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ON THE AGE-DEPENDENT PREDATOR-PREY MODEL

Abstract. The paper deals with the description of a model which is the
synthesis of two classical models, the Lotka–Volterra and McKendrick–von
Foerster models. The existence and uniqueness of the solution for the new
population problem are proved, as well the asymptotic periodicity but under
some simplifying assumptions.

1. Introduction. The best known model in the classical mathematical
ecology is the Lotka–Volterra model [13]. It describes the competition of two
populations, predators and preys. This model is based on a system of or-
dinary differential equations and leads to periodic solutions. The classical
Lotka–Volterra model assumes that each contact of a predator with a prey
finishes with the predator eating the prey. But it is a certain idealization.
In fact such a contact is the beginning of a fight (e.g. chase), the result of
which depends on features of both sides, particularly, their age. Moreover,
the “chance” for such a contact depends also on environmental conditions.
So a natural modification of the model takes age structure into considera-
tion. Such an age-dependent model, but for a single population, comes from
McKendrick [12] and von Foerster [14]. There are many other modifications
of the classical Lotka–Volterra model dealing with the dynamics of prey-
predator systems, for example a prey-predator system in specific habitat
with two zones, free and reserved [9]; multi-dimensional Lotka–Volterra sys-
tem [10] or Lotka–Volterra multi-species systems [1, 2]. Other papers analyse
age-dependent prey-predator systems [5] but with delays [4], [15] or diffu-
sion [8]. However in these papers the problem of dependence on the age is
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analyzed only fragmentarily. In this paper we assume that the “chance” that
a prey is eaten by a predator depends on the predator’s age as well as on the
prey’s. In Section 2 we introduce the variables of the model and the basic
assumptions. We formulate the population problem and define its solution
in Section 3. Constructing the solution consists in applying the method of
characteristics for an auxiliary problem with a classical boundary condition
and on describing this condition as a fixed-point for an appropriate transfor-
mation. Section 4 contains the proof that the transformation is contractive in
the space of continuous functions with a Bielecki-type norm. In Section 5 we
compare the classical Lotka–Volterra model with ours. It is shown that if the
coefficients of the model are independent of the age then the global biomass
satisfies the classical Lotka–Volterra equation, and is a periodic function of
time. In this situation the age structure is also asymptotically periodic. This
fact is shown in the last section.

2. Variables, parameters and assumptions of the model. There
are two basic variables in our model:

• u1(t, x) denotes the density of the population of predators of age x at
time t,
• u2(t, x) denotes the density of the population of preys of age x at

time t.

We assume that predators generally die a natural death. We can express
their mortality by the classical McKendrick–von Foerster equation

(2.1)
∂u1

∂t
+
∂u1

∂x
= −λ(x)u1(t, x).

Preys die being eaten by a predator. We assume that the parameter α(x, y)
denotes the “chance” that a prey of age x is eaten by a predator of age y.
Then the equation describing the mortality of preys has the form

(2.2)
∂u2

∂t
+
∂u2

∂x
= −

∞�

0

α(x, y)u1(t, y) dy · u2(t, x).

It remains to introduce the “renewal” equations. For a prey it is of the form

(2.3) u2(t, 0) =
∞�

0

β(x)u2(t, x) dx.

For predators, we should consider in such an equation a “transformation” of
eaten prey into offspring of predators. Therefore

(2.4) u1(t, 0) = k

∞�

0

∞�

0

α(x, y)u2(t, x)u1(t, y) dx dy.
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3. Formulation of the problem. We consider the system (2.1)–(2.4)
with the initial conditions

(3.1) u1(0, x) = v1(x), u2(0, x) = v2(x)

where v1, v2 are continuous non-negative and integrable functions [0,∞)→ R
satisfying the conditions

v1(0) = k

∞�

0

∞�

0

α(x, y)v2(x)v1(y) dx dy, v2(0) =
∞�

0

β(x)v2(x) dx.

Let ϕ = (ϕ1, ϕ2) : [0, T ] → R2, where T > 0, be a continuous function
satisfying the conditions

(3.2) ϕ1(0) = v1(0), ϕ2(0) = v2(0).

We first consider an auxiliary problem: equations (2.1), (2.2) with the con-
ditions (3.1), (3.2) and

(3.3) u1(t, 0) = ϕ1(t), u2(t, 0) = ϕ2(t).

A solution of this problem is

(3.4) u1(t, x) =

{
ϕ1(t− x)e−

	x
0 λ(s) ds for x ≤ t,

v1(x− t)e−
	t
0 λ(x−s) ds for x > t,

and

(3.5) u2(t, x) =

{
ϕ2(t− x)e−

	t
t−x R(s,x+s−t) ds for x ≤ t,

v2(x− t)e−
	t
0R(t−s,x−s) ds for x > t,

where

R(t, x) =
∞�

0

α(x, y)u1(t, y) dy.

The above solution can be obtained in the following way (see [11] or
[6]). Let (t0, x0) ∈ [0, T ] × R+ and let u1(h) = u1(t0 + h, x0 + h), u2(h) =
u2(t0 + h, x0 + h), λ(h) = λ(x0 + h) and R(h) = R(t0 + h, x0 + h). Then
(2.1) and (2.2) imply

du1

dh
+ λ(h)u1 = 0 and

du2

dh
+R(h)u2 = 0.

These equations have unique solutions, respectively

(3.6) u1(t0 + h, x0 + h) = u1(t0, x0)e−
	h
0 λ(x+s) ds

and

(3.7) u2(t0 + h, x0 + h) = u2(t0, x0)e−
	h
0 R(t0+s,x0+s) ds,

giving the values of u1 and u2 at all points on the characteristics through
(t0, x0). In particular, if we take for x ≤ t, (t0, x0) = (t− x, 0) and h = x in
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(3.6) and (3.7) we get

u1(t, x) = ϕ1(t− x)e−
	x
0 λ(s) ds,

u2(t, x) = ϕ2(t− x)e−
	t
t−x R(s,x+s−t) ds.

On the other hand, writing (t0, x0) = (0, x− t) and h = t in (3.6) and (3.7)
we get for x ≤ t the following solutions:

u1(t, x) = v1(x− t)e−
	t
0 λ(x−s) ds,

u2(t, x) = v2(x− t)e−
	t
0R(t−s,x−s) ds.

Define the operator Θ : C([0, T ],R2)→ C([0, T ],R2),

Θϕ = ((Θϕ)1, (Θϕ)2) : [0, T ]→ R2,

by the formula

(Θϕ)1(t) = k

∞�

0

R(t, x)u2(t, x) dx, (Θϕ)2(t) =
∞�

0

β(x)u2(t, x) dx.

Clearly, the space C([0, T ],R2) with the usual norm

(3.8) ‖ϕ‖ = sup
t∈[0,T ]

(|ϕ1(t)|+ |ϕ2(t)|)

is a Banach space.
Now we shall define solutions of the system (2.1)–(3.1) for t ∈ [0, T ],

where T > 0.

Definition 3.1. A solution to (2.1)–(2.4) with the initial conditions
(3.1) is the function u = (u1, u2) ∈ L1([0, T ] × R+,R2) defined by (3.4),
(3.5), when the function ϕ is a fixed point of the operator Θ, i.e. Θϕ = ϕ.

Remark. A classical solution to (2.1)–(2.4) with the initial conditions
(3.1) is a solution in the sense of Definition 3.1.

4. Main theorem

Main Theorem 4.1. Let α, β, λ ≥ 0. Assume also that β ∈ L∞(0,∞)
and α ∈ L∞((0,∞)2). Then the system of differential equations (2.1)–(2.4)
with the initial conditions (3.1) has exactly one non-negative solution on the
set

x ≥ 0, t ∈ [0, T ].

Proof. Let XT denote the space of all continuous, non-negative functions
ϕ : [0, T ]→ R2 satisfying the conditions (3.2) and the estimate

(4.1) ϕ2(t) ≤ β̄eβ̄t‖v2‖L1 where β̄ = ‖β‖L∞ .
To prove that Θ : XT → XT , we first show that Θϕ : [0, T ]→ R2 is continu-
ous.
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We claim that the families {ui(t, ·)}t∈[0,T ] are uniformly summable. Select
some ε > 0. From the summability of vi there exists c > 0 such that�

|vi(x)|>c

|vi(x)| dx < ε.

Let c′ = max{c,maxt∈[0,T ] ϕi(t)}. From (3.4), (3.5) it follows that

{x : ui(t, x) > c′} ⊂ {x : vi(x− t) > c},

which proves the claim.
Since α does not depend on t, the boundedness of α yields the uniform

boundedness of R with respect to t. Consequently the families

{R(t, ·)u2(t, ·) : t ∈ [0, T ]} and {β(·)u2(t, ·) : t ∈ [0, T ]}

are uniformly summable. From this we conclude that the integrals
∞�

0

R(t, x)u2(t, x) dx and
∞�

0

β(x)u2(t, x) dx

are continuous with respect to t. Since

(Θϕ)1(t) = k

∞�

0

R(t, x)u2(t, x) dx and (Θϕ)2(t) =
∞�

0

β(x)u2(t, x) dx,

the functions (Θϕ)1 and (Θϕ)2 are continuous.
To prove that the function (Θϕ)2 satisfies the inequality (4.1) we estimate

(Θϕ)2(t) =
∞�

0

β(x)u2(t, x) dx

=
t�

0

β(x)ϕ2(t− x)e−
	t
t−x R(s,x+s−t) ds dx

+
∞�

t

β(x)v2(x− t)e−
	t
0R(t−s,x−s) ds dx

≤
t�

0

β(x)ϕ2(t− x) dx+
∞�

t

β(x)v2(x− t) dx

=
t�

0

β(t− x)ϕ2(x) dx+
∞�

0

β(x+ t)v2(x) dx

≤ β̄
t�

0

β̄eβ̄x dx ‖v2‖L1 + β̄‖v2‖L1 = β̄eβ̄t‖v2‖L1 .

This means that Θ : XT → XT .
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Let now ϕ,ϕ ∈ XT . Let u1, u2 be given by the formulas (3.4), (3.5) with
ϕ replaced by ϕ and let

R(t, x) =
∞�

0

α(x, y)u1(t, y) dy.

We shall estimate the differences |ui(t, x) − ui(t, x)| for i = 1, 2. For x ≤ t
we have

|u1(t, x)− u1(t, x)| = |ϕ1(t− x)e−
	x
0 λ(s) ds − ϕ1(t− x)e−

	x
0 λ(s) ds|

≤ |ϕ1(t− x)− ϕ1(t− x)|.
For x > t clearly u1(t, x) = u1(t, x). Hence

|R(t, x)−R(t, x)| ≤
t�

0

α(x, y)|ϕ1(t− y)− ϕ1(t− y)| dy

≤ sup
y∈[0,t]

α(x, y)
t�

0

|ϕ1(s)− ϕ1(s)| ds

≤ α0(x)
t�

0

|ϕ1(y)− ϕ1(y)| dy

where α0(x) = supy∈[0,t] α(x, y). From the above it follows that

|e−
	t
t−x R(s,x+s−t) ds− e−

	t
t−x R(s,x+s−t) ds|

≤
∣∣∣ t�

t−x
R(s, x+ s− t) ds−

t�

t−x
R(s, x+ s− t) ds

∣∣∣
≤

t�

t−x
α0(x+ s− t)

s�

0

|ϕ1(y)− ϕ1(y)| dy ds

≤
x�

0

α0(x− s)
t−s�

0

|ϕ1(y)− ϕ1(y)| dy ds

≤
t�

0

|ϕ1(y)− ϕ1(y)|
t−y�

0

α0(x− s) ds dy

≤ t sup
z∈[0,t]

α0(z)
t�

0

|ϕ1(y)− ϕ1(y)| dy.

We now estimate the difference |u2(t, x)− u2(t, x)|. For x > t,

|u2(t, x)− u2(t, x)| = v2(x− t)|e−
	t
0R(t−s,x−s) ds − e−

	t
0R(t−s,x−s) ds|

≤ v2(x− t)
t�

0

|R(t− s, x− s)−R(t− s, x− s)| ds
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= v2(x− t)
t�

0

|R(s, x− t+ s)−R(s, x− t+ s)| ds

≤ v2(x− t)
t�

0

α0(x− t+ s)
s�

0

|ϕ1(y)− ϕ1(y)| dy ds

≤ v2(x− t)
t�

0

α0(x− s)
t−s�

0

|ϕ1(y)− ϕ1(y)| dy ds

= v2(x− t)
t�

0

|ϕ1(y)− ϕ1(y)|
t−y�

0

α0(x− s) ds dy

≤ tv2(x− t) · sup
z∈[0,t]

α0(z)
t�

0

|ϕ1(y)− ϕ1(y)| dy,

while for x ≤ t,

|u2(t, x)− u2(t, x)|

= |ϕ2(t− x)e−
	x
t−x R(s,x+s−t)ds − ϕ2(t− x)e−

	x
t−x R(s,x+s−t) ds|

≤ |(ϕ2(t− x)− ϕ2(t− x))e−
	x
t−x R(s,x+s−t) ds|

+ |ϕ2(t− x)(e−
	x
t−x R(s,x+s−t) ds − e−

	x
t−x R(s,x+s−t) ds)|

≤ |ϕ2(t− x)− ϕ2(t− x)|+ tϕ2(t− x) sup
z∈[0,t]

α0(z)
t�

0

|ϕ1(y)− ϕ1(y)| dy.

Now, we estimate |(Θϕ)1(t)− (Θϕ)1(t)| and |(Θϕ)2(t)− (Θϕ)2(t)|. First,

|(Θϕ)1(t)− (Θϕ)1(t)| ≤ k
t�

0

|u2(t, x)R(t, x)− u2(t, x)R(t, x)| dx

+ k

∞�

t

|u2(t, x)R(t, x)− u2(t, x)R(t, x)| dx

≤ k
t�

0

R(t, x)|u2(t, x)− u2(t, x)| dx+ k

t�

0

u2(t, x)|R(t, x)−R(t, x)| dx

+ k

∞�

t

u2(t, x)|R(t, x)−R(t, x)| dx+ k

∞�

t

R(t, x)|u2(t, x)− u2(t, x))| dx

≤ K1(T )
t�

0

(|ϕ1(x)− ϕ1(x)|+ |ϕ2(x)− ϕ2(x)|) dx

for some K1 depending only on T . The dependence follows from formula
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(3.5), that is, summability of u2 and v2. Analogously

|(Θϕ)2(t)− (Θϕ)2(t)| ≤ K2(T )
t�

0

(|ϕ1(x)− ϕ1(x)|+ |ϕ2(x)− ϕ2(x)|) dx

and so

|(Θϕ)1(t)− (Θϕ)1(t)|+ |(Θϕ)2(t)− (Θϕ)2(t)|

≤ K
t�

0

(|ϕ1(s)− ϕ1(s)|+ |ϕ2(s)− ϕ2(s)|) ds.

On the space XT we define a new metric by the formula

ρ(ϕ,ϕ) = sup
t∈[0,T ]

e−γt(|ϕ1(t)− ϕ1(t)|+ |ϕ2(t)− ϕ2(t)|),

where γ is a positive constant (see [3]). Clearly

e−γT sup
t∈[0,T ]

(|ϕ1(t)− ϕ1(t)|+ |ϕ2(t)− ϕ2(t)|)

≤ ρ(ϕ,ϕ) ≤ sup
t∈[0,T ]

(|ϕ1(t)− ϕ1(t)|+ |ϕ2(t)− ϕ2(t)|).

Thus ρ is equivalent to the usual metric defined by (3.8) in C([0, T ],R2),
and (XT , ρ) is a complete metric space. We have

e−γt(|(Θϕ)1(t)− (Θϕ)1(t)|+ |(Θϕ)2(t)− (Θϕ)2(t)|)

≤ Ke−γt
t�

0

eγsds · ρ(ϕ,ϕ) =
K

γ
ρ(ϕ,ϕ).

Since the right-hand side does not depend on t, we observe that

ρ(Θϕ,Θϕ) = sup
t∈[0,T ]

e−γt(|(Θϕ)1(t)− (Θϕ)1(t)|+ |(Θϕ)2(t)− (Θϕ)2(t)|)

≤ K

γ
ρ(ϕ,ϕ).

Choose γ such that K/γ < 1. The assertion of our theorem follows from the
Banach fixed point theorem.

Corollary 4.2. The system of differential equations (2.1)–(2.4) with
the initial conditions (3.1) has exactly one solution on the set

x ≥ 0, t ∈ [0,∞).

5. Reduced model. A natural problem is to contrast the above model
and the classical Lotka–Volterra model. To do that we will consider a reduced
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model. Define zi to be the global numbers of individuals, i.e.

zi(t) =
∞�

0

ui(t, x) dx, i = 1, 2.

Clearly, we assume that z1, z2 > 0.
Assume that the ui are differentiable and

lim
x→∞

ui(t, x) = 0.

Since
∞�

0

∂ui
∂x

dx = −ui(t, 0)

we obtain

(5.1)

z′1(t) = k

∞�

0

∞�

0

α(x, y)u1(t, y)u2(t, x) dx dy −
∞�

0

λ(x)u1(t, x) dx,

z′2(t) =
∞�

0

β(x)u2(t, x) dx−
∞�

0

∞�

0

α(x, y)u1(t, y)u2(t, x) dx dy.

To obtain the classical Lotka–Volterra model we must assume that

(5.2) α(x, y) = α, λ(x) = λ, β(x) = β.

In this situation the problem (2.1)–(2.4) has the form

(5.3)



∂u1

∂t
+
∂u1

∂x
= −λu1(t, x),

∂u2

∂t
+
∂u2

∂x
= −αz1(t) · u2(t, x),

u2(t, 0) = βz2(t),
u1(t, 0) = kαz1(t)z2(t),

z1(t) =
∞�

0

u1(t, x) dx,

z2(t) =
∞�

0

u2(t, x) dx.

Integrating the first two equations with respect to x and assuming that
limx→∞ ui(t, x) = 0 for i = 1, 2 we obtain the system{

z′1(t)− u1(t, 0) = −λz1(t),
z′2(t)− u2(t, 0) = −αz1(t)z2(t),

and consequently

(5.4)
{
z′1(t) = kαz1(t)z2(t)− λz1(t),
z′2(t) = βz2(t)− αz1(t)z2(t).
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The last system is the classical Lotka–Volterra system. From [13] it follows
that for all initial values (z1, z2) the solution of this system is a pair of
periodic functions with the same period.

Let now (v1, v2) : [0,∞)→ R2 satisfy the following conditions:

• v1, v2 ∈ L1([0,∞));
• vi(x) ≥ 0 for i = 1, 2 and for every x ≥ 0;
• limx→∞ vi(x) = 0 for i = 1, 2;
•
	∞
0 vi(x) dx ≥ 0 for i = 1, 2.

Let z = (z1, z2) : R+ → R2 be the solution of (5.4) with the initial condition

zi(0) =
∞�

0

vi(x) dx for i = 1, 2.

Let

u1(t, x) =

{
kαz1(t− x)z2(t− x)e−λx for x ≤ t,
v1(x− t)e−λt for x > t,

(5.5)

u2(t, x) =

{
βz2(t− x)e−α

	t
t−x z1(s) ds for x ≤ t,

v2(x− t)e−α
	t
0 z1(s) ds for x > t.

(5.6)

Lemma 5.1. Under the assumption (5.2) the function defined by the for-
mulas (5.5), (5.6) is a solution to (2.1)–(2.4) in the sense of Definition 3.1.

Proof. It is sufficient to show that

(5.7) zi(t) =
∞�

0

ui(t, x) dx.

For i = 1 we have
∞�

0

u1(t, x) dx = kα

t�

0

z1(t− x)z2(t− x)e−λx dx+
∞�

t

v1(x− t)e−λt dx.

The second summand is clearly equal to z1(0)e−λt. To calculate the first, we
make a simple change of variables

t�

0

z1(t− x)z2(t− x)e−λx dx =
t�

0

z1(x)z2(x)e−λ(t−x) dx

= e−λt
t�

0

z1(x)z2(x)eλx dx.

From (5.4) it follows that

kαz1(t)z2(t) = z′1(t) + λz1(t).
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Then

kα

t�

0

z1(x)z2(x)eλx dx =
t�

0

(z′1(x) + λz1(x))eλx dx

=
t�

0

d

dx
(z1(x)eλx) dx = z1(t)eλt − z1(0)

and so
∞�

0

u1(t, x) dx = e−λt(z1(t)eλt − z1(0)) + e−λtz1(0) = z1(t).

To prove the equality for i = 2 we define

Z1(t) =
t�

0

z1(s) ds.

Then
∞�

0

u2(t, x) dx = β

t�

0

z2(t− x)e−α(Z1(t)−Z1(t−x)) dx+
∞�

t

v2(x− t)e−αZ1(t) dx.

Analogously, for i = 1 the second summand is equal to

e−αZ1(t)z2(0)

and the first to

βe−αZ1(t)
t�

0

z2(x)eαZ1(x) dx.

From (5.4) it follows that

βz2(t) = z′2(t) + αz1(t)z2(t).

Consequently,
βz2(t)eαZ1(t) = (z2(t)eαZ1(t))′.

From the last equality it follows that
∞�

0

u2(t, x) dx = e−αZ1(t)

( t�

0

d

dx
(z2(x)eαZ1(x)) dx+ z2(0)

)
= z2(t).

This completes the proof.

Consider now the system (5.4). It is obvious that it has a periodic solution
on the whole set R+. Let (z1, z2) : R→ R2. Define (ṽ1, ṽ2) by

ṽ1(x) = kαz1(−x)z2(−x)e−λx,(5.8)

ṽ2(x) = βz2(−x)e−α
	0
−x z1(s) ds.(5.9)
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We show that ṽ1, ṽ2 ∈ L1([0,∞)). For T > 0 we have
T�

0

ṽ1(x) dx =
T�

0

kαz1(−x)z2(−x)e−λx dx =
0�

−T
kαz1(x)z2(x)eλx dx

=
0�

−T

d

dx
(z1(x)eλx) dx = z1(0)− e−T z1(−T ).

Since z1, being continuous and periodic, is bounded, we have

lim
T→∞

z1(−T )e−λT = 0,

which implies that
∞�

0

ṽ1(x) dx = z1(0).

Analogously
T�

0

ṽ2(x) dx =
T�

0

βz2(−x)e−α
	0
−x z1(s) ds dx

=
0�

−T
βz2(x)e−α

	0
x z1(s) ds dx =

0�

−T
βz2(x)eαZ1(x) dx

where for x < 0,

Z1(x) = −
0�

x

z1(s) ds.

Then an argument analogous to the proof of Lemma 5.1 yields
T�

0

ṽ2(x) dx =
0�

−T

d

dx
(z2(x)eαZ1(x)) dx = z2(0)− z2(−T )eαZ1(−T ).

To complete the proof it is sufficient to notice that since z1 is periodic and
positive, we have

lim
T→∞

eαZ1(−T ) = 0,

and so
∞�

0

ṽ2(x) dx = z2(0).

Now, we shall prove the following theorem.

Theorem 5.2. Let (ũ1, ũ2) be the solution to problem (5.3) with the
initial conditions

ũi(0, x) = ṽi(x) for i = 1, 2.

Then the functions ũ1, ũ2 are periodic in t.
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Proof. First we recall the formula (5.5). For x ≤ t,

ũ1(t, x) = kαz1(t− x)z2(t− x)e−λx

and for x > t,

ũ1(t, x) = ṽ1(x− t)e−λt = kαz1(t− x)z2(t− x)e−λ(x−t)e−λt.

Then for every x ∈ R+,

ũ1(t, x) = kαz1(t− x)z2(t− x)e−λx,

and the periodicity of z1 and z2 implies the periodicity of ũ1. The proof of
the periodicity of ũ2 is analogous.

Let V be the space of all non-negative functions (v1, v2) : R+ → R2 such
that

• vi ∈ L1(R+) for i = 1, 2;
• vi is continuous for i = 1, 2;
• limx→∞ vi(x) = 0 for i = 1, 2;
• v1(0) = kᾱ

	∞
0

	∞
0 v2(x)v1(y) dx dy;

• v2(0) = β̄
	∞
0 v2(x) dx.

Let Tt : V → V be defined by the formula

Ttv(x) = u(t, x),

where u = (u1, u2) is the solution of problem (5.3) with the initial conditions

ui(0, x) = vi(x) for i = 1, 2.

It is obvious that {Tt}t≥0 is a semidynamical system on V . From Theorem
5.2 it follows that this system has periodic trajectories. Moreover, for any
z1, z2 > 0 there exists a periodic point (v1, v2) of the system {Tt} such
that ‖vi‖L1 = zi(0) for i = 1, 2. Now, we shall prove that this system is
asymptotically periodic, i.e. the set of periodic trajectories is an attractor of
the system.

Theorem 5.3. Let (v1, v2) ∈ V and let zi =
	∞
0 vi(x) dx for i = 1, 2. Let

ṽ = (ṽ1, ṽ2) be defined by (5.8), (5.9). Then

lim
t→∞
‖Ttvi − Ttṽi‖ = 0 for i = 1, 2.

Proof. From (5.5) and (5.6) it follows that

Ttv1(x) =

{
kαz1(t− x)z2(t− x)e−λx for x ≤ t,
v1(x− t)e−λt for x > t,

Ttv2(x) =

{
βz2(t− x)e−α

	t
t−x z1(s) ds for x ≤ t,

v2(x− t)e−α
	t
0 z1(s) ds for x > t.
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Moreover for x > t we have

Ttṽ1(x = ṽ1(x− t)e−λt, Ttṽ2(x) = ṽ2(x− t)e−α
	t
0 z1(s) ds,

while for x ≤ t we have Ttṽ1(x) = Ttv1(x) and Ttṽ2(x) = Ttv2(x). It follows
that for every t > 0 and i = 1, 2,

‖Ttvi − Ttṽi‖ =
∞�

t

|Ttvi(x)− Ttṽi(x)| dx ≤
∞�

t

|Ttvi(x)| dx+
∞�

t

|Ttṽi(x)| dx.

It is obvious that
∞�

t

|Ttv1(x)| dx ≤ e−λ̄t‖v1‖L1 ,

∞�

t

|Ttṽ1(x)| dx ≤ e−λ̄t‖ṽ1‖L1 ,

∞�

t

|Ttv2(x)| dx ≤ e−α
	t
0 z1(s)ds‖v2‖L1 ,

∞�

t

|Ttṽ2(x)| dx ≤ e−α
	t
0 z1(s)ds‖ṽ2‖L1 .

This completes the proof.

6. Conclusions. The model presented in this paper is significantly more
general than the classical Lotka–Volterra model. In particular, in our model
the existence of a positive stationary solution depends on the reproductive
capability of preys. This approach is obvious from the biological point of
view. In the last section we consider the reduced model, i.e we take the age
structure into consideration, but it has no influence on the development of
the population. It can be seen that in this model the age structure of both
predators and preys stabilizes.
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