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A NOTE ON ORDER STATISTICS FROM
SYMMETRICALLY DISTRIBUTED SAMPLES

Abstract. We present a first moment distribution-free bound on expected
values of L-statistics as well as properties of some numerical characteristics
of order statistics, in the case when the observations are possibly dependent
symmetrically distributed about the common mean. An actuarial interpre-
tation of the presented bound is indicated.

1. Introduction. Let X1, . . . , Xn be real-valued random variables de-
fined on a common probability space (Ω,F , P ) with finite means µ. Denote
by X1:n ≤ · · · ≤ Xn:n the order statistics based on the sample X1, . . . , Xn.
Let λk be real numbers. The corresponding L-statistic is defined by∑n

k=1 λkXk:n. A review of the developments dealing with L-statistics is pre-
sented e.g. in Serfling (1980, Chapter 8). A comprehensive survey of the
current knowledge about bounds for expectations of L-statistics has been
given by Rychlik (1998, 2001).

In financial context L-statistics accommodate numerous indices of eco-
nomic inequality as well as risk measures of actuarial science. In partic-
ular, they constitute a natural class of estimators for (closely related to
each other) spectral and distorted probability measures of risk (see Dowd
et al. 2008; Wang, 1996). Some properties of empirical spectral risk mea-
sures based on independent observations are discussed e.g. by Acerbi (2002)
and Greselin et al. (2009). Since the assumption of mutual independence
of risks is often violated in actuarial and financial practice, the study of
the impact of dependence among risks has become a major topic in these
sciences nowadays (cf. Denuit et al., 2001). For example, Darkiewicz et al.
(2005) showed that there is no strict relation between concave distortion
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risk measures and Pearson’s r, Spearman’s ρ and Kendall’s τ dependency
measures.

In this paper we study properties of L-statistics in the case when the
underlying observations are symmetrically distributed about µ, i.e.

(1) (X1 − µ, . . . ,Xn − µ)
d= (µ−X1, . . . , µ−Xn),

where
d= means equality in distribution. Several examples of dependent ran-

dom variables Y1, . . . , Yn which are symmetrically distributed about zero are
given below. Of course, the corresponding random variables Y1+µ, . . . , Yn+µ
are symmetrically distributed about µ. Unless otherwise stated we assume
that i = 1, . . . , n.

Mixing. Let (Y1, . . . , Yn) have the distribution function of the form

P(Y1 ≤ t1, . . . , Yn ≤ tn) =
�

Θ

P(Y1 ≤ t1, . . . , Yn ≤ tn | Θ = θ) dG(θ),

where G is the distribution function of Θ and Y1, . . . , Yn are condition-
ally independent given Θ = θ with each conditional distribution Yi|Θ = θ
being symmetric about zero. For example, one can consider Yi = ViZi,

where Θ = (V1, . . . , Vn) is an arbitrary random vector and (Z1, . . . , Zn)
d=

(−Z1, . . . ,−Zn) is a random vector independent of Θ.
Markov dependence. Let (εi)ni=1 be a sequence of random variables inde-

pendent of a random variable Y1 symmetrically distributed about zero. Let
Yi = fi(Yi−1, εi), i = 2, . . . , n, where fi : R2 → R are Borel functions such
that fi(−x, y) = −fi(x, y).

Markov dependence of order 2. For (V0, V1, . . . , Vn) having the same dis-
tribution as (−V0,−V1, . . . ,−Vn), define Yi = gi(Vi−1, Vi), where gi : R2 → R
are such that gi(−x,−y) = −gi(x, y). The following examples may be of in-
terest: gi(x, y) = −xy and gi(x, y) = x+ y.

Generalized AR(1). Assume ε1, . . . , εn is a sequence of i.i.d. random vari-

ables such that εi
d= −εi and Y1 is a random variable symmetrically dis-

tributed about zero and independent of (εi)ni=1. Define Yi = fi(Yi−1, εi),
i = 2, . . . , n, with fi : R2 → R satisfying fi(−x,−y) = −fi(x, y). For
fi(x, y) = aix+ y, ai ∈ R, we get the autoregressive process of order one.

Generalized ARCH(1). Suppose Y1 and (εi)ni=1 are as in the previous
example. Set Yi = hi(Yi−1)εi, where hi(−x) = hi(x), x ∈ R, i = 2, . . . , n.
If hi(y) = (aiy2 + bi)1/2, ai, bi > 0, we get the autoregressive conditional
heteroskedasticity model of order one. The last two models can be extended
to ARMA(p,q) and GARCH(p,q), respectively.

In Section 2 we show that expected values of some L-statistics are greater
than or equal to the mean µ. The result is an extension of Rychlik’s (2009,
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Proposition 1) bound for a single order statistic from the i.i.d. sample to the
case of symmetrically distributed and thus possibly dependent and possibly
nonidentically distributed observations. Furthermore, we present some prop-
erties of characteristics of order statistics from a sample satisfying (1) such
as the skewness coefficient, the Pearson correlation coefficient, the Spearman
ρ and the Kendall τ .

2. Results. We assume that the integrals appearing in this section exist
and are finite. Moreover, we denote by bxc the smallest integer greater than
or equal to x.

Proposition 2.1. Let X1, . . . , Xn be symmetrically distributed about µ.
If
∑k

j=1(λn−j+1 − λj) ≥ 0 for 1 ≤ k ≤ bn/2c, then

(2) E
n∑
k=1

λkXk:n ≥ µ
n∑
k=1

λk.

Equality occurs in (2) if for 1 ≤ k ≤ bn/2c either P(Xn−k+1:n = Xn−k:n) = 1
or
∑k

j=1(λn−j+1 − λj) = 0.

Proof. Put Yi = Xi − µ, i = 1, . . . , n, and observe that

P(Yk:n ≤ t) = P
( n∑
i=1

I(Yi ≤ t) ≥ k
)

= P
( n∑
i=1

I(−Yi ≤ t) ≥ k
)
, t ∈ R,

where I(A) = 1 if A is true and I(A) = 0 if A is not true. Denote Zi = −Yi,
i = 1, . . . , n. Then Zk:n = −Yn−k+1:n for any k = 1, . . . , n and

P(Yk:n ≤ t) = P(Zk:n ≤ t) = P(−Yn−k+1:n ≤ t)

for arbitrary t and k. Hence

(3) −EYk:n = EYn−k+1:n

for every k. Of course, EYk:n ≤ EYn−k+1:n for 1 ≤ k < (n + 1)/2, and
consequently

(4) EYn−k+1:n ≥ 0

for such k’s. If n is an odd number, then

(5) −EY(n+1)/2:n = EY(n+1)/2:n,

which implies that EY(n+1)/2:n = 0. Set Λ =
∑n

k=1 λk and λ′k = λk −
(Λ− 1)/n for k = 1, . . . , n. From (3)–(5) and Abel’s identity it follows that
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n∑
k=1

λkEYk:n =
n∑
k=1

λ′kEYk:n +
Λ− 1
n

n∑
k=1

EYk

=
bn/2c∑
k=1

(λ′n−k+1 − λ′k)EYn−k+1:n

= EYn−bn/2c+1:n

bn/2c∑
k=1

(λn−k+1 − λk)

+
bn/2c−1∑
k=1

E (Yn−k+1:n − Yn−k:n)
k∑
j=1

(λn−j+1 − λj) ≥ 0.

Remark 2.2. (i) The bound (2) shows that any empirical spectral and
Wang’s premium principle based on symmetrically distributed and thus pos-
sibly dependent risks has the desired property of nonnegative risk loading
(cf. Young, 2004).

(ii) If X1, . . . , Xn are arbitrary integrable random variables defined on
a common probability space, and

∑n
j=1 λj = 1 and

∑k
j=1 λj ≤ k/n for

k = 1, . . . , n−1, which is a stronger assumption than that of Proposition 2.1
(cf. Rychlik, 1998, Section 4.1), then by Abel’s identity,

n∑
k=1

λkXk:n = Xn:n

n∑
k=1

λk +
n−1∑
k=1

(Xk:n −Xk+1:n)
k∑
j=1

λj

≥ Xn:n +
n−1∑
k=1

(Xk:n −Xk+1:n)
k∑
j=1

1
n

=
1
n

n∑
k=1

Xk:n =
1
n

n∑
k=1

Xk,

and consequently E
∑n

k=1 λkXk:n ≥ (1/n)
∑n

k=1 EXk. Equality is attained
if for 1 ≤ k ≤ n either P(Xk:n = Xk+1:n) = 1 or

∑k
j=1 λj = k/n. It is worth

noting that for the case of identically distributed observations with common
symmetric distribution, the result follows from Rychlik’s (1998, eq. (53))
bound.

(iii) Under the assumptions of Proposition 2.1 with
∑k

j=1(λn−j+1 − λj)
≥ 0 replaced by

∑k
j=1(λn−j+1−λj) ≤ 0, the upper bound E

∑n
k=1 λkXk:n ≤

µ is satisfied.
(iv) Proposition 2.1 remains valid with the conditions

∑k
j=1(λn−j+1 −

λj) ≥ 0 and (1) replaced by
∑k

j=1(λn−j+1 − aλj) ≥ 0 and (X1 − µ, . . . ,

Xn − µ)
d= (a(µ−X1), . . . , a(µ−Xn)), where a is a positive real number.

(v) Some relations between numerical characteristics of order statistics
from symmetrically distributed observations follow directly from the prop-
erty Xk:n − µ

d= µ − Xn−k+1:n. For example, Xk:n and Xn−k+1:n have the



Order statistics from symmetrically distributed samples 481

same variance and kurtosis while their skewness coefficients are the opposite
numbers.

The next results will provide some relations between characteristics of
pairs of order statistics. Define the sample median as X(n+1)/2:n if n is odd
and as the arithmetic mean of Xn/2:n and Xn/2+1:n if n is even.

Proposition 2.3. Let the assumptions of Proposition 2.1 be satisfied.
Then for arbitrary k, l = 1, . . . , n,

(6) corr(Xk:n, Xl:n) = corr(Xn−k+1:n, Xn−l+1:n).

Moreover, the sample median and the sample quasi-ranges Xn−k+1:n−Xk:n,
k = 1, 2, . . . , bn/2c, are uncorrelated.

Proof. Writing Yi = Xi − µ and Zi = −Yi, i = 1, . . . , n, we get

P(Yk:n ≤ t, Yl:n ≤ s) = P
( n∑
i=1

I(Yi ≤ t) ≥ k,
n∑
i=1

I(Yi ≤ s) ≥ l
)

(7)

= P
( n∑
i=1

I(−Yi ≤ t) ≥ k,
n∑
i=1

I(−Yi ≤ s) ≥ l
)

= P(Zk:n ≤ t, Zl:n ≤ s)
= P(−Yn−k+1:n ≤ t,−Yn−l+1:n ≤ s).

Hence, for any k and l,

cov(Yk:n, Yl:n) = cov(−Yn−k+1:n,−Yn−l+1:n)(8)
= cov(Yn−k+1:n, Yn−l+1:n),

which implies (6). If n is odd, then applying (8) with k = (n+ 1)/2 yields

(9) cov(Y(n+1)/2:n, Yn−l+1:n − Yl:n) = 0.

If n is even, then putting k = n/2 + 1 and k = n/2 in (8) gives

(10) cov(Yn/2:n, Yn−l+1:n) = cov(Y(n+2)/2:n, Yl:n)

and

(11) cov(Yn/2:n, Yl:n) = cov(Y(n+2)/2:n, Yn−l+1:n).

Combining (10) with (11) we get

cov
(

1
2(Yn/2:n + Y(n+2)/2:n), Yn−l+1:n − Yl:n

)
= 0,

which together with (9) leads to the second statement.

Similar relations can also be established for the Kendall τ and the Spear-
man ρ. Let us recall the definitions of these coefficients. The Kendall coeffi-
cient of random variables X,Y is defined by

τ(X,Y ) = E sgn((X −X ′)(Y − Y ′)),
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where (X ′, Y ′) is an independent copy of (X,Y ) and sgn(x) = I(x > 0) −
I(x < 0), x ∈ R. The Spearman coefficient of random variables X,Y with
distribution functions F,G, respectively, is defined as

ρ(X,Y ) = cov(F (X), G(Y )).

Proposition 2.4. Let k, l = 1, . . . , n. Under the assumptions of Propo-
sition 2.1,

(i) τ(Xk:n, Xl:n) = τ(Xn−k+1:n, Xn−l+1:n),
(ii) if (X1, . . . , Xn) has a continuous distribution function, then

ρ(Xk:n, Xl:n) = ρ(Xn−k+1:n, Xn−l+1:n).

Proof. From (7) we see that (Xk:n − µ,Xl:n − µ)
d= (µ −Xn−k+1:n, µ −

Xn−l+1:n). Set Yi = Xi − µ. By the definition of Kendall’s coefficient,
τ(Xk:n, Xl:n) = τ(Yk:n, Yl:n). Let (Y ′1 , . . . , Y

′
n) be an independent copy of

(Y1, . . . , Yn). Since (Yk:n, Yl:n)
d= (−Yn−k+1:n,−Yn−l+1:n) and (Y

′
k:n, Y

′
l:n)

d=
(−Y ′

n−k+1:n,−Y
′
n−l+1:n), we conclude that

(Yk:n, Yl:n, Y
′
k:n, Y

′
l:n)

d= (−Yn−k+1:n,−Yn−l+1:n,−Y
′
n−k+1:n,−Y

′
n−l+1:n).

Therefore

τ(Yk:n, Yl:n) = E sgn[(Yk:n − Y
′
k:n)(Yl:n − Y

′
l:n)]

= E sgn[(Yn−k+1:n − Y
′
n−k+1:n)(Yn−l+1:n − Y

′
n−l+1:n)]

= τ(Yn−k+1:n, Yn−l+1:n),

which is equivalent to (i). Denote by Fk the distribution function of Xk:n.
For k, l = 1, . . . , n we have

(12) cov(Fk(Xk:n − µ+ µ), Fl(Xl:n − µ+ µ))
= cov(Fk(µ−Xn−k+1:n + µ), Fl(µ−Xn−l+1:n + µ)).

For x ∈ R,
Fk(x) = P(Xk:n ≤ x) = P(Yk:n ≤ x− µ) = P(−Yn−k+1:n ≤ x− µ)

= 1−P(Yn−k+1:n < µ− x) = 1− Fn−k+1(2µ− x),
and so Fk(2µ− x) = 1− Fn−k+1(x). From (12) we obtain

cov(Fk(Xk:n), Fl(Xl:n)) = cov(1− Fn−k+1(Xn−k+1:n), 1− Fn−l+1(Xn−l+1:n))
= cov(Fn−k+1(Xn−k+1:n), Fn−l+1(Xn−l+1:n)),

which gives (ii).
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