|2)v)(s) ds.

To show the existence of local-in-time solutions of system (2.1a)–(2.1b),
we estimate its nonlinear terms by using Strichartz’s estimates from Propo-
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sition 2.1. Without loss of generality, we only deal with equation (2.1a).
Obviously, we have

‖(|u|4 + |v|2)u‖L5/4(J ;W 7/10,5/4(Ω))

≤ ‖u5‖L5/4(J ;W 7/10,5/4(Ω)) +
∥∥|v|2u∥∥

L5/4(J ;W 7/10,5/4(Ω))
.

As in [1], the first term on the right hand side is bounded, up to a constant,
by

‖u‖4L5(J ;L10(Ω))‖u‖
3/10
L∞(J ;L6(Ω))

‖u‖7/10
L∞(J ;H1(Ω))

.

For the second term, the Hölder inequality and the compactness of Ω yield

‖v2u‖L5/4(J ;L30/17(Ω)) ≤
∥∥‖v2‖L5/2(Ω)‖u‖L6(Ω)

∥∥
L5/4(J)

(2.2)

=
∥∥‖v‖2L5(Ω)‖u‖L6(Ω)

∥∥
L5/4(J)

≤ C
∥∥‖v‖2L10(Ω)‖u‖L6(Ω)

∥∥
L5/4(J)

≤ C‖v‖2L5(J ;L10(Ω))‖u‖L∞(J ;L6(Ω))|J |2/5.
On the other hand, by Leibniz’s rule and triangle inequality, we get

‖∇(v2u)‖L5/4(J ;L10/9(Ω)) ≤ 2‖uv∇v‖L5/4(J ;L10/9(Ω)) + ‖v2∇u‖L5/4(J ;L10/9(Ω)).

Since

‖vu∇v‖L10/9(Ω) ≤ ‖vu‖L5/2(Ω)‖∇v‖L2(Ω) ≤ C‖u‖L5(Ω)‖v‖L5(Ω)‖v‖H1
0 (Ω)

≤ C‖v‖H1
0
(‖u‖2L10(Ω) + ‖v‖2L10(Ω)),

we have

‖uv∇v‖L5/4(J ;L10/9(Ω)) ≤ C
∥∥‖v‖H1

0
(‖u‖2L10(Ω) + ‖v‖2L10(Ω))

∥∥
L5/4(J)

≤ C|J |2/5‖v‖L∞(J ;H1
0 (Ω))(‖u‖L5(J ;L10(Ω)) + ‖v‖L5(J ;L10(Ω)))

2.

Similarly we can deduce that

(2.3) ‖v2∇u‖L5/4(J ;L10/9(Ω)) ≤ C‖v‖
2
L5(J ;L10(Ω))‖u‖L∞(J ;H1

0 (Ω))|J |2/5.
Combining (2.2) and (2.3), we arrive at

(2.4) ‖v2u‖L5/4(J ;L30/17(Ω)) ≤ C‖(u, v)‖2L5(J :L10(Ω))‖(u, v)‖L∞(J ;L6(Ω))|J |2/5

and

(2.5) ‖∇(v2u)‖L5/4(J ;L10/9(Ω))

≤ C‖(u, v)‖2L5(J ;L10(Ω))‖(u, v)‖L∞(J ;H1
0 (Ω))|J |2/5.

Interpolating between (2.4) and (2.5) yields∥∥|v|2u∥∥
L5/4(J ;W 7/10,5/4(Ω))

≤ C‖(u, v)‖2L5(J :L10(Ω))‖(u, v)‖3/10
L∞(J ;L6(Ω))

× ‖(u, v)‖7/10

L∞(J ;H1
D(Ω))

|J |2/5.
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Thus, we conclude that, with |J | < 1, we have

(2.6)
∥∥(|u|4 + |v|2)u

∥∥
L5/4(J ;W 7/10,5/4(Ω))

≤ C(‖(u, v)‖4L5(J ;L10(Ω)) + ‖(u, v)‖2L5(J ;L10(Ω)))

× ‖(u, v)‖7/10

L∞(J ;H1
0 (Ω))

‖(u, v)‖3/10
L∞(J ;L6(Ω))

,

and similarly

(2.7) ‖(|v|4 + |u|2)v‖L5/4(J ;W 7/10,5/4(Ω))

≤ C
(
‖(u, v)‖4L5(J ;L10(Ω)) + ‖(u, v)‖2L5(J ;L10(Ω))

)
× ‖(u, v)‖7/10

L∞(J ;H1
0 (Ω))

‖(u, v)‖3/10
L∞(J ;L6(Ω))

.

Here, we have dropped the factor |J |2/5 in the estimates (2.6) and (2.7)
since the nonlinearity is a combination of a subcritical growth and a critical
one. In contrast to the subcritical case, the quantity |J |2/5 in (2.4) and (2.5)
does not help to produce a contracting factor in the fixed-point argument.
Instead, to get a contraction map, we have to use a space-time integral.

Now, we consider the existence of local-in-time solutions. Let (a, b)T

denote the transpose of the vector (a, b). We define an operator T by

T (U(t), V (t)) :=W(t)(U(0), V (0))−
t�

0

W(t− s)F (u, v)(s) ds,

where

W(t) =

 cos t
√
−∆D

sin t
√
−∆D√
−∆D

−
√
−∆D sin t

√
−∆D cos t

√
−∆D,

 ,

U(t) = (u(t), ∂tu(t))T , V (t) = (v(t), ∂tv(t))T ,

F (u, v)(t) =

(
0 0

(|u|4 + |v|2)u(t) (|v|4 + |u|2)v(t)

)
.

The wave groupW(t) allows one to write problem (1.3)–(1.5) in the following
way:

(U(t), V (t)) = T (U(t), V (t)).

This suggests that the solution is a fixed point of some operator in a suitable
function space. To perform the fixed-point argument, we define the operator

T (u, v)(t) = K ′(t)(φ1, φ2) +K(t)(ψ1, ψ2)

−
t�

0

K(t− s)
(
(|u|4 + |v|2)u, (|v|4 + |u|2)v

)
(s) ds,
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where

K(t) =
sin t
√
−∆D√
−∆D

.

We have the following theorem concerning the existence and uniqueness of
local-in-time solutions to problem (1.3)–(1.5).

Theorem 2.1. Let (φj , ψj) ∈ H1
0 (Ω)× L2(Ω), j = 1, 2, let J 3 0 be an

interval and suppose ‖(φ1, φ2)‖H1
0 (Ω) +‖(ψ1, ψ2)‖L2(Ω) ≤M := CE(u, v)(0).

Then there is an ε = ε(M) such that if

‖K ′(t)(φ1, φ2) +K(t)(ψ1, ψ2)‖L5(J ;L10(Ω)) ≤ ε,

then there exists a unique solution (u, v) in J×Ω with (u, v) ∈ C(J ;H1
0 (Ω)×

H1
0 (Ω)) ∩ C1(J ;L2(Ω) × L2(Ω)). Moreover, the flow map generated by the

system is Lipschitz continuous in C(J ;H1
0 (Ω) × H1

0 (Ω)) ∩ C1(J ;L2(Ω) ×
L2(Ω)).

Proof. We first set

X (J) =
{

(u, v) ∈ C0(J ;H1
0 (Ω)×H1

0 (Ω)) ∩ L5(J ;L10(Ω)× L10(Ω)) :

‖(u, v)‖L5(J ;L10(Ω)) ≤ η, ‖(u, v)‖C(J ;H1
0 (Ω)) ≤ 4M

}
with η to be determined later.

By Strichartz’s estimates from Proposition 2.1 and the nonlinear esti-
mates (2.6), (2.7), we have

‖T (u, v)‖C(J ;H1
0 (Ω)) ≤M + C4M(η3 + η)η.

Take η ∈ (0, 1) such that C(η3 + η) < 1/4; then

‖T (u, v)‖C(J ;H1
0 (Ω)) ≤M +M ≤ 4M.

On the other hand, using Strichartz’s estimates again, we have

‖T (u, v)‖L5(J ;L10(Ω)) ≤ ε+ C4M(η3 + η)η.

Taking ε = η/2 and η ∈ (0, 1) (or smaller if necessary) so that C4M(η3 + η)
< 1/2, we get

‖T (u, v)‖L5(J ;L10(Ω)) ≤ η.

These imply that T maps X (J) to itself. Next, we define a metric d(·, ·) =
‖·−·‖C(J ;H1

0 (Ω))+‖·−·‖L5(J ;L10(Ω)) on X (J); then X (J) becomes a complete
metric space. By Strichartz’s estimate, for any two solutions (u1, v1), (u2, v2)
∈ X (J) with the same initial data, we have

d(T (u1, v1), T (u2, v2)) ≤ C(η + η3)4Md((u1, v1), (u2, v2))

≤ 1
2
d((u1, v1), (u2, v2)),
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which indicates that T is a contraction map on X (J) and we get the local
well-posedness for problem (1.3)–(1.5) by Banach’s fixed-point theorem and
Strichartz’s estimate. Thus, the proof of Theorem 2.1 is complete.

3. A priori estimate. In order to obtain the global existence of solu-
tion, we have to control the behavior of a certain quantity on the boundary,
following [1] and [11], in order to exclude the concentration effect of the
potential energy. Since mild solutions of (1.3)–(1.5) are limits of smooth
solutions, we can assume that (u, v) are regular enough in our calculations
below.

Suppose t0 is the lifespan of the solution to (1.3)–(1.5) in X (J), with
J = (0, t0). First, we move t0 to 0 by translation invariance of system (1.3).
With T < S < 0, our notation below is taken from [1] and [11]. We define
the following quantities:

Q =
|∇t,xu|2 + |∇t,xv|2 + |u|2|v|2

2

+
1
t
(utx · ∇u+ vtx · ∇v) +

1
6

(|u|6 + |v|6),

P =
1
2

(
|ut|2 + |vt|2 − |∇u|2 − |∇v|2 −

1
3

(|u|6 + |v|6)− |u|2|v|2
)
x

t

+
(
u

t
+ ut +

x · ∇u
t

)
∇u+

(
v

t
+ vt +

x · ∇v
t

)
∇v,

ΩS
T = [T, S]×Ω, ∂ΩS

T = [T, S]× ∂Ω,
DT = {x : |x| < −T}, MS

T = {(x, t) : |x| = −t, T < t < S},
KS
T = {(x, t) : |x| < −t, T < t < S},

∂KS
T = DT ∪DS ∪MS

T ,

e(u, v) =
(
−ut∇u− vt∇v,

1
2

(|∇t,xu|2 + |∇t,xv|2) +
1
6

(|u|6 + |v|6) +
1
2
|u|2|v|2

)
,

Flux(u, v,MS
T ) =

�

MS
T ∩Ω

S
T

〈e(u, v), ~ν〉 dσ(x, t)

=
1

2
√

2

�

MS
T ∩Ω

S
T

(∣∣∣∣ x|x|ut −∇u
∣∣∣∣2 +

∣∣∣∣ x|x|vt −∇v
∣∣∣∣2

+ |u|2|v|2 +
1
3

(|u|6 + |v|6)
)
dσ(x, t) ≥ 0,
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where ~ν = 1√
2
(x/|x|, 1) is the exterior normal vector to MS

T , dσ(x, t) is the

induced space-time measure and there is no flux across ∂ΩS
T due to the

boundary condition. As in [11], we define the local energy by

(3.1) Eloc(u, v,DT )

:=
�

DT∩Ω

[
1
2

(|∇t,xu|2 + |∇t,xv|2 + |u|2|v|2) +
1
6

(|u|6 + |v|6)
]
(x, T ) dx.

Due to the finite speed of propagation, we have

(3.2) Eloc(u, v,DT ) = Eloc(u, v,DS) + Flux(u, v,MS
T ).

Therefore Eloc(u, v,DT ) and Eloc(u, v,DS) converge to the same limit as
T, S ↗ 0− since Eloc(u, v,DT ) is nonincreasing and bounded below. Hence
Flux(u, v,MS

T ) tends to zero as T ↗ 0−.
First, we deduce an L2 space-time estimate for the exterior normal

derivative of (u, v) on the boundary.

Lemma 3.1. Suppose (u, v) is a finite energy solution of problem (1.3)–
(1.5), and ~n(x) is an exterior normal vector to ∂Ω. Then

(3.3)
∥∥∥∥∂u∂~n

∥∥∥∥
L2((0,t0)×∂Ω)

+
∥∥∥∥∂v∂~n

∥∥∥∥
L2((0,t0)×∂Ω)

≤ CE(u, v)1/2.

Proof. Without loss of generality, we estimate ∂u/∂~n only. Similarly
to [1], considering a smooth vector field Γ ∈ C∞(Ω;TΩ) whose restriction to
∂Ω is equal to ∂/∂~n ,where TΩ is the tangent bundle over Ω and 0 < T < t0,
we integrate by parts to get

T�

0

�

Ω

[∂2
t −∆,Γ ]u · u dx dt

=
T�

0

�

Ω

(∂2
t −∆)Γ (u)u dx dt−

T�

0

�

Ω

Γ (−|u|4u− v2u)u dx dt

=
T�

0

�

∂Ω

∣∣∣∣∂u∂~n
∣∣∣∣2 d%(x) dt+

[ �
Ω

u∂tΓ (u) dx−
�

Ω

Γ (u)ut dx
]∣∣∣∣T

0

+
T�

0

�

Ω

[Γ (u)(−u5 − v2u) + Γ (u5 + v2u)u] dx dt

= I + II + III,

where d%(x) is the surface measure on ∂Ω.
In order to control I, we first apply integration by parts and the Cauchy–

Schwarz inequality to see that the second term II can be bounded by E(u, v).
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Secondly, direct computation gives

III =
T�

0

�

Ω

(4u5Γ (u) + u2Γ (v2)) dx dt

=
T�

0

�

Ω

2
3
Γ (u6) dx dt+

T�

0

�

Ω

2u2vΓ (v) dx dt.

The first term in III is bounded by E(u, v) (see [1, Proposition 3.2]). By
Hölder’s inequality, the second one is controlled by(T�

0

�

Ω

|Γ (v)|2
)1/2(T�

0

�

Ω

|u|6
)1/3(T�

0

�

Ω

|v|6
)1/6

≤ CE(u, v)1/2+1/3+1/6,

where we have used

|Γ (v)| =
∣∣∣∣∑
j

aj(x)
∂

∂xj
v

∣∣∣∣ ≤ |a| |∇v| ≤ sup
x∈Ω
|a| |∇v|.

Summing up the above estimates and observing that [∂2
t − ∆,Γ ] =

[−∆,Γ ] : H1
0 (Ω) → H−1(Ω) is bounded (because the commutator is of

order 2), we conclude that∥∥∥∥∂u∂~n
∥∥∥∥
L2((0,t0)×∂Ω)

≤ CE(u, v)1/2.

A similar argument gives∥∥∥∥∂v∂~n
∥∥∥∥
L2((0,t0)×∂Ω)

≤ CE(u, v)1/2.

which completes the proof of Lemma 3.1.

Remark 3.1. There is a connection between Lemma 3.1 and the uniform
Lopatinski condition for mixed Cauchy problems of hyperbolic equations.
The Cauchy–Dirichlet problems satisfy the uniform Lopatinski condition for
almost trivial reasons since the Lopatinski determinant is constant. However,
the Neumann boundary problems violate the uniform Lopatinski condition
due to the possibility of degeneration of the Lopatinski determinant on an
imbedded surface in the cotangent bundle of ∂Ω. See, for example, [2] and
[3] for more details.

4. Global existence of solutions. The key role in proving Theorem
1.1 is played by the following estimate which indicates the classical noncon-
centration effect on small time slices:

(4.1)
�

DT∩Ω
(|u|6 + |v|6)(T, x) dx→ 0 as T ↗ 0−.
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To prove this relation, we will employ the Morawetz–Pohožaev identity ac-
cording to [11]. Next, we localize our estimates in a small space-time light
cone in the same way as in [14], and then use Lemma 3.1 to control the
boundary terms.

Integrating the following identity obtained in [11] over KS
T ∩ΩS

T := D,

divx,t(−tP, tQ+ utu+ vtv) +
1
3

(|u|6 + |v|6) = 0,

one has
�

DS∩Ω
(SQ+ utu+ vtv)(S, x) dx−

�

DT∩Ω
(TQ+ utu+ vtv)(T, x) dx

+
1√
2

�

MS
T ∩Ω

S
T

(x · P + tQ+ utu+ vtv) dσ(x, t)

−
�

∂ΩS
T∩K

S
T

~n(x) · (tP ) dσ̃(x, t) ≤ 0.

Using Hölder’s inequality, we have∣∣∣ �

DS

(SQ+ utu+ vtv)(S, x) dx
∣∣∣

≤
�

DS

|S| |Q| dx+
�

DS

|utu| dx+
�

DS

|vtv| dx

≤ |S|E(u,DS) + ‖ut‖L2(DS)‖u‖L2(DS) + ‖vt‖L2(DS)‖v‖L2(DS)

≤ |S|E(u,DS) + ‖ut‖L2(DS)‖u‖L6(DS)|S|1/3 + ‖vt‖L2(DS)‖v‖L6(DS)|S|1/3

≤ C(|S|E(u, v,DS) + |S|1/3E(u, v,DS)2/3)→ 0 as S ↗ 0−.

By letting S ↗ 0−, we see that

−
�

DT∩Ω
(TQ+ utu+ vtv)(T, x) dx

+
1√
2

�

M0
T∩Ω

0
T

(x · P + tQ+ utu+ vtv) dσ(x, t)

≤
�

∂Ω0
T∩K

0
T

~n(x) · (tP ) dσ̃(x, t).

Next, we denote the two terms on the left hand side of the above inequality
by I + II, and repeating the arguments from [11, p. 3146 and equation
(2.10)], we obtain

I ≥ − 1
2

�

∂DT∩Ω
(|u|2 + |v|2) dS(x)− T

2

�

DT∩Ω

(
1
3

(|u|6 + |v|6) + |u|2|v|2
)
dx,
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II =
1√
2

�

M0
T∩Ω

0
T

(
t

∣∣∣∣ x|x| · ∇u− ut +
u

|x|

∣∣∣∣2 + t

∣∣∣∣ x|x| · ∇v − vt +
v

|x|

∣∣∣∣2) dσ
+

1
2

�

∂DT∩Ω
(u2 + v2)(T, x) dS(x).

Therefore, letting S ↗ 0−, we get

|T |
�

DT∩Ω

1
6

(|u|6 + |v|6) dx ≤
�

∂Ω0
T∩K

0
T

~n(x) · (tP ) dσ̃(x, t)

+ |t| 1√
2

�

M0
T∩Ω

0
T

(∣∣∣∣ x|x| · ∇u− ut +
u

|x|

∣∣∣∣2 +
∣∣∣∣ x|x| · ∇v − vt +

v

|x|

∣∣∣∣2) dσ.
Notice that the second term can be bounded (see [11, p. 3146]) by

|T |Flux(u, v,M0
T ) + |T |Flux(u, v,M0

T )1/3.

Applying Dirichlet’s boundary condition and the definition of P , we have
on ∂Ω

(4.2) ~n(x) · (tP )

= ~n(x) ·
[
−x |∇xu|

2

2
+∇xu(x · ∇x)u− x |∇xv|

2

2
+∇xv(x · ∇x)v

]
.

Notice that

∇xu = (~n(x) · ∇xu)~n(x) + (~n⊥ · ∇xu)~n⊥(x),

where the tangential derivative ~n⊥ · ∇xu|∂Ω equals 0 due to the Dirichlet
condition. Therefore on ∂Ω, we have ∇xu = (~n(x) · ∇xu)~n(x) and ∇xv =
(~n(x) · ∇xv)~n(x). As a consequence, the quantity on the right hand side of
(4.2) is estimated by

1
2

(~n(x) · x)
∣∣∣∣∂u∂~n

∣∣∣∣2 +
1
2

(~n(x) · x)
∣∣∣∣∂v∂~n

∣∣∣∣2.
Consequently, we obtain

|T |
�

DT∩Ω

1
6

(|u|6 + |v|6) dx

≤ C
�

∂Ω0
T∩K

0
T

(
1
2

(~n(x) · x)
∣∣∣∣∂u∂~n

∣∣∣∣2 +
1
2

(~n(x) · x)
∣∣∣∣∂v∂~n

∣∣∣∣2) dσ̃(x, t)

+ |T |Flux(u, v,M0
T ) + |T |Flux(u, v,M0

T )1/3.
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For the same reason as in [2, p. 9], the first integral is bounded by

sup
x∈K0

T

|x|2
�

∂Ω0
T

(∣∣∣∣∂u∂~n
∣∣∣∣2 +

∣∣∣∣∂v∂~n
∣∣∣∣2) d%(x) dt ≤ C|T |2E(u, v),

and, finally, we have
�

DT∩Ω

1
6

(|u|6 + |v|6) ≤ C
(
|T |E(u, v) + Flux(u, v,M0

T ) + Flux(u, v,M0
T )1/3

)
.

This means that the right hand side goes to 0 as T ↗ 0−. Therefore, we
obtain (4.1). In the above calculations all integrals on K0

T and M0
T have to

be understood as the limits as S → 0− of the integrals on KS
T and MS

T .
We are in a position to show that solutions to (1.3)–(1.5) are global in

time, which will complete the proof of Theorem 1.1.
From the local existence in Section 2, we continue to consider (u, v) as

the unique forward maximal solution to the system (1.3)–(1.5) in the space
X ([0, t0)) with t0 < +∞ (see Theorem 2.1). Taking a point x0 ∈ Ω, we aim
at proving that (u, v) can be extended in a neighborhood of (x0, t0), which
brings a contradiction. By translation invariance, (x0, t0) can be moved to
the space-time origin (0, 0).

We will work on localized space-time cones and perform estimates fol-
lowing [1] and [14]. For t ≤ t′ ≤ 0, we define the norms supported on small
light cones by

‖(u, v)‖
(Lp;Lq)(Kt′

t )

=
( t′�
t

( �

Ds∩Ω
|u|q(s, x) dx

)p/q
ds
)1/p

+
( t′�
t

( �

Ds∩Ω
|v|q(s, x) dx

)p/q
ds
)1/p

.

We assume that x0 ∈ ∂Ω, otherwise by Huygens’ principle, the approach
to global solution is similar to the Cauchy problems. For then |t| can be
chosen small enough so that the time-slice of the small light cone (with
vertex (x0, t0)) is contained in the interior of Ω. Moreover, for the slice with
its radius enlarged by a small ε > 0, we can choose |t| even smaller to
let it shrink into the interior of Ω. To this the standard argument applies
(see [8], [11]).

The following proposition is crucial in this section.

Proposition 4.1. For any ε > 0, there is t < 0 such that

‖(u, v)‖(L5;L10)(K0
t ) < ε.

Before proving this proposition, we need an extension lemma from [1].

Lemma 4.1. For any x0 ∈ Ω there is r0 > 0 such that for any 0 < r < r0
and any v ∈ H1

0 (Ω)∩Lp(Ω) there exists a function ṽr ∈ H1
0 (Ω) (independent
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of the choice of 1 ≤ p ≤ ∞) satisfying

(ṽr − v)|{|x−x0|<r}∩Ω = 0,�

Ω

|∇ṽ|2 ≤ C
�

Ω

|∇v|2, ‖ṽr‖Lp(Ω) ≤ C‖v‖Lp({|x−x0|<r}).

In other words, one can extend functions in H1
0∩Lp on the ball {|x−x0| < r}

to functions in H1
0 (Ω) ∩ Lp(Ω) with uniform bounds with respect to small

r > 0 for the H1 and the Lp norms respectively.
Furthermore, for any u ∈ L∞((−1, 0);H1

0 (Ω)) ∩ L1
loc((−1, 0);Lp(Ω)),

there exists a function ǔ ∈ L∞((−1, 0);H1
0 (Ω))∩L1

loc((−1, 0);Lp(Ω)) satis-
fying (uniformly with respect to t)

(ǔ− u)|{|x−x0|<−t}∩Ω = 0,�

Ω

(
|∇ǔ|2(t, x) + |∂tǔ|2(t, x)

)
dx ≤ C

�

Ω

(
|∇u|2(t, x) + |∂tu|2(t, x)

)
dx,

‖ǔ(t, ·)‖Lp(Ω) ≤ C‖u(t, ·)‖Lp(Ω∩{|x−x0|<−t}) for a.e. t ∈ (−1, 0).

Proof of Proposition 4.1. Let ǔ, v̌ be the functions given by Lemma 4.1.
Then (ǔ)5 is equal to u5 on K0

t ∩Ω0
t for t < t′ < 0. Applying the nonlinear

estimate (2.2) to (2.5) obtained in Section 2 and employing (4.9), we have

‖ǔ5 + v̌2ǔ‖L5/4((t,t′);W 7/10,5/4(Ω))(4.3)

≤ CM(u, v)‖(u, v)‖7/10
L∞((t,t′);H1(Ω))

‖(u, v)‖3/10

(L∞;L6)(K0
t )
,

‖v̌5 + ǔ2v̌‖L5/4((t,t′);W 7/10,5/4(Ω))(4.4)

≤ CM(u, v)‖(u, v)‖7/10
L∞((t,t′);H1(Ω))

‖(u, v)‖3/10

(L∞;L6)(K0
t )
,

where
M(u, v) := ‖(u, v)‖4

(L5;L10)(Kt′
t )

+ ‖(u, v)‖2
(L5;L10)(Kt′

t )
.

Let (µ, ν) be the solution to the system

(∂2
s −∆)µ = −|ǔ|5 − |v̌|2ǔ,

(∂2
s −∆)ν = −|v̌|5 − |ǔ|2v̌,

subject to the boundary conditions

µ|∂Ω = ν|∂Ω = 0,

with initial values at s = t,

(µ− u)|s=t = (ν − v)|s=t = 0, ∂s(µ− u)|s=t = ∂s(ν − v)|s=t = 0.

By Huygens’ principle (for an inhomogeneous version see [10], [18]), (µ, ν)
coincides with (u, v) on K0

t .
Applying Strichartz’s inequality, Sobolev’s imbedding and (4.3), (4.4),

we get
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‖(u, v)‖
(L5;L10)(Kt′

t )
≤ ‖(µ, ν)‖L5((t,t′);L10(Ω))

≤ C‖(µ, ν)‖
L5((t,t′);W

3/10,5
0 (Ω))

≤ CE(u, v, t) + C(‖(u, v)‖4
(L5;L10)(Kt′

t )
+ ‖(u, v)‖2

(L5;L10)(Kt′
t )

)

× ‖(u, v)‖7/10
L∞H1(Ω)

‖(u, v)‖3/10

(L∞;L6)(K0
t )

By (4.1), conservation of energy and continuity of the map

t′ ∈ [t, 0) 7→ ‖(u, v)‖
(L5;L10)(Kt′

t )

which takes value 0 when t′ = t, there exists a t < 0 such that for any
t′ ∈ (t, 0) we have

‖(u, v)‖
(L5;L10)(Kt′

t )
≤ 2CE(u, v)(t).

Letting t′ → 0, we have

‖(u, v)‖(L5;L10)(K0
t ) ≤ 2CE(u, v)(t).

Therefore, with any ε > 0, taking |t| small enough, we get

‖(u, v)‖(L5;L10)(K0
t ) ≤ ε,

which completes the proof of Proposition 4.1.

Global existence and proof of Theorem 1.1. Supposing the lifespan of the
solution is finite, we localize (u, v) in a small backward space-time light cone
and split (u, v) into two parts corresponding to the solutions of a homoge-
neous equation with nonzero initial data and an inhomogeneous equation
with vanishing initial data. We use different techniques to estimate those
quantities and eventually, we find that their localized energy is small. Com-
bining them, we see that the localized energy of (u, v) is small. Then the
dominated convergence theorem implies that the localized energy is still
small with the radius of the base time-slice enlarged by a small quantity. The
previous facts are employed together with the compactness of the domain to
get the boundedness of the L5([−1, 0];L10(Ω)) norm for (u, v). Finally, we
get a contradiction by Strichartz’s estimate, Duhamel’s formula and local
existence theory. Let us state all these facts in a more precise way.

Let t < t0 = 0 be sufficiently close to zero and let (ξ, η) solve the linear
system

(∂2
s −∆)ξ = 0,(4.5)

(∂2
s −∆)η = 0,(4.6)

subject to the boundary conditions

ξ|∂Ω = η|∂Ω = 0,

(4.7) (ξ − u)|s=t = (η − v)|s=t = 0, ∂s(ξ − u)|s=t = ∂s(η − v)|s=t = 0.
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Then the differences χ = u− ξ and ζ = v − η satisfy

(∂2
s −∆)χ = −u5 − v2u,

(∂2
s −∆)ζ = −v5 − u2v,

χ|∂Ω = ζ|∂Ω = 0,
(χ, ζ)|s=t = (0, 0) = (∂sχ, ∂sζ)|s=t.

For the functions ǔ, v̌ given by Lemma 4.1, we have

(4.8)
‖(ǔ, v̌)‖L5((t,0);L10(Ω)) ≤ Cε,
‖(ǔ, v̌)‖L∞((t,0);H1

0 (Ω)) ≤ CE(u, v)(t).

Let (χ̃, ζ̃) solve

(∂2
s −∆)χ̃ = −ǔ5 − v̌2ǔ,

(∂2
s −∆)ζ̃ = −v̌5 − ǔ2v̌,

χ̃|∂Ω = ζ̃|∂Ω = 0,

(χ̃, ζ̃)|s=t = (0, 0) = (∂sχ̃, ∂sζ̃)|s=t.

By Huygens’ principle, (χ̃, ζ̃) and (χ, ζ) coincide in K0
t . On the other hand,

using Proposition 2.1 and observing that

‖a2b‖L2(Ω) ≤ ‖a‖2L8(Ω)‖b‖L4(Ω) ≤ 2C(‖a‖4L10 + ‖b‖2L10(Ω)),

we get

(4.9)
‖(χ̃, ζ̃)‖L∞((t,0);H1

0 (Ω)) + ‖∂s(χ̃, ζ̃)‖L∞((t,0);L2(Ω)) + ‖(χ̃, ζ̃)‖L5((t,0);W 3/10,5(Ω))

≤ C(‖ǔ5 + v̌2ǔ‖L1((t,0);L2(Ω)) + ‖v̌5 + ǔ2v̌‖L1((t,0);L2(Ω)))

≤ C(‖(ǔ, v̌)‖5L5((t,0);L10Ω)) + ‖v̌2ǔ‖L1((t,0);L2(Ω)) + ‖ǔ2v̌‖L1((t,0);L2(Ω)))

≤ C
(
‖(ǔ, v̌)‖5L5((t,0);L10Ω)) + ‖(ǔ, v̌)‖4L5((t,0);L10(Ω)) + ‖(ǔ, v̌)‖2L5((t,0);L10(Ω))

)
By (4.8), we can take t < 0 close to 0 such that the right hand side of

(4.9) is bounded by Cε. Finally, for any ball B = B(0, r) centered at 0 with
radius r, let

E(f(s, ·), g(s, ·), B) =
�

B∩Ω

(
|∇s,xf |2+|∇s,xg|2+|f |2|g|2+

|f |6 + |g|6

3

)
(s) dx.

Since (ξ, η) solves the linear problem (4.5)–(4.7), it follows that

(4.10) E(ξ(s, ·), η(s, ·), B(0,−s))→ 0 as s↗ 0−.

Moreover, for s↗ 0−, we have

(4.11) E(χ̃(s, ·), ζ̃(s, ·), B(0,−s)) < ε.
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Recalling (u, v) = (ξ, η) + (χ̌, ζ̌) in K0
t , using (4.9)–(4.11) together with

Sobolev’s embedding H1
0 (Ω) ↪→ L6(Ω) and Hölder’s inequality, we deduce

that there exists s↗ 0− such that

E(u(s, ·), v(s, ·), B(0,−s)) < ε.

However, since (u, ∂su) and (v, ∂sv) are in H1
0 (Ω)×L2(Ω), we have, by the

dominated convergence theorem, for some small α > 0,

E(u(s, ·), v(s, ·), B(0,−s+ α)) ≤ 2ε.

According to (3.2), on {|x− x0| < −s′ + α}, s ≤ s′ < 0, we also have�

B(0,α−s′)

(|u|6 + |v|6) dx ≤ 2ε.

By the same argument as in the proof of Proposition 4.1 at the beginning
of this section, the (L5;L10)(K) norm of the solution remains bounded on
the truncated cone

K = {(x, s′) : |x− x0| < α− s′, s < s′ < 0} ∩Ω0
s .

This is true for all x0 ∈ Ω. By the compactness of Ω0
s and the finite covering,

we get
‖(u, v)‖L5((s,0);L10(Ω)) <∞.

Consequently, by Duhamel’s formula, the limits

lim
s′→0−

(u, ∂su)(s′, ·), lim
s′→0−

(v, ∂sv)(s′, ·)

exist in H1
0 (Ω)×L2(Ω). Therefore, (u, v) can be extended for small enough

s′ > 0 = t0 by the local existence argument from Section 2.
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