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CHARACTERIZATIONS OF EXPONENTIAL
DISTRIBUTIONS BY SPACINGS OF
GENERALIZED ORDER STATISTICS

Abstract. Properties of spacings of generalized order statistics based on
IFR and DFR distributions are shown to characterize exponential distribu-
tions.

1. Introduction. For order statistics from an exponential distribution
with parameter λ > 0 (Exp(λ)) it is well known that the normalized spac-
ings are independent and Exp(λ)-distributed. A variety of characterization
results has been shown by means of related distributional properties. A de-
tailed survey is given in Gather et al. (1998). In Kamps and Gather (1997),
characterizations of exponential distributions with two spacings involved
have been extended to using normalized spacings of generalized order stat-
istics (cf. Kamps 1999) with a particular choice of the model parameters,
i.e., m1 = . . . = mn−1 = m, say. In the following we consider general-
ized order statistics with no restriction imposed on the parameters. Let
X(1, n, m̃, k), . . . ,X(n, n, m̃, k) be generalized order statistics based on the
distribution function F with parameters γ1, . . . , γn > 0. For brevity, they are
denoted by X(1), . . . ,X(n). If F ≡ Exp(λ), then the normalized spacings

D(1) = γ1X(1), D(r) = γr(X(r)−X(r − 1)), 2 ≤ r ≤ n,
of generalized order statistics are also iid Exp(λ)-distributed random vari-
ables (cf. Kamps 1995, p. 81).

Instead of requiring identical distributions of certain spacings we utilize
two types of equations as characterizing properties given that the underlying
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distributions have the IFR or DFR property. Namely, we make use of the
identities hD(r)(0) = hD(s)(0) for one pair (r, s), 1 ≤ r < s ≤ n, where
h = f/(1− F ) denotes the hazard rate of F , and ED(r) = ED(r + 1) for
one r ∈ {1, . . . , n− 1}, respectively.

2. Preliminaries. In Cramer and Kamps (2003) it is shown that gen-
eralized order statistics based on some distribution function F can alterna-
tively be defined by

X(r) = F−1
(

1−
r∏

j=1

Bj

)
, 1 ≤ r ≤ n,(1)

where B1, . . . , Bn are independent power-function-distributed random vari-
ables with P (Bj ≤ x) = xγj , x ∈ (0, 1), 1 ≤ j ≤ n. If F is supposed to
be absolutely continuous with density function f then X(r) has the density
function

fX(r)(t) =
( r∏

j=1

γj

)
Gr(F (t) | γ1, . . . , γr)f(t), t ∈ R,(2)

where Gr(· | γ1, . . . , γr) ≡ Gr,0r,r
(
·
∣∣ γ1,...,γr
γ1−1,...,γr−1

)
denotes a particular Meijer’s

G-function (cf. Mathai 1993), and F = 1−F . The function Gr(· | γ1, . . . , γr)
has some interesting properties. For instance, it is continuous on the interval
(0, 1] with Gr(1 | γ1, . . . , γr) = 0 (see, e.g., Cramer et al. 2003).

Subsequently, we need the following formulas for which we refer to
Mathai (1993) and Cramer et al. (2003) (t ∈ (0, 1)):

G1(t | γ1) = tγ1−1,(3)

tαGr(t | γ1, . . . , γr) = Gr(t | γ1 + α, . . . , γr + α), α ∈ R,(4)
d

dt
Gr(t | γ1, . . . , γr) =

1
t

[(γr − 1)Gr(t | γ1, . . . , γr)(5)

−Gr−1(t | γ1, . . . , γr−1)
]
, r ≥ 2.

The density of the spacing D(r), r ≥ 2, is given by

fD(r)(y) =
( r−1∏

j=1

γj

) ∞�

−∞

(
F (y/γr + x)

F (x)

)γr−1

(6)

×Gr−1(F (x) | γ1, . . . , γr−1)h(x)f(y/γr + x) dx, y > 0,

since

FX(r−1),X(r)(x, t) = P (X(r − 1) ≤ x, X(r) ≤ t)

= P
( r−1∏

j=1

Bj > F (x),
r∏

j=1

Bj > F (t)
)
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=
∞�

−∞
P
( r−1∏

j=1

Bj > F (x),
r∏

j=1

Bj > F (t)
∣∣∣
r−1∏

j=1

Bj = z
)
dP

∏r−1
j=1 Bj (z)

=
( r−1∏

j=1

γj

) 1�

F (x)

P (Br > F (t)/z)Gr−1(z | γ1, . . . , γr−1) dz

and
d

dt

d

dx
FX(r−1),X(r)(x, t)

=
( r∏

j=1

γj

)( F (t)

F (x)

)γr−1

Gr−1(F (x) | γ1, . . . , γr−1)h(x)f(t).

In the proof of Theorem 3.1, the monotonicity of a ratio Gr(1−·|γ1,...,γr)
Gs(1−·|γ1,...,γs)

of G-
functions is utilized. This property is of independent interest since it relates
order statistics in the likelihood ratio ordering. Random variables X and Y
with respective densities f and g are called (partially) ordered in the sense

of likelihood ratio, X
lr
≤ Y , if f/g is a decreasing function on the union of

the supports of X and Y (cf. Shaked and Shanthikumar 1994, pp. 27–28).
The following lemma extends the corresponding assertion for order statis-

tics (cf. Chan et al. 1991, Boland et al. 1998, p. 95) and record values (cf.
Kochar 1990) to generalized order statistics.

Lemma 2.1. Let X(1), . . . ,X(n) be generalized order statistics based on
a continuous distribution function F . Then

X(r)
lr
≤ X(s), 1 ≤ r < s ≤ n.

Proof. Let B1, . . . , Bn be independent random variables with P (Bj≤x)
= xγj , x ∈ (0, 1), 1 ≤ j ≤ n. Since the densities of − logB1, . . . ,− logBn
are logconcave, the application of Theorems 1.C.5 and 1.C.4 of Shaked and
Shanthikumar (1994, pp. 30–31) together with (1) yields

− log
r∏

i=1

Bi =
r∑

i=1

− logBi
lr
≤

s∑

j=1

− logBj = − log
s∏

j=1

Bj ,

and thus

X(r) = F−1
(

1−
r∏

i=1

Bi

) lr
≤ F−1

(
1−

s∏

j=1

Bj

)
= X(s).

3. Characterization results. By assuming that generalized order stat-
istics are based on an IFR or DFR distribution with some additional proper-
ties, exponential distributions can be characterized by the equation hD(r)(0)
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= hD(s)(0). This extends results of Gajek and Gather (1989) for order statis-
tics and record values and of Kamps and Gather (1997) for generalized order
statistics with the particular choice m1 = . . . = mn−1 = m, say, of the model
parameters, i.e., γj = k + (n − j)(m + 1), 1 ≤ j ≤ n, k > 0. Other charac-
terizations of exponential distributions via two spacings of order statistics
were derived by Ahsanullah (1978, 1981a).

Theorem 3.1. Let X(1), . . . ,X(n) be generalized order statistics based
on F with F−1(0+) = 0, F strictly increasing on (0,∞), and with density
function f and hazard rate h which are both continuous from the right.
Moreover , let F be IFR or DFR. Then F ≡ Exp(λ) for some λ > 0 iff
there exists a pair (r, s), 1 ≤ r < s ≤ n, such that the limits hD(j)(0) =
limx→0+ hD(j)(x) are finite for j ∈ {r, s} and

hD(r)(0) = hD(s)(0).

Proof. Let s > r ≥ 2. By using representation (6) and F (0) = 0 we find

hD(r)(0) =
( r−1∏

j=1

γj

)∞�

0

Gr−1(F (x) | γ1, . . . , γr−1)h(x)f(x) dx,

and, due to (2),

∞�

0

Gr−1(F (x) | γ1, . . . , γr−1)f(x) dx =
( r−1∏

j=1

γj

)−1
.

Hence,

hD(r)(0) = hD(s)(0)

⇔
(∞�

0

Gr−1(F (x) | γ1, . . . , γr−1)h(x)f(x) dx
)

×
(∞�

0

Gr−1(F (x) | γ1, . . . , γr−1)f(x) dx
)−1

=
(∞�

0

Gs−1(F (x) | γ1, . . . , γs−1)h(x)f(x) dx
)

×
(∞�

0

Gs−1(F (x) | γ1, . . . , γs−1)f(x) dx
)−1

⇔
� �

x≤y

[Gr−1(F (x) | γ1, . . . , γr−1)Gs−1(F (y) | γ1, . . . , γs−1)
−Gs−1(F (x) | γ1, . . . , γs−1)Gr−1(F (y) | γ1, . . . , γr−1)]︸ ︷︷ ︸

=δ(x,y)

× (h(x)− h(y))f(x)f(y) dx dy = 0
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(cf. Kamps and Gather 1997). Because of Lemma 2.1, the expression δ(x, y)
is nonnegative for x ≤ y. It is important to mention that the ratio

Gr−1(1− · | γ1, . . . , γr−1)
Gs−1(1− · | γ1, . . . , γs−1)

is strictly decreasing in (0, 1). This can be seen directly from the explicit
representation of the G-functions in terms of (linearly independent) func-
tions

tγj−1(− log t)kvj ,
i.e.,

Gr(t | γ1, . . . , γr) =
l∑

v=1

dv−1∑

j=0

Kvj

(dv − 1− j)!j! t
δv−1(− log t)dv−j−1,

where Kv0 =
∏l
q=1, q 6=v(δq − δv)−dq ,

Kvj =
j−1∑

p=0

l∑

q=1, q 6=v
(−1)p+1

(
j − 1
p

)
p!dq

(δq − δv)p+1 Kv,j−1−p, j ≥ 1,

and the following notations are used:

γ1 = . . . = γd1 < γd1+1 = . . . = γd1+d2 < . . .

. . . < γd1+...+dl−1+1 = . . . = γd1+...+dl

with l ∈ {1, . . . , r} and δj = γd1+...+dj , j = 1, . . . , l. Hence, δ1 < . . . < δl and
dj denotes the multiplicity of δj in the sequence (γ1, . . . , γr), j = 1, . . . , l (cf.
Cramer and Kamps 2003).

A constant ratio Gr−1(1− · | γ1, . . . , γr−1)/Gs−1(1− · | γ1, . . . , γs−1) with
value c on an interval (α, β) ⊂ (0, 1), α < β, would lead to c = 1 and r = s,
which means that both functions coincide. Hence, δ(x, y) > 0 for x < y.
Since h is increasing or decreasing, we have h(x) = h(y) for all x < y, i.e.,
a constant failure rate. Thus, the assertion is proved.

In the case r = 1, we have

fD(1)(y) = F γ1−1(y/γ1)f(y/γ1), and hence hD(1)(0) = f(0).(7)

Thus,

hD(1)(0) = hD(s)(0)

⇔ f(0) =
(∞�

0

Gs−1(F (x) | γ1, . . . , γs−1)h(x)f(x) dx
)

×
(∞�

0

Gs−1(F (x) | γ1, . . . , γs−1)f(x) dx
)−1

⇒
∞�

0

Gs−1(F (x) | γ1, . . . , γs−1)f(x)(h(x)− f(0))dx = 0
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Since

h(x)
(≤)
≥ h(0) = f(0), x > 0,

the assertion follows for r = 1 as well.

Obviously, the property hD(s)(0) = h(0) for some 2 ≤ s ≤ n characterizes
exponential distributions (cf. Remark 2.1 in Gajek and Gather 1989 and
Ahsanullah 1981b,a for order statistics and record values). From the case
r = 1 in the proof of Theorem 3.1, it is clear that the IFR or DFR assumption
can be replaced by requiring that zero is an extremal point of the hazard
rate h.

A related result for record values with random index has recently been
shown by Iwińska (2001).

In Theorem 3.2, the equality of expected successive normalized spacings
is used as a characterizing property. It is an extension of results of Ahsan-
ullah (1981a,b) for order statistics and record values, and of Kamps and
Gather (1997) for a particular subclass of generalized order statistics.

Theorem 3.2. Let X(1), . . . ,X(n) be generalized order statistics based
on F and parameters γ1 ≥ . . . ≥ γn > 0, F−1(0+) = 0, F (x) < 1 for all
x > 0, and let F have the IFR or DFR property. Then F ≡ Exp(λ) for some
λ > 0 iff there exists r, 1 ≤ r ≤ n− 1, such that ED(r) = ED(r + 1).

Proof. Let r ≥ 2 and F be IFR. By using (4)–(6), and Fubini’s lemma
twice we obtain

1− FD(r)(x) =
∞�

x

fD(r)(y) dy

(8)

(6)
=
( r−1∏

j=1

γj

)∞�

x

∞�

−∞

(
F (y/γr + z)

F (z)

)γr−1

×Gr−1(F (z) | γ1, . . . , γr−1)h(z)f(y/γr + z) dz dy

=
( r−1∏

j=1

γj

) ∞�

−∞
F−γr(z)Gr−1(F (z) | γ1, . . . , γr−1)f(z)

×
∞�

x

F γr−1(y/γr + z)f(y/γr + z) dy dz

(4)
=
( r−1∏

j=1

γj

) ∞�

−∞
F−1(z)Gr−1(F (z) | γ1 − γr + 1, . . . , γr−1 − γr + 1)

× f(z)F γr(x/γr + z) dz
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=
( r−1∏

j=1

γj

) ∞�

−∞
F−1(z)Gr−1(F (z) | γ1 − γr + 1, . . . , γr−1 − γr + 1)f(z)

×
∞�

z

γrF
γr−1(x/γr + t)f(x/γr + t) dt dz

=
( r∏

j=1

γj

) ∞�

−∞
F γr−1(x/γr + t)f(x/γr + t)

×
t�

−∞
F−1(z)Gr−1(F (z) | γ1 − γr + 1, . . . , γr−1 − γr + 1)f(z) dz dt

(5)
=
( r∏

j=1

γj

)∞�

0

F γr−1(x/γr + t)f(x/γr + t)

×Gr(F (t) | γ1 − γr + 1, . . . , γr−1 − γr + 1, 1) dt

(4)
=
( r∏

j=1

γj

)∞�

0

F γr−1(x/γr+t)f(x/γr+t)F 1−γr(t)Gr(F (t) | γ1, . . . , γr) dt.

For r = 1 this expression reads (using (3))

γ1

∞�

0

F γ1−1(x/γ1 + t)f(x/γ1 + t)F 1−γ1(t)F γ1−1(t) dt

= − F γ1(x/γ1 + t)|∞0 = F γ1(x/γ1).

Thus, the above expression remains valid for r = 1, since (via (7))

1− FD(1)(x) = 1− F γ1X(1)(x) = F γ1(x/γ1), x ∈ R.
On the other hand, we have

1− FD(r+1)(x)
(8)
=
( r∏

j=1

γj

)∞�

0

F−γr+1(t)Gr(F (t) | γ1, . . . , γr)f(t)

× F γr+1(x/γr+1 + t) dt

Since F is IFR, the function log(1− F ) is concave; thus, we have

logF
(
x

γr
+ t

)
= logF

(
t(γr − γr+1)

γr
+
γr+1

γr

(
x

γr+1
+ t

))

≥
(

1− γr+1

γr

)
logF (t) +

γr+1

γr
logF

(
x

γr+1
+ t

)
,

which yields

F
γr(x/γr + t) ≥ F γr−γr+1(t)F γr+1(x/γr+1 + t).(9)



264 E. Cramer et al.

Because of the IFR property, h(t) ≤ h(x/γr + t) for all x, t > 0. Hence,

0 = ED(r + 1)− ED(r)

=
( r∏

j=1

γj

)∞�

0

∞�

0

F 1−γr(t)Gr(F (t) | γ1, . . . , γr)

× [F γr−γr+1(t)h(t)F γr+1(x/γr+1 + t)− F γr(x/γr + t)h(x/γr + t)] dt dx

(9)
≤
( r∏

j=1

γj

)∞�

0

∞�

0

F 1−γr(t)Gr(F (t) | γ1, . . . , γr)

× [F γr−γr+1(t)h(t)F γr+1(x/γr+1 + t)

− F γr−γr+1(t)F γr+1(x/γr+1 + t)h(x/γr + t)] dt dx

=
( r∏

j=1

γj

)∞�

0

∞�

0

F 1−γr+1(t)F γr+1(x/γr+1 + t)

×Gr(F (t) | γ1, . . . , γr)[h(t)− h(x/γr + t)] dt dx ≤ 0.

Thus, h(t) = h(x/γr + t) for all x, t > 0, which implies the assertion.
The case of a distribution function F with the DFR property can be

handled along the same lines.

Remark 3.3. (i) In case of progressive type II censored order statistics
(cf. Balakrishnan and Aggarwala 2000) the parameters γ1, . . . , γn ≥ 1 are
decreasingly ordered so that the preceding theorem applies.

(ii) For generalized order statistics with the restriction m1 = . . . =
mn−1 = m (i.e., γj = k + (n − j)(m + 1), 1 ≤ j ≤ n) the assumption
γ1 ≥ . . . ≥ γn reduces to m ≥ −1, stated in Kamps and Gather (1997).

(iii) As can be seen from the proof of Theorem 3.2, the ordering of all
parameters γ1 ≥ . . . ≥ γn > 0 is not necessary. In order to prove the
characterization we need the existence of an index r with ED(r) = ED(r+1)
and γr ≥ γr+1 (cf. Corollary 3.4).

Corollary 3.4. Let X(1), . . . ,X(n) be generalized order statistics based
on F and parameters γ1, . . . , γn > 0, F−1(0+) = 0, F (x) < 1 for all x > 0,
and let F have the IFR or DFR property. If there exists r, 1 ≤ r ≤ n − 1,
such that ED(r) = ED(r + 1) and γr ≥ γr+1 then F ≡ Exp(λ) for some
λ > 0.
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