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TWO ALGORITHMS BASED ON MARKOV CHAINS AND
THEIR APPLICATION TO RECOGNITION OF PROTEIN
CODING GENES IN PROKARYOTIC GENOMES

Abstract. Methods based on the theory of Markov chains are most com-
monly used in the recognition of protein coding sequences. However, they
require big learning sets to fill up all elements in transition probability ma-
trices describing dependence between nucleotides in the analyzed sequences.
Moreover, gene prediction is strongly influenced by the nucleotide bias mea-
sured by e.g. G+C content. In this paper we compare two methods: (i) the
classical GeneMark algorithm, which uses a three-periodic non-homogeneous
Markov chain, and (ii) an algorithm called PMC that considers six indepen-
dent homogeneous Markov chains to describe transition between nucleotides
separately for each of three codon positions in two DNA strands. We have
tested the efficiency (in terms of true positive rate) of these two Markov
chain methods for the model bacterial genome of Escherichia coli depending
on the size of the learning set, uncertainty of ORFs’ function annotation, and
model order of these algorithms. We have also applied the methods with dif-
ferent model orders for 163 prokaryotic genomes that covered a wide range
of G+C content. The PMC algorithm of different chain orders turns out to
be more stable in comparison to the GeneMark algorithm. The PMC also
outperforms the GM algorithm giving a higher fraction of coding sequences
in the tested set of annotated genes. Moreover, it requires much smaller
learning sets than GM to work properly.

1. Introduction. DNA contains genetic information about coded pro-
teins and consists of two strands, which are long chains of four simpler units
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called nucleotides (adenine, guanine, cytosine, and thymine). Protein coding
sequences (genes) are not random assortments of nucleotides but consist of
continuous stretches of nucleotides, arranged in triplets called codons. Each
codon encodes either (i) one of 20 amino acids which are linearly arranged
elements of proteins, or (ii) one of three stop translation signals inform-
ing about the ending of protein biosynthesis. These coding requirements to-
gether with mutational pressure influence a specific nucleotide composition
and usage of codons, hexamers or other sequence ‘words’ in protein coding
sequences. This specific composition can be successfully used in gene recog-
nition in genomic sequences [I1], [I0]. The first step in gene identification
is scanning the genomic sequence for open reading frames (ORFs), which
are sequences beginning with a start translation codon and ending with a
stop translation codon. However, not all ORFs are coding, therefore gene
prediction in prokaryotes (including archaea and bacteria) consists mainly
in discriminating the real coding ORFs from random or spurious ones. This
recognition uses characteristic statistical patterns in nucleotide composition
resulting from coding capacity.

Among many approaches in gene recognition (see for review [1], [16]),
one of the most commonly used are Markov chain models describing the
gene sequence by transitions from one sequence ‘word’ (state) to another
[5], [6], [13], [I7]. In spite of advance in these methods, they still need huge
learning sets of known coding sequences in their training stage to estimate all
elements in matrices describing dependencies between the sequence words.

It is also well known that the efficiency of gene finding algorithms is
strongly dependent on the composition of the analyzed genome described for
example by their G+C content ([2], [18]). Skovgaard et al. [I8] observed that
abundance of long non-coding ORFs is correlated with the G+C level. This
clearly results from the nucleotide composition of stop codons (TAA, TAG,
and TGA) which are poor in G+C and A+ T-rich. Therefore these triplets
occur with low frequency in genomes with high G4+C content. Consequently,
relatively long random open reading frames can be easily generated in such
genomes.

Here we compare two Markov chain approaches in the context of their re-
lationship with the size of the learning set, the order of chains, the functional
annotations of ORFs, and the G+C content using 163 completely sequenced
prokaryotic genomes. Besides the classical GeneMark algorithm [6] consider-
ing sequence words as consecutive states, we also analyze a model regarding
particular three codon positions separately [3|, [4]. This second approach,
called the PMC algorithm, uses specific correlations in nucleotide composi-
tion observed in the first, second, and third codon positions [10], [8] and does
not require a high chain order to work properly. The algorithm described in
[4] is a more advanced version of that presented in [3]. The extended algo-
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rithm includes 216 positional patterns whereas the simpler version takes into
account 27 positional patterns.

2. Material and methods

2.1. General characteristics of tested algorithms. The algorithms
under consideration are an example of supervised learning because they con-
sist of two stages: the learning step and the testing step. During the learning
step all necessary parameters are computed from a learning set which usu-
ally consists of selected protein coding sequences with annotated function.
These algorithms are based on the assumption that every DNA sequence is a
realization of a suitable Markov chain. In the case of the classical GeneMark
algorithm we assume that every DNA sequence is realized by a three-periodic
non-homogeneous Markov chain, whereas in the PMC algorithm we consider
six independent homogeneous Markov chains to describe transition between
nucleotides for each of three codon positions (three chains for the direct DNA
strand and three for the complementary DNA strand).

2.2. Learning and tested sets. First, we have tested these two algo-
rithms on 2773 open reading frames with annotated function coded in the
Escherichia coli 536 genome. This set was divided into two parts:

1. the learning set consisted of 1000 ORFs,
2. the tested set contained the remaining 1773 ORFs.

To test the efficiency of these algorithms in dependence on the size of
the learning set, we chose randomly from the learning set subsets consist-
ing of an increasing number of ORFs (100, 200, . ..,900). These subsets were
also used to assess the coding signal in two additional tested subsets includ-
ing:

1. 1309 ORFs annotated as hypothetical (i.e. without assigned function),
2. 578 ORFs with ascribed putative function.

All the tests were repeated 20 times and the resulting values were av-
eraged. To further assess the effectiveness of the tested algorithms, we con-
sidered the set of 163 prokaryotic genomes that had over 2000 sequences
annotated as protein coding. For every genome we prepared learning subsets
containing 1000 protein coding sequences, whereas the remaining sequences
formed the tested subsets. Model orders of h = 1,2,3,4 were used in this
analysis. We checked the coding prediction for each genome for the two al-
gorithms and different model orders. The analyzed genomes were selected to
represent a wide range of G+C content (from 28% to 75%), i.e. the fraction of
guanine and cytosine in the whole genome sequence. They were also used to
examine the influence of the nucleotide bias on coding signal prediction. The
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genome sequences and their annotations were downloaded from GenBank
(www.ncbi.nlm.nih.gov).

2.3. The PMC algorithm. Let S = {si,...s,} (wheren = 3k, k € N)
be a DNA sequence. We assume that every protein coding sequence can be
modeled by six independent homogeneous Markov chains [4]. During the
learning step we calculate, for a given model order h and every position ¢ in
codon:

(i) the initial probabilities P(S?) of h nucleotides situated in the same
codon position 1,
(ii) the transition probability matrices (M, ..., Ms).

The matrices My, My, M3 concern the direct DNA strand of ORFs in the
learning set whereas My, M5, Mg are based on the complementary strand
and are useful for a model of ‘shadow’ coding regions. In the next step we
use these processes to obtain the positional pattern frequencies distribution,
which is used to detect a coding signal in the analyzed ORFs.

DEFINITION 1. The positional pattern frequencies distribution for a given
protein coding sequence is the distribution of three dimensional vectors which
are obtained in the following way:

(i) The DNA sequence is divided into moving windows with a fixed
length (e.g. 96 nt) and a fixed window shift (e.g. 12 nt).

(ii) For each window, a vector of digits (di,ds,ds) is determined, by
using the maximum likelihood approach, in the following way:

(a) the probabilities Py, ¢ = 1,...,6, are calculated for each of
three codon positions by using the previously trained matrices;

(b) if Py, = max(Pyy, : 1= 1,...,6) (for the fixed codon position),
then d; = j and the positional pattern (di,ds, ds) is obtained.

(iiii) Finally, this procedure is applied to obtain the frequency for each
positional pattern calculated from all the analyzed windows by scan-
ning the learning set sequences in all their reading frames.

It is evident that there are 216 possible positional patterns (Fig. 1). As a
result of the training step we obtain six transition probability matrices and
six distributions of the positional pattern frequencies.

During the testing step we divide the sequence S of a given ORF into
windows and by using transition probability matrices we obtain a positional
pattern for every window. It is obvious that for a given reading frame the
distribution of the positional pattern could be treated as the conditional
probability of obtaining a given sequence S under the condition that S is
coding (P(S |fr), fr =1,2,...,6). In addition, we assume a non-coding refer-
ence set with uniform distribution of positional patterns, which is expressed
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Fig. 1. Histograms of positional pattern frequencies computed for the training set of ORFs
with annotated function from the FEscherichia coli 536 genome for each of six reading
frames.

by P; = 1/216. Next we use the Bayes theorem to obtain the a posteriori

probabilities (P(fr =1i|S), i =1,...,7) according to the equation
P(S|fr=1)

Z?:1P(5|fr:j)+P7’

where the a priori probability is P(fr = i) = 1/7, i = 1,...,7. We say
that a given sequence is in coding frame i when the a posteriori probability
P(fr =i|S) achieves its highest value.

The algorithm can be used without any modifications in recognition of
protein coding sequences in eukaryotic genomes that have uninterrupted
genes, i.e. without introns. This method can also be applied in the case

(2.1) P(tr=i|S) =
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of interrupted genes, provided information about boundary between exons
and introns is included.

2.4. The GeneMark algorithm. We have used the main part of the al-
gorithm described in [6], [5]. This algorithm assumes that every protein cod-
ing sequence is treated as a realization of a three-periodic non-homogeneous
Markov chain for the given model order h. The non-homogeneous periodic
Markov chain model is used because it describes more precisely the three-
step periodicity of the coding sequence [12]. During the learning step the
initial probabilities (P(s), i = 1,...,6) and also six transition probability
matrices (M; : i = 1,...,6) are calculated. The non-protein coding DNA
sequences are described by a homogeneous Markov chain (with transition
probability matrix M7). During the testing step for a given DNA sequence
S the conditional probability of being in a given reading frame under the
protein coding condition, P(S|M;) for i = 1,...,6, is calculated and the a
posteriori probability (by using the Bayes theorem) is computed according
to

__ P(S|M;)P(M;)
i1 P(S | Mj)P(M;)

(2.2) P(M; | S)

)

where /
1/12, i=1,...,6,
P(M;) = .
1/2, =71,

is the a priori probability of each of the seven events specified by M;. We say
that a given sequence is in coding frame i when the a posteriori probability
P(M;|S) achieves its highest value.

3. Results and discussion

3.1. Relationship between coding signal prediction and the size
of the learning set. To evaluate the efficiency of the two methods based
on Markov chains, we have measured the true positive rate (i.e. sensitivity,
TPR) for different model orders h. The results for the two algorithms applied
to the Escherichia coli 536 genome are compared in Fig. 2. The true positive
rate for the PMC algorithm of different model orders shows much less vari-
ation than that for the GeneMark algorithm. The TPR values for the PMC
algorithm also tend to increase with the model order, a feature not observed
for the GeneMark algorithm. The TPR value for the PMC algorithm ranges
from 0.93 for model order h = 1 to 0.945 for h = 3. Interestingly, the TPR
for the GeneMark algorithm for A = 1 is about 0.76, for h = 3 it reaches
0.91, and it achieves 0.94 only for h = 2. The very low TPR value for h =1
is probably due to the simplicity of this model whereas the lower value for
h = 3 than for h = 2 results probably from too low size of the learning set
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Fig. 2. Relationship between the true positive rate and the size of the learning set for
PMC and GeneMark algorithms

for much larger transition probability matrices in the more complex model.
For all model orders in the case of PMC, and for h = 3 in the case of the
GeneMark algorithm the TPR increases slightly with the number of ORFs
in the learning set.

The results clearly indicate that the PMC algorithm is much less depen-
dent on the model order and is more stable in gene recognition than the
GeneMark algorithm. The PMC algorithm considers three codon positions
separately, which allows estimating the transition probability matrices effec-
tively even for a low chain order and quite small learning sets because this
algorithm retains information on dependence between nucleotides in DNA
sequences on relatively long distances.

3.2. Coding signal prediction for different sets of ORFs. Figs. 3
and 4 enable us to compare the coding signal prediction by the PMC and
GM algorithms in three sets of ORFs identified in the Escherichia coli 536
genome:

(i) with annotated function,
(ii) with putative function,
(iii) hypothetical, i.e. without assigned function.

We observe that for both algorithms the fraction of ORFs recognized as
protein coding decreases with the uncertainty of function annotation, For
h = 3, the highest TPR (about 0.94 in the case of PMC and 0.9 in the case
of GM) is for the first set of ORFs, which seems obvious because these two
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Fig. 3. The true positive rate of the PMC algorithm for model orders h = 1 and h = 3,
for three sets of ORFs: with annotated function (a), without assigned function, i.e. hypo-
thetical (h), and with putative function (p).
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Fig. 4. True positive rate of the GM algorithm for model orders h = 1 and h = 3, for three
sets of ORFs: with annotated function (a), without assigned function, i.e. hypothetical (h),
and with putative function (p).

algorithms were trained on sequences with known functions. However, the
TPR values diminish (to about 0.90 in the case of PMC and 0.8 in the case
of GM) for putative ORFs and are the lowest (about 0.74 in the case of PMC
and about 0.65 in the case of GM) for the hypothetical ORFs. The coding
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signal prediction by the PMC algorithm for h = 1 is very similar to that
for h = 3. In contrast, the GM algorithm gives much lower TPR values for
h =1 than for h = 3 for all the three sets of ORFs.

The lower fraction of ORFs predicted as coding in the last two sets of
sequences may result from the inefficiency of the algorithms applied or non-
representativeness of known annotated protein coding sequences. On the
other hand, these results can also indicate that substantial fractions of these
ORPFs are in fact spurious frames which probably do not code proteins, as was
found for other genomes by applying other methods [§], [9]. Such non-coding
ORFs can be generated by real coding genes in alternative reading frames
[14], [15] as a result of peculiar features of the genetic code and properties
of protein coding sequences [7].

3.3. Influence of G+C content on coding prediction. Fig. 5 illus-
trates the stability of coding prediction by the PMC and GM algorithms in
dependence on the G+C level for 163 prokaryotic genomes. We have consid-
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Fig. 5. Relationship of the true positive rates computed in the GM and PMC algorithms
to the G+C level.
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ered four model orders in this analysis. Interestingly, the fraction of correctly
predicted coding sequences by the PMC algorithm is very weakly influenced
by the G+C composition of the genomes under study. Moreover, this method
gives nearly constant TPR values usually higher than 0.95. On the other
hand, predictions made by the GM algorithm strongly depend on the G+C
level and the model order.

This algorithm works comparably with PMC only in the case of h = 2,
whereas it is much worse for other orders for which it gives TPR values
much lower than 0.90. The GM method with h = 1 shows the lowest effi-
ciency for genomes with about 50 — 60% G-+C content whereas for h = 3 the
TPR is the lowest for G+C-poor genomes and increases linearly with the
G+C level. The last result is probably influenced by not fully determined
transition probability matrices used in this model order. Although the se-
lection genomes code more than 2000 protein genes with assigned function,
the learning set turned out to be too small to entirely fill up all elements in
the matrices constructed. Consequently, it was not possible to apply the GM
algorithm for A = 4, and therefore only the results for the PMC method are
presented in Fig. 5.
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