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SHIFT INVARIANT OPERATORS AND
A SATURATION THEOREM

Abstract. The properties of shift invariant operators Qh are proved: It is
shown that Q has polynomial order r iff r is the rate of convergence of Qh.
A weak saturation theorem is given. If f is replaced by Qhf in the weak
saturation formula the asymptotics of the expression is calculated. Moreover,
bootstrap approximation is introduced.

1. Introduction. This paper is a continuation of our earlier research
[Dz2], [Dz4]. Let us present the results by means an example. We prove them
for a general shift invariant operator Q (see [Dz4]). Let

F (x) =
{

1 for −1/2 ≤ x < 1/2,
0 elsewhere,

G(x) =
{

1− |x| for |x| < 1,
0 elsewhere.

For h > 0 we define an operator Q̃h by

Q̃hf(x) =
∑

k∈Z

�

R
F (u− k)f(hu) duG(x/h− k)

=
∑

k∈Z

1
h

(k+.5)h�

(k−.5)h

f(u) duG(x/h− k).

We say that an operator Q has polynomial order r if Q(P ) = P for all
polynomials P with degP < r. Note Q̃ = Q̃1 has polynomial order 2. For
f ∈W 2

2 ,
Q̃hf − f

h2 → f ′′

8
,

where the convergence is weak in L2(R). Let f(x) = sin9 x. In Fig. 1 we
show both f ′′/8 and (Q̃hf − f)/h2 for h = 1/8.
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Fig. 1

We call this phenomenon the weak saturation theorem (see for instance
Theorem 3.2 of [Dz2]). Now replacing in the above formula f by Q̃hf we
prove that

Q̃h(Q̃hf)(x)− Q̃hf(x)
h2 = Q̃h

(
Q̃hf − f

h2

)
(x)→ f ′′(x)

8
uniformly for x ∈ R provided f is sufficiently smooth. In Fig. 2 we picture
both f ′′/8 and (Q̃h(Q̃hf)− Q̃hf)/h2 for h = 1/8.
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We see that replacing f by a sample Q̃hf (we call it a bootstrap) smooths
the limit. In the last section we use this procedure to increase the rate of
approximation. Application of this procedure is called bootstrap approxima-
tion. Let TH denote the convolution operator, i.e. THf = H ∗ f . Recall that
Q̃ has polynomial order r = 2. Then for any N > 0 there is a function HN

such that the operator

THN ◦ Q̃f(x) =
∑

α∈Zd

�

Rd
f(u)F (u− α) du (HN ∗G)(x− α)

has polynomial order r(4N − 1). The function H will be constructed later.
Consider the adjoint operator Q̃∗h given by

Q̃∗hf(u) =
�

R

∑

k∈Z
G(x− k)f(hx) dxF (u/h− k).
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We have

Q̃∗h

(
Q̃hf − f

h2

)
(u)→ f ′′(u)

8
,

uniformly for u ∈ R, provided f is sufficiently smooth (see Fig. 3).
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The last result was stated without proof in [Dz2, Lemma 3.2]. It gives an
appropriate tool for proving the central limit theorem for the square error
of multivariate nonparametric estimators based on shift invariant operators
(for definition see [Dz4]).

Let us introduce standard notation. For β = (β1, . . . , βd) where βj ≥ 0,
and 1 ≤ p <∞, set

|β| := β1 + . . .+ βd, β! := β1! . . . βd!, []β(x) := xβ = xβ1
1 . . . xβdd ,

|f |r,p =
∑

|β|=r
‖Dβf‖p, ‖f‖p =

( �

Rd
|f |p

)1/p
, Dβf =

∂|β|f

∂xβ1
1 . . . ∂xβdd

.

For p =∞,

‖f‖∞ = sup
x∈Rd

|f(x)|, |f |k,∞ = sup
x∈Rd

sup
|β|=k

|Dβf(x)|.

Define also
‖f‖Ck(K) = sup

x∈K
sup
|β|≤k

|Dβf(x)|,

where K is a compact ball or K = Rd. The Fourier transform of f is

f̂(x) =
�

Rd
f(t)e−2πit·x dt.

Set F̆ (x) = F (−x). The convolution is defined by

f ∗ g(x) =
�

Rd
f(t)g(x− t) dt.

We use the Sobolev spaces W k
p = W k

p (Rd), 1 ≤ p < ∞ (see [M]). For
p=∞ we can take the k-times differentiable bounded functions with com-
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pact support, Ck0 , and define W k
∞ = W k

∞(Rd) to be the closure of Ck0 in the
norm ‖ ·‖Ck(Rd). This is the space of functions whose derivatives up to order
k vanish at infinity.

The paper is organized as follows: in Section 2 we define shift invariant
operators and formulate the main results. In Section 3 and 4 we give the
proofs of the stated theorems. In Section 5 we introduce bootstrap approxi-
mation, i.e. methods of increasing the rate of convergence of a shift invariant
operator. This method was proposed in [Dz3] for the orthogonal projection
in the box spline case.

2. Shift invariant operators. Following the notation of [JM], let E∞
denote the space of functions which decay exponentially fast, i.e. there are
constants C > 0 and 0 < q < 1 such that for all x ∈ Rd,

|G(x)| < Cq|x|,

where |x|2 = x · x, the scalar product in Rd. For

F,G ∈ E∞(1)

consider the shift invariant operators [Dz4]

Qf(x) =
�

Rd
K(x, y)f(y) dy,(2)

where

K(x, y) =
∑

α∈Zd
F (y − α)G(x− α).(3)

Moreover, for h > 0 define

Qh = σh ◦Q ◦ σ1/h,(4)

where
σhf(x) = f(x/h).

It is known [BHR, (4) Proposition, p. 63], [LC], [BDR] that r is the rate of
convergence of a local box-spline operator Q if and only if Q has polynomial
order r. Below we generalize that theorem. Recall that an operator Q has
polynomial order r if Q(P ) = P for all polynomials P with degP < r.

Theorem 2.1. Let Q be shift invariant. Let r ≥ 1. The following con-
ditions are equivalent :

(i) Q has polynomial order r.
(ii) For all 1 ≤ p ≤ ∞ there is a constant C = C(p, r,Q) > 0 such that

for all f ∈W r
p ,

‖Qhf − f‖p ≤ Chr|f |r,p.(5)
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The implication (i)⇒(ii) was proved in [Dz4]. The remaining details,
together with the proof of the corollary below, will be given in the next
section.

Corollary 2.1. Let Q be shift invariant. Let r ≥ 1. Assume that Q
has polynomial order r, G ∈ Cn and DβG ∈ E∞ for all |β| ≤ n. Then for
all 1 ≤ p ≤ ∞ there is a constant C = C(p, r,Q, n) > 0 such that for all
f ∈W r

p and |β| < min{n+ 1, r},
‖DβQhf −Dβf‖p ≤ Chr−|β||f |r,p.

Theorem 2.2 below was proved in [Dz4] (see also [BD3] and [BD4]).

Theorem 2.2. Let Q be shift invariant of polynomial order r ≥ 1. Then
for all 1 ≤ p <∞ and f ∈W r

p ,

(6) lim
h→0+

∥∥∥∥
Qhf −f
hr

∥∥∥∥
p

p

=
�

Rd

( �

[0,1]d

∣∣∣∣
∑

|β|=r

1
β!
Dβf(t)(Q([]β)(x)−xβ)

∣∣∣∣
p

dx

)
dt.

A similar result was recently proved for p =∞.
We also have a generalization of Blu–Unser’s theorem, i.e. the estimate

of the error of approximation by an asymptotic constant:

Theorem 2.3. Assume that Q has polynomial order r > 0. Let 1 ≤
p <∞. Then there is a constant C > 0 such that for all f ∈W r+1

p (Rd),
∥∥∥∥
Qhf − f

hr

∥∥∥∥
p

≤ Ch|f |r+1,p

+
( �

Rd

( �

[0,1]d

∣∣∣∣
∑

|β|=r

1
β!
Dβf(t)(Q([]β)(x)− xβ)

∣∣∣∣
p

dx

)
dt

)1/p

.

The proof will be given in a forthcoming paper.
We say that G satisfies the Strang–Fix conditions of order r (briefly

G ∈ SF(r)) if for all |β| < r,

DβĜ(α) = 0, α ∈ Zd \ {0},(7)

and Ĝ(0) 6= 0 (see [SF]). The following is known [LC]:

Theorem 2.4. If a shift invariant operator Q has polynomial order r≥ 1
then G ∈ SF(r). Moreover

Dβ(Ĝ ̂̆F )(0) = Dβ ̂(G ∗ F̆ )(0) =
{

0, 0 < |β| < r,
1, β = 0.

(8)

A simple poof will be given in Section 4.
Z. Ciesielski [C] proved the saturation theorem for spline operators.

The saturation theorem was also shown for quasi-projections in [Dz1]. The
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new concept of weak saturation was introduced for orthogonal projections
in [BD2]. It turns out that for the shift invariant operators we also have a
weak saturation theorem.

Theorem 2.5. Assume that a shift invariant operator Q has polynomial
order r ≥ 1. For every f ∈W r

2 we have the weak saturation formula:

(9)
Qhf − f

hr
→ DQf as h→ 0+,

weakly in L2(Rd), where

DQf =
1

(2πi)r
∑

|β|=r

Dβf

β!
Dβ ̂(G ∗ F̆ )(0).(10)

If additionally G ∈ SF(r + 1), then for all f ∈W r
p ,

Qhf − f
hr

→ DQf as h→ 0+(11)

in Lp norm provided 1 ≤ p <∞. For all |β| = r,

Q[]β − []β =
1

(2πi)r
Dβ(Ĝ ̂̆F )(0) a.e.(12)

The poof will be given in Section 4.
Another approach to the asymptotic formula, different from the one pre-

sented in Theorem 2.2, is motivated by (9). We prove

Theorem 2.6. Assume that a shift invariant operator Q has polynomial
order r ≥ 1. Then for all f ∈W r

2 ,

lim
h→0+

∥∥∥∥
Qhf − f

hr
−DQf

∥∥∥∥
2

2
= lim

h→0+

∥∥∥∥
Qhf − f

hr

∥∥∥∥
2

2
− ‖DQf‖22

=
1

(4π2)r
(F̂ (0))2

∑

α∈Zd\{0}

∥∥∥∥
∑

|β|=r

1
β!
DβĜ(α)Dβf

∥∥∥∥
2

2
.

The proof will be given in Section 4 together with the proof of Theo-
rem 2.5. A similar result for box-spline operators was proved in [Dz3, The-
orem 5.1].

The following result was stated for box-spline operators in [Dz2, Lem-
ma 3.2] without proof. Let Q∗ be the adjoint operator to Q.

Theorem 2.7. Assume that a shift invariant operator Q has polynomial
order r ≥ 1, and Q∗ has polynomial order 1. For f ∈W r

2 ∩W r
∞, we have

(13)
Qh(Qhf)−Qhf

hr
(x) =

Qh(Qhf − f)
hr

(x)→ DQf(x) as f → 0+,
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uniformly for x ∈ Rd. Moreover

Q∗h(Qhf − f)
hr

(u)→ DQf(u) as f → 0+,(14)

uniformly for u ∈ Rd.
The proof will be given in Section 4.

3. Proof of Theorem 2.1. (i)⇒(ii). For 1 ≤ p <∞ this follows from
[Dz4, Lemma 1.1]. The case p =∞ follows easily from the lemma below.

Lemma 3.1. Let Q be shift invariant. Let Px be the Taylor polynomial
of degree k − 1 of a function f at the point x. There is C such that for all
f ∈ Ck0 ,

sup
x∈Rd

|Qh(f − Px)(x)| ≤ Chk|f |k,∞,(15)

where
|f |k,∞ = sup

x∈Rd
sup
|β|=k

|Dβf(x)|.

Proof. By Taylor’s formula there is C > 0 independent of f such that

|Qh(f − Px)(x)| ≤ Chk|f |k,∞
∑

α∈Zd

( �

Rd
|x/h− y|kq|y−α| dy

)
q|x/h−α|

≤ Chk|f |k,∞.
(ii)⇒(i). In this implication we use only the estimate (5) for p =∞. By

induction on k, 0 ≤ k < r, we prove that

Q[]β = []β for |β| ≤ k.(16)

Let k = 0. Take f ∈ Cr0 such that f(0) = 1. Define ft(x) = f(x− t). Let
1 stand also for the function constantly equal to 1. Then

|(Qh1− 1)(t)| ≤ |(Qhft − ft)(t)|+ |Qh(ft − 1)(t)|.
By Lemma 3.1 and assumption (ii) for p =∞,

|(Qh1− 1)(t)| ≤ Chr|ft|r,∞ + Ch|ft|1,∞.
Since Qh(1)(t) = Q(1)(t/h), for all t ∈ Rd and 0 < h < 1 we have

|(Q1− 1)(t/h)| ≤ Ch.
Choosing t = hx we get Q1(x) = 1 for all x ∈ Rd.

Assume (16) is true for k < r− 1. We prove it for k+ 1. Fix |δ| = k+ 1.
Take f ∈ Cr0 such that for |β| = k + 1,

Dβf(0) =
{

1 if β = δ,
0 otherwise.
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Let Pt be the Taylor polynomial of degree k + 1 of ft at t. Then

|(QhPt − Pt)(t)| ≤ |(Qhft − ft)(t)|+ |Qh(ft − Pt)(t)|.
By Lemma 3.1 and assumption (ii) for p =∞,

|(QhPt − Pt)(t)| ≤ Chr|ft|r,∞ + Chk+2|ft|n,∞.
By induction if 0 < |β| ≤ k + 1 then

Qh[· − t]β(t) = Q[h · −t]β(t/h)(17)

=
∑

0≤δ≤β
h|δ|
(
β

δ

)
Q([]δ)(t/h)(−t)β−δ

=
∑

0≤δ<β
h|δ|
(
β

δ

)
(t/h)δ(−t)β−δ + h|β|Q([]β)(t/h)

= h|β|Q([]β)(t/h)− []β(t) = h|β|(Q[]β − []β)(t/h).

Thus

(QhPt − Pt)(t) =
∑

|β|=k+1

Dβft(t)
β!

Qh([· − t]β)(t)

=
1
δ!
hk+1(Q[]δ − []δ)(t/h).

Thus for all t ∈ Rd, ∣∣∣∣
1
δ!
hk+1(Q[]δ − []δ)(t/h)

∣∣∣∣ ≤ Chk+2.

Choosing t = hx we obtain Q[]δ = []δ, which finishes the proof.

Proof of Corollary 2.1. Fix x. If |β| < min{r, n+ 1} then

DβQhf(x)−Dβf(x) = DβQhf(x)−DβPx(x) = DβQh(f − Px)(x).

But
DβQh(f − Px)(x) =

1
h|β|

Qβh(f − Px)(x),

where Qβh is the shift invariant operator of polynomial order r − |β|, given
by

Qβhf(y) =
∑

α∈Zd

�

Rd
f(hy)F (y − α) dyDβG(x/h− α).

Lemma 1.1 in [Dz4] for 1 ≤ p < ∞ and Lemma 3.1 for p = ∞ finish the
proof.

4. Other proofs

Proof of Theorem 2.4. Note that if f ∈ L2(Rd) then the sum in the
definition of Qf converges in L2(Rd) norm. Thus
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Q̂hf(y) = hdĜ(hy)
∑

α∈Zd
(σ1/hf ∗ F̆ )(α)e−2πihy·α.

Moreover assume that f̂ ∈ L2 has compact support C ⊂ [0, N ]d. Conse-
quently, for 0 < h < 1/N and z ∈ [0, 1)d we have the periodic function

∑

α∈Zd

̂̆
F (z − α)f̂((z − α)/h) = ̂̆

F (z)f̂(z/h).

Its Fourier expansion is
∑

α∈Zd(σ1/hf ∗ F̆ )(α)e−2πiz·α. Taking z = hy we get
(cf. [BD2, Lemma 2.3])

Q̂hf(y) = Ĝ(hy)
∑

α∈Zd

̂̆
F (hy − α)f̂(y − α/h)(18)

for almost every y. Thus if 0 < h < 1/N then

(19)
�

Rd

∣∣∣∣
Q̂h(f)− f̂

hr

∣∣∣∣
2

=
�

C

(∣∣∣∣
Ĝ ∗ F̆ (hx)− 1

hr

∣∣∣∣
2

+
∑

δ∈Zd\{0}

∣∣∣∣
Ĝ(hx+ δ) ̂̆F (hx)

hr

∣∣∣∣
2)
|f̂(x)|2 dx.

By (5) the last expression is uniformly bounded by |f |2,p for h > 0 and
any f , provided f̂ has compact support. Consequently, both expressions in
large brackets are bounded. Thus we get (7) and (8).

The following lemma is taken from the proof of [M, Lemma 7, p. 29].

Lemma 4.1. Let K be a compact ball. If for each m ∈ N,

|g(x)| ≤ Cm(1 + |x|)−m for x ∈ Rd,
then ∑

α∈Zd
‖ĝ(·+ α)‖2Ck(K) <∞ for all k.(20)

Lemma 4.2. Let r ≥ 1. Let K be a compact ball. Let φ satisfy the as-
sumption of Lemma 4.1 and φ ∈ SF(r). Then

∑

α∈Zd\{0}

∣∣∣∣
φ̂(hx+ α)

hr

∣∣∣∣
2

→
∑

α∈Zd\{0}

∣∣∣∣
∑

|β|=r

1
β!
Dβφ̂(α)xβ

∣∣∣∣
2

(21)

uniformly in K as h→ 0+.

Proof. Let
Fα(h) = φ̂(hx+ α).
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By Taylor’s formula for Fα at 0 and since φ ∈ SF(r), we infer that there is
a point θα such that 0 < |θα| < h and

Fα(h) =
DrFα(θα)

r!
hr.

Then
∑

α∈Zd\{0}

∣∣∣∣
φ̂(hx+ α)

hr

∣∣∣∣
2

=
1
r!

∑

α∈Zd\{0}
|DrFα(θα)|2

=
∑

α∈Zd\{0}

∣∣∣∣
∑

|β|=r

1
β!
Dβφ̂(θαx+ α)xβ

∣∣∣∣
2

.

If 0 < |θα| < h→ 0 then for the finite choice of α ∈ Zd,
Dβφ̂(θαx+ α)→ Dβφ̂(α)

uniformly for x ∈ K and |β| = r. From Lemma 4.1,∑

α∈Zd\{0}
‖Dβφ̂(·+ α)‖2C0(K) <∞,

Consequently, we get (21).

Proof of Theorem 2.5 and 2.6. (9)–(10) are proved for orthogonal pro-
jections and cardinal interpolation in [BD1], [BD2]. Let us outline the proof.

Assume that f ∈ W r
2 is such that f̂ has compact support. By (18) and

Plancherel’s formula we get (9)–(10). By density we get (9)–(10) for all
f ∈W r

2 .
By Lemma 4.2, Theorem 2.4 and (19) we get Theorem 2.6, namely for

f such that f̂ has compact support,

lim
h→0+

∥∥∥∥
Qhf − f

hr
−DQf

∥∥∥∥
2

2
= A(f),(22)

where

A(f) =
1

(4π2)r
(F̂ (0))2

∑

α∈Zd\{0}

∥∥∥∥
∑

|β|=r

1
β!
DβĜ(α)Dβf

∥∥∥∥
2

2
.(23)

By density this implies that (22) holds for all f ∈W r
2 .

Now if G ∈ SF(r + 1) then applying (7) we get

A(f) = 0.(24)

Thus we obtain (11) for p = 2.
Now we prove (12). Let f ∈ Cr+1

0 and P rx be the Taylor polynomial of f
at x of degree r. Note that

∑

|β|=r

Dβf(x)
β!

(y − x)β = P rx (y)− P r−1
x (y).
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Consequently, by (13),

(25) Qh(P rx − P r−1
x )(x) = Qh

( ∑

|β|=r

Dβf(x)
β!

(· − x)β
)

(x)

= hr
∑

|β|=r

Dβf(x)
β!

Q((h · −x)β)(x/h) = hr
∑

|β|=r

Dβf(x)
β!

(Q[]β − []β)(x/h).

Since Qh(P r−1
x ) = P r−1

x we get

(26)

∥∥∥∥
Qhf − f

hr
−DQf

∥∥∥∥
p

=

∥∥∥∥
Qh(f − P rx)(x)

hr
+
Qh(P rx − P r−1

x )(x)
hr

−DQf(x)

∥∥∥∥
p

.

From Lemma 1.1 of [Dz4] there is C = C(p, r) > 0 such that for all f ∈ Cr+1
0 ,

‖Qh(f − P rx )(x)‖p ≤ Chr+1|f |r+1,p.

Thus if p = 2, from (22), (24), (26) and the above inequality we have
∥∥∥∥
Qh(P rx − P r−1

x )(x)
hr

−DQf

∥∥∥∥
2

= o(1).

Consequently, by (25),
∥∥∥∥
∑

|β|=r

Dβf(x)
β!

(
(Q[]β − []β)(x/h)− 1

(2πi)r
Dβ ̂(G ∗ F̆ )(0)

)∥∥∥∥
2

= o(1).

Since Q[]β− []β is a periodic function an application of the Fejér–Mazur–
Orlicz theorem (see [Dz4]) gives

�

Rd

�

[0,1]d

∣∣∣∣
∑

|β|=r

Dβf(x)
β!

(
Q([]β)(t)− tβ − 1

(2πi)r
Dβ(Ĝ ̂̆F )(0)

)∣∣∣∣
2

dt dx = 0.

Since f ∈ Cr+1
0 is arbitrary we get (12). To prove (11) it is sufficient to

consider f ∈ Cr+1
0 . By (12) and (25),

∥∥∥∥
Qhf − f

hr
−DQf

∥∥∥∥
p

=
∥∥∥∥
Qh(f −P rx )(x)

hr
+
Qh(P rx −P r−1

x )(x)
hr

−DQf(x)
∥∥∥∥
p

=
∥∥∥∥
Qh(f −P rx )(x)

hr

∥∥∥∥
p

.

By [Dz4, Lemma 1.1] (see above) we get (11) for f ∈ Cr+1
0 . A density

argument finishes the proof.
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Remark. It is not true that in (12) the functions Q[]β− []β are constant
for all x ∈ Rd. Consider the following example:

F (x) =
{

1 if 0 ≤ x < 1,
0 otherwise,

G(x) =

{
1− |x| if 0 < |x| < 1,
1 if x = 1,
0 otherwise.

The operator Q corresponding to F,G has polynomial order r = 1, since∑
k∈ZG(x− k) = 1 for all x ∈ R. But

Q([]1)(x)− x =
{

1/2 for x 6∈ Z,
−1/2 for x ∈ Z.

Consequently, (12) is not true for all x and (11) does not hold in sup norm.

Proof of Theorem 2.7

Step 1. We prove the theorem for f ∈W r
2 such that

supp f̂ ⊂ [−N,N ]d = C.
Obviously []β f̂ ∈ L1 for |β| ≤ r. Then from the Riemann–Lebesgue theorem
(see [SW]), f ∈W r

∞. Let

Kh(x, y) = h−dK(x/h, y/h).

By Plancherel’s theorem,
�

Rd
Kh(x, y)

Qhf(y)− f(y)
hr

dy =
�

Rd
[Kh(x, ·)]∧(y)

Q̂hf(y)− f̂(y)
hr

dy,

where for fixed x ∈ Rd,
[Kh(x, ·)]∧(t) = F̂ (ht)

∑

α∈Zd
e−2πihα·tG(x/h− α) ∈ L2(Rd).(27)

We split the last integral into integrals over C and Rd \C. Using (18) and
the fact that f̂ has compact support we get, for sufficiently small h > 0 and
all y ∈ C,

Q̂hf(y) = Ĝ(hy) ̂̆F (hy)f̂(y) a.e.(28)

Consequently,
�

C
[Kh(x, ·)]∧(y)

Q̂hf(y)− f̂(y)
hr

dy

=
�

C
[Kh(x, ·)]∧(y)

Ĝ(hy) ̂̆F (hy)f̂(y)− f̂(y)
hr

dy

=
�

Rd
Kh(x, y)

TY,hf(y)− f(y)
hr

dy = Qh

(
TY,hf − f

hr

)
(x),
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where

TY,hf = σh ◦ TY ◦ σ1/h, TY f = Y ∗ f, Y = G ∗ F̆ .
Note that Y ∈ E∞ (see Lemma 5.1 below).

By (8), for all |β| < r,

TY ([]β)(x) =
�

Rd
(x− y)βY (y) dy

=
∑

0≤δ≤β

(
β

δ

)
xβ−δ(−1)|δ|

�

Rd
yδY (y) dy

=
∑

0≤δ≤β

(
β

δ

)
xβ−δ

(
1

2πi

)|δ|
DδŶ (0) = []β(x),

and for |β| = r,

TY []β = []β +
(

1
2πi

)r
DβŶ (0).

By a similar argument to that in (17),

TY,h((· − x)β)(x) = h|β|(TY []β − []β)(x/h) = h|β|
(

1
2πi

)r
DβŶ (0).

Thus if P rx is the Taylor polynomial of degree ≤ r of f at x then by (10),

TY,h(P rx )(x) = P r−1
x (x) +

1
(2πi)r

∑

|β|=r
h|β|

Dβf(x)
β!

DβŶ (0)(29)

= f(x) + hrDQf(x).

Now by a similar argument to that in [Dz1, Theorem 2.23],

TY,hf − f
hr

→ DQf(30)

uniformly in Rd. For the convenience of the reader we give the argument. It
is sufficient prove this for f ∈ Cr+1

0 . Let

f(y) = P rx (y) +Rx(y),

where P rx is the Taylor polynomial of degree r at x. By (29),

TY,hf(x)− f(x)
hr

−DQf(x) =
TY,h(P rx +Rx)(x)− f(x)

hr
−DQf(x)

=
TY,h(Rx)(x) + hrDQf(x)

hr
−DQf(x)

=
TY,h(Rx)(x)

hr
,
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where

Rx(y) =
∑

|β|=r+1

Dβf(θx,y)
β!

(y − x)β.

It is sufficient to estimate the last expression for any |β| = r + 1:
∣∣∣∣

1
hd+r

�

Rd
Y ((x− y)/h)Dβf(θx,y)(y − x)β dy

∣∣∣∣

≤ |f |r+1,∞
1

hd+r

�

Rd
|Y ((x− y)/h)| |(y − x)β| dy

≤ |f |r+1,∞
1
hr

�

Rd
|Y (z)| |(hz)β| dy

≤ Cβh|f |r+1,∞.

We get (30) for f ∈ Cr+1
0 , and by density for allW r

∞. Consequently, from (30)
and (5),

Qh

(
TY,hf − f

hr

)
→ DQf

uniformly in Rd. Now consider the second integral. Since the function
∣∣∣
∑

α∈Zd
G(x/h− α)e2πihα·y

∣∣∣ ≤
∑

α∈Zd
q|x/h−α| ≤ C

is uniformly bounded, (18) and (27) imply that for 0 < h < 1/N ,
∣∣∣∣

�

Rd\C
[Kh(x, ·)]∧(y)

Q̂hf(y)− f̂(y)
hr

dy

∣∣∣∣

=
∣∣∣∣

�

Rd\C

1
hr

F̂ (hy)
∑

α∈Zd
G(x/h− α)e−2πihα·y

× Ĝ(hy)
∑

α∈Zd

̂̆
F (hy − α)f̂(y − α/h) dy

∣∣∣∣

≤ C
∑

δ∈Zd\{0}

�

C

1
hr
|Ĝ(hy + δ) ̂̆F (hy + δ) ̂̆F (hy)f̂(y)| dy

= C
�

C

( ∑

δ∈Zd\{0}

1
hr
|Ŷ (hy + δ)|

)
| ̂̆F (hy)f̂(y)| dy.

We use the fact that F̂ = ̂̆
F . From Schwarz’s inequality,
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∑

δ∈Zd\{0}

1
hr
|Ŷ (hy + δ)|

≤ h
( ∑

δ∈Zd\{0}

|Ĝ(hy + δ)|2
h2r

)1/2( ∑

δ∈Zd\{0}

| ̂̆F (hy + δ)|2
h2

)1/2

.

From the assumption on Q and Q∗ and Theorem 2.4 we see that G ∈ SF(r)
and F ∈ SF(1). By Lemmas 4.1 and 4.2,

∑

δ∈Zd\{0}

∣∣∣∣
Ŷ (hx+ δ)

hr

∣∣∣∣→ 0 as h→ 0+,

uniformly for x ∈ C. This finishes the first step.

Step 2. Assume that f ∈ W r
2 and []β f̂ ∈ L1(Rd) for |β| ≤ r. Thus

f ∈W r
∞. We use the ε-approximation of f defined by

f̂ε(x) =
{
f̂(x) if ‖x‖ < 1/ε,
0 otherwise.

Note that the functions fε satisfy the conditions of Step 1. Moreover fε
converges to f in W r

∞ as ε→ 0, since

sup
x∈Rd

|Dβfε(x)−Dβf(x)| ≤ C
�

‖t‖>1/ε

|tβ f̂(t)| dt.

The triangle inequality and the estimate (5) give (13).

Step 3. If f ∈W r
2 ∩Ck0 for k large enough then the Riemann–Lebesgue

theorem shows that []β f̂ ∈ L1(Rd) for |β| ≤ r. Note that these functions are
dense in f ∈ W r

2 ∩W r
∞. This finishes the proof. The proof for Q∗h is quite

similar.

Remark. We can easily prove convergence in the L2 norm in formu-
la (13) for local operators, i.e. under the assumption that both F and G have
compact support. We believe that the same is true for all our operators.

Generally Q does not transform all sequences weakly convergent in the
Hilbert space L2(Rd) to sequences converging in the L2 norm, since it would
be compact.

5. Bootstrap approximation. Now we generalize Theorem 4.1 of
[Dz3]. For simplicity we consider the shift invariant operators Q which are
orthogonal projections.

We say that the integer translates of G are l2 stable (see [JM]) if there
is C > 0 such that for all sequences a = {aα} ∈ l2,

C‖a‖l2 ≤ ‖G ∗′ a‖2,
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where the semi-discrete convolution ∗′ is defined as follows:

G ∗′ a =
∑

α∈Zd
aαG(· − α).

If f is a continuous function then

G ∗′ f =
∑

α∈Zd
f(α)G(· − α).

We say that a sequence b = {bα} decays exponentially fast if there are
C > 0 and 0 < q < 1 such that

|bα| < Cq|α| for all α ∈ Zd.
From [JM, Theorems 3.3 and 3.4] we get

Theorem 5.1. Let G ∈ E∞. Then the following conditions are equiva-
lent :

(i) the integer translates of G are l2 stable,
(ii) for all ξ ∈ Rd, ∑

α∈Zd
|Ĝ(ξ + α)|2 > 0,

(iii) for all ξ ∈ Rd,
ΠG(ξ) =

∑

α∈Zd
G ∗ Ğ(α)e2πiα·ξ > 0,

(iv) there is a function G∗ ∈ E∞ such that

Ğ ∗G∗(α) = δ0,α for all α ∈ Zd.
Moreover

G∗(x) =
∑

α∈Zd
bαG(x− α),

and the sequence b = {bα} decays exponentially fast.

By [JM, Theorem 3.2] we know that if G ∈ E∞ and the integer translates
of G ∈ E∞ are l2 stable then

ΠG(ξ) =
∑

α∈Zd
|Ĝ(ξ + α)|2 for all ξ ∈ Rd,(31)

which gives equivalence of (2) and (3). Moreover ([JM, Theorem 3.4])

ΠG(x)
∑

α∈Zd
bαe

2πiα·x = 1 for all x ∈ Rd.(32)

Note that if the integer translates of G ∈ E∞ are l2 stable then we can
construct the fundamental function ΦG corresponding to G by

ΦG(x) = G ∗ Ğ∗(x).
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By definition, condition (iv) from the above theorem and (32) we get

Φ̂G(x) = ĜĜ∗ =
|Ĝ(x)|2
ΠG(x)

,(33)

and since ΠG is even, so is ΦG. Also Theorem 5.1(iv) yields ΦG(α) = δ0,α
for α ∈ Zd.

Let us formulate an easy technical lemma.

Lemma 5.1. (i) If f, g ∈ E∞ then f ∗ g ∈ E∞ and f ∗ g is continuous.
(ii) If a f ∈ E∞ sequence b decays exponentially fast then f ∗′ b ∈ E∞.

(iii) If f, g ∈ E∞ and f ∈ SF(r1), g ∈ SF(r2) then f ∗ g ∈ SF(r1 + r2).

Proof. (i) Note that

|x− y|+ |y| ≥ |x/2|+ |y/2|.
Consequently,

|f ∗ g(x)| ≤ C
�

Rd
q|x−y|q|y| dy ≤ C

�

Rd
q|x|/2q|y|/2 dy ≤ Cq|x|/2.

To prove that f ∗ g is continuous we use the L1 modulus of continuity.
We prove (ii) by the same arguments as (i). To calculate (iii) we apply

Leibniz’s formula.

Let N > 0. Define ΨN = ΦG ∗ . . . ∗ ΦG︸ ︷︷ ︸
N

. From Lemma 5.1, Theorem 5.1,
(31), (33) we get

Lemma 5.2. Fix N > 0. If the integer translates of G ∈ E∞ are l2 stable
then the integer translates of both ΦG ∈ E∞ and Ψ = ΨN ∈ E∞ are l2 stable.
Moreover there is a fundamental function ΦΨ corresponding to Ψ such that

Φ̂Ψ =
(Ψ̂)2

ΠΨ
=

(Φ̂G)2N

ΠΨ
,(34)

where
ΠΨ (x) =

∑

α∈Zd
Ψ ∗ Ψ̆(α)e2πiα·x.

Proof. By definition of the fundamental function ΦΨ and since Ψ is even
we get (34). Stability follows from (34), (33), (31) and Theorem 5.1(iii).

Note that if the integer translates of G are l2 stable then we can construct
the orthogonal projection

Pf(x) =
∑

α∈Zd

�

Rd
f(u)G∗(u− α) duG(x− α).

Let TH denote the convolution operator, i.e. THf = H ∗ f .
Let us formulate the main theorem which generalizes Theorem 4.1 of [3].
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Theorem 5.2. If the integer translates of G ∈ E∞ are l2 stable and an
orthogonal projection P has order r > 0 then for any N > 0 the operator

THN ◦ Pf(x) =
∑

α∈Zd

�

Rd
f(u)G∗(u− α) du (HN ∗G)(x− α)

has order r(4N − 1), where

ĤN = “
Φ̂Ψ

Φ̂G
” =

(Φ̂G)2N−1

ΠΨ
, ΠΨ (x) =

∑

α∈Zd
Ψ ∗ Ψ̆(α)e2πiα·x.

To prove this theorem we need two lemmas. The first is de Boor–Ron’s
formula [BR, Lemma 2.8]. It was proved for compactly supported functions
but the proof works in our situation for G ∈ E∞.

Lemma 5.3. If G ∈ E∞ and p is a polynomial then

G ∗′ p is a polynomial ⇔ G ∗′ p = G ∗ p.
The second lemma is taken from [LC]:

Lemma 5.4. Let G ∈ E∞ and suppose G is continuous. Then G ∈
SF(r)⇔ there is c ∈ R such that for all |β| < r, []β−cG∗′ []β is a polynomial
of degree ≤ |β| − 1.

Proof of Theorem 5.2. By definition the orthogonal projection P has
polynomial order r > 0. Thus G ∈ SF(r) by Theorem 2.4. Consequently,
ΦG ∈ SF(2r) by (33). By Lemma 5.1, HN ∈ SF(r(4N − 2)), HN ∗ G ∈
SF(r(4N − 1)) and HN ∗G ∈ E∞.

Let p be a polynomial of total degree (4N − 1)r. Then p ∗ Ğ∗ is a poly-
nomial of the same degree. Then from Lemma 5.4 (by Lemma 5.1, HN ∗G
is continuous) HN ∗ G ∗′ (p ∗ Ğ∗) is a polynomial of the same degree. By
Lemma 5.3 and the definition of ΦΨ ,

HN ∗G ∗′ (Ğ∗ ∗ p) = HN ∗G ∗ Ğ∗ ∗ p = ΦΨ ∗ p.
Since Ψ ∈ E∞ and Ψ ∈ SF(4Nr), by Lemmas 5.3 and 5.4 (ΦΨ is continuous)
we have ΦΨ ∗p = ΦΨ ∗′p. But ΦΨ is a fundamental function, i.e. ΦΨ (α) = δα,0
for all α ∈ Zd. Thus we have a polynomial ΦΨ ∗′ p which is equal to p on Zd.
Consequently, ΦΨ ∗′ p = p. This finishes the proof.

The proof of Theorem 5.2 is similar to the proof of [Dz3, Theorem 4.1].
In [Dz3] we take N = 1, H = ΦG, which implies that TH ◦P has polynomial
order 2r. No matter what approach we use, the operator Q = THN ◦ P is
shift invariant. Thus we can apply earlier results. For example let N = 1,
H = ΦG. By Theorem 2.5,

Qhf − f
hr

→
∑

|β|=2r

Dβf

β!
2DβΦ̂G(0) as h→ 0+
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in Lp norm since G∗H ∈ SF(3r). This was announced in [Dz3, Theorem 4.2]
for p = 2.
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