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ON THE COMPLEXITY OF DETERMINING TOLERANCES
FOR ε-OPTIMAL SOLUTIONS TO

MIN-MAX COMBINATORIAL OPTIMIZATION PROBLEMS

Abstract. This paper studies the complexity of sensitivity analysis for
optimal and ε-optimal solutions to general 0-1 combinatorial optimization
problems with min-max objectives. Van Hoesel and Wagelmans [9] have
studied the complexity of sensitivity analysis of optimal and ε-optimal so-
lutions to min-sum problems, and Ramaswamy et al. [17] the complexity of
sensitivity analysis of optimal solutions to min-max problems. We show that
under some mild assumptions the sensitivity analysis of ε-optimal solutions
to min-max problems is easy if and only if the original problem is easy. This
result is interesting since it immediately applies to a large number of prob-
lems, and also because the technique used to prove it is different from the
ones used in the related papers (for example, in [17] and [9]).

1. Introduction and motivation. Studying the effect of changes in
data on optimal solutions to optimization problems is an important step in
gaining insight into the problem itself, and can be carried out in a variety of
ways. One can study the effect of changing a single parameter (sensitivity
analysis), or several parameters simultaneously (stability analysis). One may
observe the changes in an optimal solution when a parameter changes from
its lowest possible to highest possible value (parametric analysis), or find the
range within which a parameter must lie for the optimal solution to remain
optimal (tolerance analysis). Another approach, although less popular, is to
compute the set of k best solutions for the problem (k-best approach).

Sensitivity analysis of combinatorial optimization problems (COPs), al-
though not as popular as that of linear optimization, has been widely studied
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in the last thirty years. Initial studies considered COPs as mere special cases
of general integer programming problems and used the parametric analysis
approach (refer, for example, to Nauss [14] for work done during that pe-
riod). Later, as the body of research in this area grew, and it was reported
that the sensitivity analysis for COPs may not have some of the nice proper-
ties that the sensitivity analysis of linear programming problems has (refer,
for example, to Blair [1], Woeginger [22]), several dominant trends appeared.
Some researchers concentrated on particular well-solved COPs, like the trav-
eling salesperson problem (TSP). For example, in Libura [10] and van der
Poort et al. [15] the tolerance approach is used to compute the amount of
perturbation that would be allowed in the problem data before a currently
optimal solution becomes suboptimal. In Libura et al. [13] such informa-
tion is used to solve the k-best TSP. In Gordeev, Leontev, and Sigal [7] the
stability radius of several problems is computed, one of which is the TSP.
Other researchers considered sensitivity analysis problems for general inte-
ger linear programming problems or COPs (refer, for example, to Blair and
Jereslow [2], Cartensen [3], Chakravarti and Wagelmans [4], Cook et al. [5],
Libura [11, 12], Ramaswamy [16], Ramaswamy et al. [17], Sotskov [18, 19],
Sotskov et al. [20], van Hoesel and Wagelmans [9], and Wagelmans [21]). Of
these, [5], [11], [12], [18]–[20] deal with the calculations required for sensitiv-
ity analysis of these problems, while [2]–[4], [16], [17], [9], and [21] with the
complexity of performing such computations. Most of the papers cited above
deal with objective functions of the min-sum type. However, the min-max or
bottleneck objective is considered in Gordeev and Leontev [6], [7], [9], and
[21]. An extensive annotated bibliography of publications in this field after
1977 is available in Greenberg [8]. A majority of the papers in this field deal
with optimal solutions to optimization problems. ε-optimal solutions are
considered in [9], and briefly in [4], but in both in the context of min-sum
objective functions. In [9] it is shown that for COPs with min-sum objectives,
the complexity of sensitivity analysis of ε-optimal solutions is polynomial
if and only if the original COP is polynomially solvable. In this paper we
report the corresponding result when the objective is of the min-max type.

We deal with generic COPs. A generic COP Π can be defined as follows.
It is a collection of problem instances π = (G,S, z), where S ⊆ 2G, and
z : S → R. The set G is called the ground set. Each element e ∈ G has
a cost ce. The members of S are called feasible solutions, and z is referred
to as the objective function. Without loss of generality we will assume that
z(∅) =∞. In general, such COPs are of two types, those with min-sum (or
linear) objectives, and those with min-max objectives. A COP Π is said
to have a min-sum objective if z(S) =

∑
e∈S ce, and a min-max objective if

z(S) = max{ce : e ∈ S} for every S ∈ S and each π ∈ Π. In this paper we
refer to them as min-sum COPs and min-max COPs respectively.
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We denote by OPT(Π) the problem of finding an optimal solution S∗,
i.e. a member of arg min{z(S) : S ∈ S} for any given instance π ∈ Π.
For any ε > 0 we denote by OPTε(Π) the problem of finding an ε-optimal
solution, i.e. a member of {S : S ∈ S, |z(S)− z(S∗)| ≤ ε|z(S∗)|}.

The sensitivity analysis problem (SA(Π)) of a COP Π using the toler-
ance approach involves finding, for each parameter, upper and lower bounds
within which the value of the parameter can vary for the optimal solution
to remain optimal. For ε-optimal solutions to general COPs, this descrip-
tion can be extended to the definition of the following problem (see, for
example, [9]).

Problem SAε(Π): Sensitivity analysis of ε-optimal solutions of a COP Π
Input: Instance π = (G,S, z) of Π, ε > 0, an ε-optimal solution Sε to π.
Output: For each e ∈ G,

upper tolerance limit βe
= sup{δ ∈ R : Sε remains ε-optimal when ce ← ce + δ},

lower tolerance limit αe
= sup{δ ∈ R : Sε remains ε-optimal when ce ← ce − δ}.

The complexity of SA(Π) and SAε(Π) was analyzed for general min-sum
COPs Π in [9]. It was shown that both these problems are easy if and only
if OPT(Π) is easy. In [17] it was shown that SAε(Π) is easy for general
min-sum COPs Π if and only if OPT(Π) is easy.

In this paper we study the complexity aspects of SAε(Π) for a gen-
eral min-max COP Π. We cannot directly use either the results from the
complexity analysis of SA(Π) for min-max COPs, or those of SAε(Π) for
min-sum COPs to derive these results. Complexity analysis for SA(Π) (for
example in [17]) makes use of the fact that the solution at hand has the
lowest z value possible. This assumption cannot be utilized when analyzing
ε-optimal solutions. Arguments used to analyze the complexity of SAε(Π)
for min-sum problems (for example in [9]) also do not translate directly to
arguments for min-max problems. This is due to the difference in the nature
of the objective functions in the two cases. If an element e is a member of
a solution S of an instance of a min-sum COP, then any change in ce is
reflected in z(S). Hence the graph of z(S) against ce is a straight line with
slope 1 (see Figure 1(a)). However, for an instance of a min-max COP, even
if an element e is a member of a solution S, changes in ce affect z(S) if and
only if ce is not less than the cost of any other element in S. Hence the
graph of z(S) against ce has two components, one with slope 0, and another
with slope 1, as shown in Figure 1(b). This difference makes it impossible
to make direct use of the techniques used, for example in [9], for sensitivity
analysis of ε-optimal solutions to min-max COPs.
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Fig. 1. Variation of z(S) with ce when e ∈ S

2. Sensitivity analysis. We will use the following notation in the re-
mainder of the paper. P will denote the set of polynomially solvable opti-
mization problems. The COP at hand will be denoted by Π; π will denote
an instance of Π. If the cost of any problem element of π is changed by a cost
transformation T , the new instance will be denoted by πT . Furthermore, S∗

will denote an optimal solution to π and Sε an ε-optimal solution. Given
an element e ∈ G, Se will denote an element of the set {S : S ∈ S, e 6∈ S}.
Given e ∈ S ∈ S, we call S e-critical with respect to z if z(S) = ce. Given
a solution S = {e[1], e[2], . . .} with ce[1] ≥ ce[2] ≥ . . . , the cost of the second
largest element of S, i.e. ce[2] , will be denoted by c[2](S). If S is a singleton,
then c[2](S) is assumed to be ∞. Note that c[2](S) may equal z(S).

Let us first assume that OPT(Π) ∈ P and that a polynomial algorithm
A solves any instance of Π. Note that for any e ∈ G and any instance
π of Π, Se can be found in polynomial time by setting ce ← ∞. In the
following lemma, we are concerned with the complexity of finding the cost
of a smallest second largest element in any e-critical solution, when ce is at
least as large as z(S∗).

Lemma 1. If OPT(Π) ∈ P, then given an instance π of Π and e ∈ G
with ce ≥ z(S∗), we can determine in polynomial time the value of c[2](S)
for any solution S satisfying the following criteria, or deduce that no such
solution exists:

(i) S is e-critical.
(ii) c[2](S) < z(S∗).

(iii) 6 ∃S′ ∈ S with c[2](S′) < c[2](S) satisfying (i) and (ii).

Proof. Since OPT(Π) ∈ P, we can calculate z(S∗) in polynomial time.
Let us convert the instance π to the instance πT as follows: G ← G \ {e}
and S ← S \ {e} for every S ∈ S. This conversion only affects the cost of
e-critical solutions satisfying S \{e} 6= ∅, each of which has now a cost equal
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to the cost of its second largest element. If a solution satisfies S \ {e} = ∅,
then its cost becomes infinite after the conversion.

Let us now apply Algorithm A to πT . If the objective value of the output
is equal to that of the original problem, then it is obvious that no solution
satisfying the three criteria exists. On the other hand, if the objective value
of the optimal solution to πT is lower, then the new objective value is the
required output, since it is the lowest c[2](·) value among all solutions satis-
fying conditions (i) and (ii) in π.

The method mentioned above involves invoking Algorithm A twice, and
transforming a problem instance. Since all the operations are polynomial
(we do not explicitly transform individual solutions) the method itself is
polynomial.

Theorem 2. Let ε > 0, Π = (G,S, z) be a min-max COP. Then

OPT(Π) ∈ P ⇒ SA ε(Π) ∈ P.
Proof. Since Sε is known, we can predict its behavior when ce changes.

Also since OPT(Π) ∈ P, an optimal solution S∗ to an instance π of Π can
be calculated in polynomial time.

We will first show that if OPT(Π) ∈ P, then given an ε-optimal solution
Sε and e ∈ G, βe can be calculated in polynomial time. If e 6∈ S∗, then the
optimal objective value is not affected by an increase in ce. If e ∈ S∗, the
optimal objective value remains z(S∗) until ce exceeds z(Se). After that,
the new optimal objective value remains constant at z(Se). So we see that
we can deduce the response of the optimal objective value to changes in ce.
We know that z(Se) can be calculated in polynomial time. Since we know
the responses of both Sε and the optimal objective value to changes in ce in
polynomial time, βe can be calculated in polynomial time.

Finally we show that if OPT(Π) ∈ P, then given an ε-optimal solution
Sε and e ∈ G, αe can be calculated in polynomial time. If ce decreases,
then S∗ can become suboptimal only if ce > z(S∗), and there exists an
e-critical solution satisfying the three conditions in Lemma 1. In that case,
the optimal objective value remains z(S∗) until ce reduces to z(S∗), then
becomes ce until ce reduces to c[2](S) for a solution S satisfying the three
conditions in Lemma 1, and then remains constant at c[2](S). According
to Lemma 1, we can check for the existence of such a solution S and find
c[2](S) if it exists, in polynomial time. Therefore we can predict the response
of the optimal objective value to changes in ce. Since we know the responses
of both Sε and the optimal objective value to changes in ce in polynomial
time, αe can be calculated in polynomial time.

In the remainder of the paper, we assume that SAε(Π) ∈ P and make
the further assumption that OPTε(Π) ∈ P. Under these assumptions we
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show that an optimal solution to any instance π of Π can be calculated in
polynomial time.

The following two lemmas provide a polynomial time characterization of
the objective value of an optimal solution.

Lemma 3. Given ε > 0, an ε-optimal solution Sε to an instance π ∈ Π,
and an element e ∈ Sε such that z(Sε) = ce, we have: βe ≥ εz(Sε) ⇔
z(S∗) = z(Sε) for any optimal solution S∗ to π.

Proof. (⇒) Assume to the contrary that there exists an optimal solution
S∗1 with z(S∗1) < z(Sε). Then e 6∈ S∗1 , and the value of z(S∗1) is not affected
by an increase in ce while that of Sε increases with a slope of 1.

Hence βe = (1 + ε)z(S∗)− z(Sε) < (1 + ε)z(Sε)− z(Sε) = εz(Sε), which
is a contradiction.

(⇐) We distinguish between the following two cases:

1. e ∈ S∗ for all S∗.
2. There exists S∗ such that e 6∈ S∗.

In case 1, if the value of ce increases, both z(Sε) and z(S∗) increase with a
slope of 1 until they reach the value z(Se). After that, z(Sε) keeps increasing
with slope 1, but z(S∗) remains constant at z(Se). It follows that βe =
(z(Se)− z(S∗)) + εz(Se) ≥ εz(Sε).

In case 2, the objective value of the optimal solution is not affected by
an increase in the value of ce but z(Sε) increases with a slope of 1. So clearly
βe = εz(Sε).

Lemma 4. Given ε > 0, an ε-optimal solution Sε to an instance π ∈ Π,
and an element e ∈ Sε such that z(Sε) = ce, we have: βe < εz(Sε) ⇒
z(S∗) = (ce + βe)/(1 + ε) for any optimal solution S∗ to π.

Proof. It follows from Lemma 3 that βe < εz(Sε) ⇒ z(S∗) < z(Sε).
Therefore e 6∈ S∗, which implies that the objective value of the optimal
solution is not affected by an increase in the value of ce but z(Sε) increases
with a slope of 1. So z(Sε)+βe = ce+βe = (1+ε)z(S∗). The result follows.

Theorem 5. Let ε > 0 and Π = (G,S, z) be a min-max COP. Then

SAε(Π),OPTε(Π) ∈ P ⇒ OPT(Π) ∈ P.
Proof. From Lemmas 3 and 4 we know that if SAε(Π),OPTε(Π)

∈ P, then the objective value of an optimal solution can be calculated in
polynomial time. This is equivalent to saying that the evaluation version of
Π is polynomially solvable.

It is common knowledge that if the evaluation version of a COP is polyno-
mially solvable, so is the optimization version. For the sake of completeness,
we present the following Algorithm B that generates an optimal solution
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to an instance π of Π, given a polynomial time algorithm to calculate an
ε-optimal solution to π.

Algorithm B
Input: An instance π of Π, an algorithm to calculate an ε-optimal solution
to π.
Output: An optimal solution to π.

begin
S ← ∅;
Obtain an ε-optimal solution Sε to π;
Obtain z∗, the optimal objective value of π;
if z∗ = z(Sε) then

Return Sε and stop;
Arrange elements e ∈ G in non-increasing order of ce values;
/∗ the elements will be chosen in this order in the following for loop.∗/
for each e ∈ G do
begin

Apply T : ce ←∞;
Obtain an ε-optimal solution Sε to πT ;
Obtain zT , the optimal objective value of πT ;
if zT < z∗ then
begin

S ← S ∪ {e};
Restore the value of ce;

end
end
Return S;

end.

It is trivial to see that Algorithm B is correct. Apart from a (polyno-
mial) sorting operation, the algorithm calculates ε-optimal solutions and
uses them to calculate the optimal objective value O(|G|) times. According
to Lemmas 3 and 4, the latter operation is polynomial time. Hence Algo-
rithm B is also a polynomial algorithm.

In Theorem 2 we established that the sensitivity analysis problem for
COPs with min-max objective functions can be done in polynomial time if
the original COP can be solved in polynomial time. In Theorem 5 we showed
that if the sensitivity analysis problem for a COP is polynomially solvable, so
is the original COP, under the additional weak assumption that an ε-optimal
solution can be obtained in polynomial time. Hence we deduce that the sen-
sitivity analysis problem for ε-optimal solutions to combinatorial problems
with min-max objectives is as difficult as the original problems themselves.
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The results in this paper are interesting for several reasons. From a prac-
tical point of view, they immediately apply to a wide variety of problems,
for example, bottleneck traveling salesperson problems, scheduling prob-
lems, packing problems, etc. From the theoretical point of view, the results
presented here complement those on min-sum problems and on optimal solu-
tions to both min-sum and min-max problems (refer, for example, to [17] and
[9]). Finally, the techniques used extend those in [17] and [9] in a non-trivial
manner.
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integer linear programming , Math. Programming 34 (1986), 251–264.

[6] E. N. Gordeev and V. K. Leontev, Stability in bottleneck problems, Comput. Math.
Math. Phys. 20 (1981), 275–280.

[7] E. N. Gordeev, V. K. Leontev, and I. Kh. Sigal, Computational algorithms for finding
the radius of stability in problems of choice, ibid. 23 (1983), 973–979.

[8] H. J. Greenberg, An annotated bibliography for post-solution analysis in mixed
integer programming and combinatorial optimization, in: Advances in Computa-
tional and Stochastic Optimization, Logic Programming, and Heuristic Search,
D. L. Woodruff (ed.), Kluwer, 1998, 97–148.

[9] S. van Hoesel and A. P. M. Wagelmans, On the complexity of postoptimality analysis
of 0/1 programs, Discrete Appl. Math. 91 (1999), 251–263.

[10] M. Libura, Sensitivity analysis for minimum Hamiltonian path and traveling sales-
man problems, ibid. 30 (1991), 197–211.

[11] —, Optimality conditions and sensitivity analysis for combinatorial optimization
problems, Control Cybernetics 25 (1996), 1165–1180.

[12] —, On accuracy of solutions for discrete optimization problems with perturbed coef-
ficients of the objective function, Ann. Oper. Res. 86 (1999), 53–62.

[13] M. Libura, E. S. van der Poort, G. Sierksma, and J. A. A. van der Veen, Stability
aspects of the traveling salesman problems based on k-best solutions, Discrete Appl.
Math. 87 (1998), 159–185.

[14] R. Nauss, Parametric Integer Programming , Univ. of Missouri Press, Columbia,
MO, 1979.

[15] E. S. van der Poort, G. Sierksma, and J. A. A. van der Veen, Determining tolerances
for the traveling salesman problem, SOM Report No. 97A27, Univ. of Groningen.

[16] R. Ramaswamy, Sensitivity analysis in combinatorial optimization, doctoral thesis,
Indian Institute of Management, Calcutta, 1994.



Complexity of determining tolerances 313

[17] R. Ramaswamy, N. Chakravarti, and D. Ghosh, Complexity of determining exact tol-
erances for min-max combinatorial optimization problems, SOM Report No. 00A22,
Univ. of Groningen, 2000, http://www.ub.rug.nl/eldoc/som/a/00A22/00A22.pdf.

[18] Yu. N. Sotskov, Stability of high-speed optimal schedules, Comput. Math. Math.
Phys. 29 (1989), 57–63.

[19] —, The stability of the approximate Boolean minimization of a linear form, ibid. 33
(1993), 699–707.

[20] Yu. N. Sotskov, V. S. Tanaev, and F. Werner, Stability radius of an optimal sched-
ule: A survey and recent developments, in: G. Yu (ed.), Industrial Applications of
Combinatorial Optimization, Kluwer, 1998, 72–108.

[21] A. P. M. Wagelmans, Sensitivity analysis in combinatorial optimization, Ph.D. the-
sis, Econometric Institute, Erasmus Univ., Rotterdam, 1990.

[22] G. J. Woeginger, Sensitivity analysis for knapsack problems: Another negative result ,
Discrete Appl. Math. 92 (1999), 247–251.

Production & Quantitative Methods Area
Indian Institute of Management
Vastrapur, Ahmedabad 380015, India
E-mail: diptesh@iimahd.ernet.in

Faculty of Economic Sciences
University of Groningen

P.O. Box 800
9700AV Groningen, The Netherlands

E-mail: G.Sierksma@eco.rug.nl

Received on 15.11.2001;
revised version on 31.10.2002 (1605)


