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A STABILITY RESULT FOR A CLASS OF NONLINEAR
INTEGRODIFFERENTIAL EQUATIONS WITH L1 KERNELS

Abstract. We study second order nonlinear integro-differential equations
in Hilbert spaces with weakly singular convolution kernels obtaining energy
estimates for the solutions, uniform in t. Then we show that the solutions
decay exponentially at∞ in the energy norm. Finally, we apply these results
to a problem in viscoelasticity.

1. Introduction. In this paper we treat maximal regularity and asymp-
totic behaviour at ∞ for the solutions of the abstract nonlinear integro-
differential equation

(1.1) ü(t) + F (u(t))u̇(t) +Au(t)−
t�

0

β(t− s)Au(s) ds = f(t), t ≥ 0,

where A is a positive operator on a Hilbert space X with domain D(A),
and F is a functional defined on D(Aθ), 0 < θ ≤ 1/2. Our interest is mainly
motivated by the fact that the above equation may be regarded as a model
problem for some elastic systems with memory (see [6, 8, 9, 17, 18, 24]).

The main feature of our approach is that, unlike most of the literature
on this subject, the convolution kernel β is not assumed to be absolutely
continuous but just integrable. Instead of higher regularity, we shall suppose
that k(t) :=

	∞
t β(s) ds is a kernel of positive type satisfying k(0) < 1. It is

noteworthy that such an abstract assumption implies a commonly accepted
thermodynamical restriction for the concrete models described by (1.1) (see,
e.g., [12, 11]). This explains why, as noted in [18, 23, 13], discontinuous
kernels are relevant for applications. Some typical examples covered by our
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theory are the following:

β(t) =
e−at t−b

Γ (1− b)
, a > 1, 0 ≤ b < 1,

β(t) =
e−at t−1/2 cos(ct)

Γ (1/2)
, a ≥ 1, 0 ≤ c ≤ a,

where Γ is the Euler gamma function (see Example 2.8).
In order to discuss well-posedness, let us integrate equation (1.1) with

F ≡ 0 ≡ f twice to obtain an integral equation of the form

(1.2) u(t) +
t�

0

a(t− s)Au(s) ds = u(0) + u̇(0)t.

Such equations have been extensively studied by Prüss in the classical mono-
graph [21], where the existence of the resolvent S(t) of (1.2) is established
together with some regularity properties of S(t). In Section 3 of this paper,
we apply this well-posedness result to the linear version of (1.1), that is,

(1.3) ü(t) +Au(t)−
t�

0

β(t− s)Au(s) ds = f(t), t ≥ 0.

After recalling the notions of strong and mild solutions of (1.3) with initial
conditions

u(0) = u0 ∈ D(A1/2), u̇(0) = u1 ∈ X,

and the well-known representation formula for mild solutions

u(t) = S(t)u0 +
t�

0

S(τ)u1 dτ +
t�

0

1 ∗ S(t− τ)f(τ) dτ,

where S(t) is the resolvent obtained using the theory of [21], we need to
know that any mild solution of (1.3) with smooth data is a strong solution.
This follows from further estimates for S(t) that are, here, fully justified (see
Propositions 3.4 and 3.5) because their derivation from the results of [21] is
not straightforward. On the other hand, with such a refined linear theory at
our disposal, the existence and uniqueness of solutions to equation (1.1) can
be obtained, in a rather standard way, assuming F to be locally Lipschtiz
continuous on bounded subsets of D(Aθ) and F (x) ≥ 0 for all x ∈ D(Aθ).
Therefore, we have excluded the proofs of this last part from the main body
of the paper providing them in the appendix, for the reader’s convenience.

Once well-posedness has been established, in Section 5 we turn to the
analysis of the asymptotic behaviour of the solutions of (1.1) under stronger
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assumptions on β and F , namely,

(1.4)

∞�

0

eα0t|β(t)| dt <∞, t 7→
∞�

t

eα0sβ(s) ds of positive type,

∞�

0

|β(s)| ds < 1, F (x) ≥ c0 ∀x ∈ D(Aθ)

for some constants α0, c0 > 0. Our method, in the case of f ≡ 0, can be easily
explained: multiplying u by an exponential function eαt for some α > 0, we
see that uα(t) = eαtu(t) satisfies

üα(t)+(F (u(t))−2α)u̇α(t)+(α2−F (u(t))α)uα(t)+Auα(t)−βα∗Auα(t) = 0.

So, uniform estimates for uα, in the energy norm, can be derived by means
of suitable multipliers. For related results on exponential decay the reader
is referred to [1, 16, 22], where the case of smooth convolution kernels is
considered, and to [14, 19], where the decay of the semigroup associated
with (1.1) is obtained.

Finally, Section 6 is devoted to the analysis of a partial integro-differential
equation arising in the theory of viscoelasticity, in the case of materials for
which memory effects cannot be neglected. Applying our abstract results, we
show that the exponential decay of the energy of solutions, obtained in [6]
for smooth convolution kernels, also holds for integrable kernels satisfying
condition (1.4).

2. Preliminaries. Let X be a real Hilbert space with scalar product
〈· , ·〉 and norm ‖ · ‖. For any T ∈ (0,∞] and p ∈ [1,∞] we denote by
Lp(0, T ;X) the usual space of measurable functions v : (0, T ) → X such
that

‖v‖pp,T :=
T�

0

‖v(t)‖p dt <∞, 1 ≤ p <∞,

‖v‖∞,T := ess sup
0≤t≤T

‖v(t)‖ <∞,

respectively. We shall use the shorter notation ‖v‖p for ‖v‖p,∞, 1 ≤ p ≤ ∞.
We denote by L1

loc(0,∞;X) the space of functions belonging to L1(0, T ;X)
for any T ∈ (0,∞). In the case of X = R, we will use the abbreviations
Lp(0, T ) and L1

loc(0,∞).
Ck([0, T ];X), k = 0, 1, 2, stands for the space of continuous functions

from [0, T ] to X having continuous derivatives up to order k in [0, T ]. In
particular, we write C([0, T ];X) for C0([0, T ];X).

In this paper, A : D(A) ⊂ X → X denotes a self-adjoint positive linear
operator on X with dense domain D(A). In the following, we denote by Aθ,
0 < θ ≤ 1/2, the fractional powers of A (see e.g. [20]). It is well-known that



398 P. Cannarsa and D. Sforza

D(A1/2) ↪→ D(Aθ), that is, there exists a constant cθ > 0 such that

(2.1) ‖Aθx‖ ≤ cθ‖A1/2x‖ ∀x ∈ D(A1/2).

For any ψ ∈ L1
loc(0,∞) and v ∈ L1

loc(0,∞;X) we define

ψ ∗ v (t) =
t�

0

ψ(t− s)v(s) ds, t ≥ 0.

Throughout the paper, for v ∈ L1
loc(0,∞;X) we denote by v̂(λ) the Laplace

transform of v, that is,

v̂(λ) =
∞�

0

e−λtv(t) dt.

We recall that a function k ∈ L1
loc(0,∞) is a kernel of positive type if

(2.2)
T�

0

〈k ∗ v(t), v(t)〉 dt ≥ 0 for any T > 0, v ∈ L2(0, T ;X).

In case k ∈ L∞(0,∞), k is of positive type if and only if

(2.3) Re k̂(λ) ≥ 0 for any λ ∈ C with Reλ > 0

(see, e.g., [21, p. 38]). For k ∈ L∞(0,∞) ∩ L1(0,∞), using the Poisson
integral representation formula for harmonic functions in a half-plane (see,
e.g., [10, p. 37]), one can prove that k is of positive type iff

(2.4) Re k̂(iω) ≥ 0 for any ω ≥ 0.

Classical results for integral equations (see, e.g., [15, Theorem 2.3.5])
ensure that, for any kernel β ∈ L1

loc(0,∞) and any g ∈ L1
loc(0,∞;X), the

problem

(2.5) ϕ(t)− β ∗ ϕ(t) = g(t), t ≥ 0,

admits a unique solution ϕ ∈ L1
loc(0,∞;X). In particular, there is a unique

solution % ∈ L1
loc(0,∞) of

(2.6) %(t)− β ∗ %(t) = β(t), t ≥ 0.

Such a solution is called the resolvent kernel of β. Furthermore, the solution
ϕ of (2.5) is given by the variation of constants formula

(2.7) ϕ(t) = g(t) + % ∗ g(t), t ≥ 0,

where % is the resolvent kernel of β.
Now, we recall the classical Paley–Wiener theorem (see, e.g., [15, Theo-

rem 2.4.5]), which gives a necessary and sufficient condition for the resolvent
kernel of β ∈ L1(0,∞) to belong to L1(0,∞).

Theorem 2.1. Let β ∈ L1(0,∞). Then the resolvent kernel of β belongs
to L1(0,∞) if and only if β̂(λ) 6= 1 for all λ ∈ C with Reλ ≥ 0.
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Lemma 2.2. Let β ∈ L1(0,∞) be such that
	∞
0 β(s) ds < 1 and suppose

that the kernel k(t) =
	∞
t β(s) ds is of positive type. Then β̂(λ) 6= 1 for all

λ ∈ C with Reλ > 0.

Proof. Since k(t) =
	∞
0 β(s) ds−

	t
0 β(s) ds, we have

(2.8) k̂(λ) =
1
λ

∞�

0

β(s) ds− β̂(λ)
λ

.

Now, for Reλ > 0,

1
λ

∞�

0

β(s) ds− β̂(λ)
λ
6= 1
λ

(∞�
0

β(s) ds− 1
)
,

because the real part of the left-hand side is nonnegative on account of (2.3),
whereas the real part of the right-hand side is negative. Therefore, β̂(λ) 6= 1
for Reλ > 0.

The following corollary of Lemma 2.2 and Theorem 2.1 provides uniform
estimates for solutions of integral equations.

Corollary 2.3. Let β ∈ L1(0,∞) be such that
	∞
0 β(s) ds < 1, β̂(λ) 6= 1

for all λ ∈ C − {0} with Reλ = 0, and suppose that the kernel k(t) =	∞
t β(s) ds is of positive type. Then

(a) the resolvent kernel % of β belongs to L1(0,∞);
(b) for any g ∈ L∞(0,∞;X), the solution ϕ of (2.5) is in L∞(0,∞;X)

and

(2.9) ‖ϕ‖∞ ≤ (1 + ‖%‖1)‖g‖∞.

The following results are useful to study exponential decay.

Proposition 2.4. Let β ∈ L1(0,∞) be a function such that k(t) =	∞
t β(s) ds is of positive type. Then

(2.10)
∞�

0

sin(ωt)β(t) dt ≥ 0 for any ω > 0.

Proof. In view of (2.8), we note that for any τ > 0 and ω ∈ R we have

(2.11) Re k̂(τ + iω) = Re
1

τ + iω

[∞�
0

β(s) ds− β̂(τ + iω)
]

=
τ

τ2 + ω2

[∞�
0

β(s) ds− Re β̂(τ + iω)
]

+
ω

τ2 + ω2

∞�

0

e−τt sin(ωt)β(t) dt.
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Passing to the limit in the previous equation as τ → 0+ and keeping in mind
that k is of positive type (see (2.3)), we have

0 ≤ lim
τ→0+

Re k̂(τ + iω) =
1
ω

∞�

0

sin(ωt)β(t) dt for any ω ∈ R, ω 6= 0,

that is, (2.10) holds.

The converse of the previous result is true in a special case.

Proposition 2.5. Let β ∈ L1(0,∞) be a function such that tβ(t) ∈
L1(0,∞) and k(t) =

	∞
t β(s) ds. Then

(a) k ∈ L1(0,∞);
(b) the kernel k is of positive type if and only if Re k̂(iω) ≥ 0 for any

ω > 0;
(c) if β satisfies

	∞
0 sin(ωt)β(t) dt ≥ 0 for any ω > 0, then k is of positive

type.

Proof. Point (a) easily follows from Fubini’s theorem. As for (b), thanks
to (2.4), it suffices to check that if Re k̂(iω) ≥ 0 for any ω > 0, then
Re k̂(0) ≥ 0. Indeed,

k̂(0) =
∞�

0

k(t) dt = lim
ω→0+

Re k̂(iω) ≥ 0.

Finally, since k ∈ L1(0,∞) we can take τ = 0 in (2.11) to obtain, for any
ω > 0,

Re k̂(iω) =
1
ω

∞�

0

sin(ωt)β(t) dt ≥ 0.

So, (c) holds owing to (b) and the proof is complete.

We now recall a known result (see [3, Lemma 3.4]) that will be used
next.

Lemma 2.6. If β ∈ L1(0,∞) is a function satisfying (2.10), then, for
any σ > 0, the perturbed function e−σtβ(t) satisfies (2.10) as well.

Proposition 2.7. Let β ∈ L1(0,∞) be a function such that k(t) =	∞
t β(s) ds is of positive type. Then, for any σ > 0, t 7→

	∞
t e−σsβ(s) ds is a

kernel of positive type as well.

Proof. We observe that, for any σ > 0, the function t 7→ te−σtβ(t) is in
L1(0,∞). Therefore, we can apply Proposition 2.5(c) to e−σtβ(t) and invoke
Lemma 2.6 to obtain the conclusion.
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Example 2.8. 1. Let Γ (s) =
	∞
0 xs−1e−x dx (s > 0) be the Euler gamma

function. Then

βa,b(t) =
e−at t−b

Γ (1− b)
, t > 0, a > 0, 0 ≤ b < 1,

satisfies the condition

β̃a,b(ω) :=
∞�

0

sin(ωt)βa,b(t) dt ≥ 0 for any ω > 0.

Indeed, since β̂a,b(λ) = 1/(a+ λ)1−b for Reλ ≥ 0, we have

β̃a,b(ω) = − Im β̂a,b(iω)(2.12)

= (a2 + ω2)(b−1)/2 sin
(

(1− b) arctan
(
ω

a

))
> 0 ∀ω > 0.

By Proposition 2.5(c) the kernel t 7→
	∞
t βa,b(s) ds is of positive type. More-

over,
∞�

0

βa,b(t) dt =
1

a1−b < 1 for a > 1.

2. To give an example of a function with variable sign, let us consider

γa,c(t) =
e−att−1/2 cos(ct)

Γ (1/2)
, t > 0, a > 0, 0 ≤ c ≤ a.

In order to verify that

γ̃a,c(ω) :=
1

Γ (1/2)

∞�

0

e−att−1/2 cos(ct) sin(ωt) dt ≥ 0 for any ω > 0,

let us rewrite γ̃a,c(ω), using the elementary identity cos(ct) sin(ωt) =
1
2 [sin((ω + c)t) + sin((ω − c)t)] and (2.12). We have

γ̃a,c(ω) =
1

2Γ (1/2)

∞�

0

e−att−1/2 sin((ω + c)t) dt

+
1

2Γ (1/2)

∞�

0

e−att−1/2 sin((ω − c)t) dt

=
1
2
β̃a,1/2(ω + c) +

1
2
β̃a,1/2(ω − c))

=
1
2

(a2 + (ω + c)2)−1/4 sin
(

1
2

arctan
(
ω + c

a

))
+

1
2

(a2 + (ω − c)2)−1/4 sin
(

1
2

arctan
(
ω − c
a

))
.
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Since

sin
(

arctanx
2

)
= sign(x)

√
1− cos(arctanx)

2

=
sign(x)√

2

√
1− 1√

1 + x2
, x ∈ R,

we observe that

γ̃a,c(ω) =
1

2
√

2a

((
1 +

(ω + c)2

a2

)−1/2

−
(

1 +
(ω + c)2

a2

)−1)1/2

+
1

2
√

2a
sign(ω − c)

((
1+

(ω − c)2

a2

)−1/2

−
(

1+
(ω − c)2

a2

)−1)1/2

.

It is clear that, if ω ≥ c, then γ̃a,c(ω) > 0. So, suppose ω < c. We want to
check that(

1 +
(ω + c)2

a2

)−1/2

−
(

1 +
(ω + c)2

a2

)−1

>

(
1 +

(ω − c)2

a2

)−1/2

−
(

1 +
(ω − c)2

a2

)−1

.

Set ω = ω/a and c = c/a. The previous inequality is equivalent to
1

1 + (ω − c)2
− 1

1 + (ω + c)2
>

1√
1 + (ω − c)2

− 1√
1 + (ω + c)2

,

or
4ωc√

1 + (ω − c)2
√

1 + (ω + c)2
>

4ωc√
1 + (ω + c)2 +

√
1 + (ω − c)2

.

Hence, after simple computations we arrive at the equivalent inequality

(ω2 − c2)2 < 1 + 2
√

1 + (ω + c)2
√

1 + (ω − c)2,
which holds true since, in view of the fact that c = c/a ≤ 1, we have

|ω2 − c2| = c2 − ω2 ≤ 1.

So, γ̃a,c(ω) > 0 for all ω > 0. Again by Proposition 2.5(c), t 7→
	∞
t γa,c(s) ds

is of positive type. Moreover,
∞�

0

γa,c(t) dt <
1

Γ (1/2)

∞�

0

e−t t−1/2 dt = 1 for a ≥ 1.

3. The linear problem: well-posedness

3.1. Existence and regularity of the resolvent. In the following, A is
a self-adjoint linear operator on X with dense domain D(A) and β ∈
L1

loc(0,∞).
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Definition 3.1. A family {S(t)}t≥0 of bounded linear operators in X
is called a resolvent for the equation

(3.1) ü(t) +Au(t)−
t�

0

β(t− s)Au(s) ds = 0

if the following conditions are satisfied:

(S1) S(0) = I and S(t) is strongly continuous on [0,∞), that is, for all
x ∈ X, S(·)x is continuous;

(S2) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and

AS(t)x = S(t)Ax, x ∈ D(A), t ≥ 0;

(S3) for any x ∈ D(A), S(·)x is twice continuously differentiable in X

on [0,∞) and Ṡ(0)x = 0;
(S4) for any x ∈ D(A) and any t ≥ 0,

(3.2) S̈(t)x+AS(t)x−
t�

0

β(t− τ)AS(τ)x dτ = 0.

Remark 3.2. We note that S ∗ f ∈ C([0, T ];X) for f ∈ L1(0, T ;X),
thanks to the uniform boundedness of S(t) on compact intervals (this is, in
turn, a consequence of (S1) by the principle of uniform boundedness).

The following result ensures the existence and uniqueness of the resol-
vent.

Theorem 3.3. Let the operator A be positive and β ∈ L1(0,∞) be such
that

	∞
0 β(t) dt < 1. Suppose that the kernel k(t) =

	∞
t β(s) ds is of positive

type. Then there exists a unique resolvent for (3.1). In addition,

(3.3) Ṡ(t)x+ 1 ∗AS(t)x− 1 ∗ β ∗AS(t)x = 0, ∀x ∈ D(A).

Proof. First, we observe that equation (3.1) is formally equivalent to a
suitable integral equation. In fact, if we integrate equation (3.1) twice, then
we obtain the integral equation

(3.4) u(t) +
t�

0

a(t− s)Au(s) ds = u(0) + u̇(0)t,

where

a(t) = t−
t�

0

(t− s)β(s) ds = t− 1 ∗ 1 ∗ β(t), t ≥ 0.

On the other hand, differentiating equation (3.4) twice we recover (3.1).
Therefore, to obtain the conclusion, it suffices to show that there exists a
unique resolvent S(t) for (3.4) and that S(t) is the resolvent for (3.1). Since
uniqueness follows from a well-known result for integral equations (see [21,
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Corollary 1.1]), let us prove the existence of the resolvent for (3.4). For this,
we note that the kernel ȧ(t) = 1− 1 ∗ β(t) is of positive type. Indeed,

1−
t�

0

β(s) ds = 1−
∞�

0

β(s) ds+
∞�

t

β(s) ds = 1−
∞�

0

β(s) ds+ k(t)

where 1−
	∞
0 β(s) ds > 0 and k is of positive type. Since A is a self-adjoint

positive operator on X, we can apply Corollary 1.2 of [21]: the resolvent
S(t) for (3.4) exists, S(·)x is differentiable for any x ∈ D(A), and satisfies
Ṡ(t)x+ 1 ∗AS(t)x− 1 ∗ β ∗AS(t)x = 0. The remaining properties required
by Definition 3.1 can be easily derived from the above equation.

3.2. Uniform estimates. We establish regularity properties and uniform
estimates for the resolvent of (3.1), under an extra assumption on the oper-
ator A.

Proposition 3.4. Suppose that

(3.5) 〈Ax, x〉 ≥M‖x‖2 ∀x ∈ D(A)

for some M > 0 and let β ∈ L1(0,∞) be such that

(3.6)
∞�

0

β(t) dt < 1.

If the kernel k(t) =
	∞
t β(s) ds is of positive type, then:

(i) For any x ∈ X and any t > 0, 1 ∗ S(t)x ∈ D(A1/2) and

‖S(t)x‖2 +
(

1−
∞�

0

β(t) dt
)∥∥∥A1/2

t�

0

S(τ)x dτ
∥∥∥2
≤ ‖x‖2.(3.7)

In particular , A1/2(1 ∗ S)(·) is strongly continuous in X.
(ii) For any x ∈ D(A),

‖S̈(t)x‖ ≤ (1 + ‖β‖1)‖Ax‖.(3.8)

(iii) For any x ∈ D(A1/2) and any t > 0, 1 ∗ S(t)x ∈ D(A) and

(3.9)
∥∥∥A t�

0

S(τ)x dτ
∥∥∥ ≤ (1−

∞�

0

β(t) dt
)−1/2

‖A1/2x‖.

So, A(1 ∗ S)(·)x is continuous on [0,∞).
(iv) For any x ∈ D(A1/2), S(·)x is continuously differentiable on [0,∞)

and

(3.10) Ṡ(t)x = −A(1 ∗ S)(t)x+ β ∗A(1 ∗ S)(t)x.

Moreover ,
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(3.11) ‖Ṡ(t)x‖ ≤ (1 + ‖β‖1)
(

1−
∞�

0

β(t) dt
)−1/2

‖A1/2 x‖ ∀t ≥ 0.

(v) For any x ∈ D(A) and any t > 0, Ṡ(t)x ∈ D(A1/2) and A1/2Ṡ(·)x
is continuous on [0,∞).

Proof. (i) For fixed x ∈ D(A), let us recast equation (3.3) in the form

(3.12) Ṡ(t)x+
(

1−
∞�

0

β(t) dt
)

1 ∗AS(t)x = −k ∗AS(t)x.

Taking the scalar product of both sides of (3.12) with S(t)x, we obtain

1
2
d

dt
‖S(t)x‖2 +

1
2

(
1−

∞�

0

β(t) dt
) d
dt
‖1 ∗A1/2S(t)x‖2

= −〈k ∗A1/2S(t)x,A1/2S(t)x〉.

Integrating this equality from 0 to t, we have

1
2
‖S(t)x‖2 +

1
2

(
1−

∞�

0

β(t) dt
)
‖1 ∗A1/2S(t)x‖2 ≤ 1

2
‖x‖2,

since k is of positive type. Since D(A) is dense in X, the above inequality
holds for any x ∈ X.

(ii) Estimate (3.8) follows from (3.2) and (i).
(iii) Since

A

t�

0

S(τ)x dτ = A1/2
t�

0

S(τ)A1/2x dτ ∀x ∈ D(A1/2),

estimate (3.9) is a consequence of (i).
(iv) The conclusion follows from (3.3), (iii) and the density of D(A) in

D(A1/2).
(v) (3.10) and (i) imply that Ṡ(t)x ∈ D(A1/2) for any x ∈ D(A) and

A1/2Ṡ(t)x = −A1/2(1 ∗ S)(t)Ax+ β ∗A1/2(1 ∗ S)(t)Ax.

Consequently, t 7→ A1/2Ṡ(t)x is continuous and the proof is complete.

Finally, we show another regularity property of the resolvent operator.

Proposition 3.5. Assume

(a) 〈Ax, x〉 ≥M‖x‖2 for all x ∈ D(A) and some M > 0;
(b) β ∈ L1(0,∞) satisfies

	∞
0 β(t) dt < 1;

(c) the kernel k(t) =
	∞
t β(s) ds is of positive type.
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Then 1 ∗ 1 ∗ S(t)x ∈ D(A) for any x ∈ X and any t > 0. Moreover , for any
T > 0,

(3.13)
∥∥∥A t�

0

(t− τ)S(τ)x dτ
∥∥∥ ≤ CT ‖x‖ ∀x ∈ X, ∀t ∈ [0, T ]

for some constant CT > 0 increasing in T . So, A(1 ∗ 1 ∗ S)(·) is strongly
continuous in X and for any x ∈ X and any t > 0,

(3.14) S(t)x+A(1 ∗ 1 ∗ S)(t)x− β ∗A(1 ∗ 1 ∗ S)(t)x = x.

If , in addition, β̂(λ) 6= 1 for all λ ∈ C − {0} with Reλ = 0, then (3.13)
holds for a constant C independent of T .

Proof. Let x ∈ D(A). Integrating the resolvent equation (3.2) twice
yields

(3.15) Av(t)− β ∗Av(t) = −S(t)x+ x,

where v(t) := 1∗1∗S(t)x. Denoting by w(t) the right-hand side of the above
equation, we see that w ∈ L∞(0,∞;X) owing to (3.7) and

‖w(t)‖ ≤ 2‖x‖ ∀t ≥ 0.

Let % ∈ L1
loc(0,∞) be the resolvent kernel of β. Then Av = w + % ∗ w. So,

‖Av‖∞,T ≤ (1 + ‖%‖1,T )‖w‖∞ ≤ 2(1 + ‖%‖1,T )‖x‖.

Therefore, (3.13) holds for x ∈ D(A). The general case x ∈ X follows by an
approximation argument, and so (3.14) follows from (3.15).

Finally, under the extra assumption that β̂(λ) 6= 1 for all λ ∈ C − {0}
with Reλ = 0, Corollary 2.3 yields % ∈ L1(0,∞). This allows one to turn
(3.13) into a global estimate on [0,∞).

3.3. Mild and strong solutions. We now turn to the analysis of the equa-
tion

(3.16) ü(t) +Au(t)−
t�

0

β(t− s)Au(s) ds = f(t), t ∈ [0, T ],

where f ∈ L1(0, T ;X) and T > 0 is given. To begin with, we recall two
notions of solution.

Definition 3.6. We say that u is a strong solution of (3.16) if

u ∈ C2([0, T ];X) ∩ C([0, T ];D(A))

and u satisfies (3.16) for every t ∈ [0, T ].
Let u0, u1 ∈ X. The mild solution of (3.16) with initial conditions

(3.17) u(0) = u0, u̇(0) = u1,
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is the function u ∈ C([0, T ];X) defined, for every t ∈ [0, T ], by the formula

(3.18) u(t) = S(t)u0 +
t�

0

S(τ)u1 dτ +
t�

0

1 ∗ S(t− τ)f(τ) dτ

(see Remark 3.2).

We now describe the connection between the mild and strong solutions.

Proposition 3.7. A strong solution u of equation (3.16) is also the
mild solution of (3.16) with initial conditions u(0), u̇(0). Consequently , the
Cauchy problem (3.16)–(3.17) has at most one strong solution.

Proof. Let u be a strong solution. Integrating (3.16) twice, we obtain

u(t) +
t�

0

a(t− s)Au(s) ds = u(0) + u̇(0)t+ 1 ∗ 1 ∗ f(t),

where a(t) = t−1∗1∗β(t). Therefore, a well-known variation of parameters
formula for integral equations (see [21, Proposition 1.2(i)]) yields

u(t) =
d

dt

t�

0

S(r)[u(0) + u̇(0)(t− r) + 1 ∗ 1 ∗ f(t− r)] dr

= S(t)u(0) +
t�

0

S(r)u̇(0) dr +
t�

0

S(r)1 ∗ f(t− r) dr.

Thus, u is given by (3.18).

Using Proposition 3.4, we want to show that the mild solution is more
regular if the initial value of u belongs to D(A1/2).

Proposition 3.8. Let u0 ∈ D(A1/2), u1 ∈ X, f ∈ L1(0, T ;X), and let
u be the mild solution u of (3.16)–(3.17). Then

u ∈ C([0, T ];D(A1/2)) ∩ C1([0, T ];X)

and

(3.19) ‖A1/2u‖∞,T + ‖u̇‖∞,T ≤ C(‖A1/2u0‖+ ‖u1‖+ ‖f‖1,T ),

where

C = 1 + (1 + ‖β‖1)
(

1−
∞�

0

β(t) dt
)−1/2

.

Proof. Let u be the mild solution of (3.16)–(3.17). Then u = v + w + z
where

(3.20) v(t) := S(t)u0, w(t) :=
t�

0

S(τ)u1 dτ, z(t) :=
t�

0

1∗S(t−r)f(r) dr.
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Now, in view of Definition 3.1, v ∈ C([0, T ];D(A1/2)) and by Proposi-
tion 3.4(iii), v ∈ C1([0, T ];X). Moreover, owing to Proposition 3.4(i), w ∈
C([0, T ];D(A1/2)). As regards z, we have z ∈ C([0, T ];D(A1/2)) again by
Proposition 3.4(i) and z ∈ C1([0, T ];X) keeping in mind Remark 3.2.

Finally, the estimate (3.19) follows from (3.7) and (3.11).

Lastly, we prove that, under suitable regularity conditions on the data,
the mild solution is strong.

Proposition 3.9. Let u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈W 1,1(0, T ;X).
Then the mild solution u of the Cauchy problem (3.16)-(3.17) is a strong
solution. In addition, u belongs to C1([0, T ];D(A1/2)) and there exists a
constant CT > 0, increasing in T , such that for any t ∈ [0, T ] we have

(3.21) ‖ü(t)‖+ ‖Au(t)‖+ ‖A1/2u̇(t)‖
≤ CT (‖Au0‖+ ‖A1/2u1‖+ ‖f(0)‖+ ‖ḟ‖1,T ).

Furthermore, if β̂(λ) 6= 1 for all λ ∈ C − {0} with Reλ = 0, then (3.21)
holds for a constant C independent of T .

Proof. We split u = v + w + z where v, w, z are defined in (3.20).
Now, in view of Definition 3.1, v is a strong solution of (3.16) with f = 0.

Moreover, owing to Proposition 3.4(ii), w ∈ C([0, T ];D(A)). Furthermore,
by (iii) of the same proposition, w belongs to C2([0, T ];X) and is also a
strong solution of (3.16) with f = 0.

Next, since f(t) = f(0) +
	t
0 ḟ(s) ds, we have

z(t) =
t�

0

1 ∗ S(r)f(0) dr +
t�

0

1 ∗ 1 ∗ S(t− r)ḟ(r) dr =: z1(t) + z2(t).

Thus, z ∈ C([0, T ];D(A)) in view of Proposition 3.5. Also, z ∈ C2([0, T ];X)
by direct inspection and z is a strong solution of (3.16) with u0 = u1 = 0.
Indeed, using (3.14) we have

z̈1(t) +Az1(t)− β ∗Az1(t) = f(0),

S(t− r)ḟ(r) +A(1 ∗ 1 ∗ S)(t− r)ḟ(r)− β ∗A(1 ∗ 1 ∗ S)(t− r)ḟ(r) = ḟ(r),

and integrating the last identity from 0 to t yields

z̈2(t) +Az2(t)− β ∗Az2(t) =
t�

0

ḟ(r) dr.

Therefore, u is the strong solution of problem (3.16)–(3.17).
Finally, we note that

u̇(t) = Ṡ(t)u0 + S(t)u1 + 1 ∗ S(t)f(0) + 1 ∗ S ∗ ḟ(t), t ≥ 0.
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So, the continuity of A1/2u̇ follows from (iv) and (i) of Proposition 3.4 and
from the definition of S(t). Finally, estimate (3.21) follows from Propositions
3.4 and 3.5. The proof is thus complete.

4. The nonlinear problem: well-posedness

4.1. Local existence. Let us consider the nonlinear equation

(4.1) ü(t) + F (u(t))u̇(t) +Au(t)−
t�

0

β(t− s)Au(s) ds = f(t), t ≥ 0.

Throughout this section we will assume that the kernel β and the operator
A satisfy the following conditions:

(4.2)

(a) 〈Ax, x〉 ≥M‖x‖2 ∀x ∈ D(A) (M > 0),

(b) β ∈ L1(0,∞) and k(t) :=
∞�

t

β(s) ds is of positive type,

(c)
∞�

0

β(s) ds < 1.

Moreover, we shall suppose that F : D(Aθ)→ R, 0 < θ ≤ 1/2, is a functional
Lipschitz continuous on bounded sets of D(Aθ), that is, for any R > 0 there
exists a constant LR > 0 such that

(4.3) |F (x)− F (y)| ≤ LR‖Aθx−Aθy‖
for all x, y ∈ D(Aθ) satisfying ‖Aθx‖, ‖Aθy‖ ≤ R.

Let 0 < T ≤ ∞ be given and f ∈ L1(0, T ;X). To begin with, we recall
two notions of solution.

Definition 4.1. We say that u is a strong solution of (4.1) on [0, T ] if

u ∈ C2([0, T ];X) ∩ C([0, T ];D(A))

and u satisfies (4.1) for every t ∈ [0, T ].
Let u0, u1 ∈ X. A function u ∈ C1([0, T ];X) ∩ C([0, T ];D(A1/2)) is a

mild solution of (4.1) on [0, T ] with initial conditions

(4.4) u(0) = u0, u̇(0) = u1,

if

(4.5) u(t) = S(t)u0 +
t�

0

S(τ)u1 dτ +
t�

0

1 ∗ S(t− τ)(f(τ)− F (u(τ))u̇(τ)) dτ,

where {S(t)} is the resolvent for (3.1) (see Theorem 3.3).

Notice that the convolution term in (4.5) is well defined, thanks to (4.3)
and (2.1). In view of Proposition 3.7 a strong solution is also a mild one.
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Another useful notion of generalized solution of (4.1) is the so-called
weak solution, that is, a function u ∈ C1([0, T ];X)∩C([0, T ];D(A1/2)) such
that, for any v ∈ D(A1/2), 〈u̇(t), v〉 ∈ C1([0, T ]) and for any t ∈ [0, T ] one
has

(4.6)
d

dt
〈u̇(t), v〉+ 〈F (u(t))u̇(t), v〉+ 〈A1/2u(t), A1/2v〉

−
〈 t�

0

β(t− s)A1/2u(s) ds,A1/2v
〉

= 〈f(t), v〉.

Adapting a classical argument due to Ball [2], one can show that any mild
solution of (4.1) is also a weak solution, and the two notions of solution are
equivalent when F ≡ 0.

First of all, we claim the uniqueness of the mild solution.

Proposition 4.2. Let f ∈ L1(0, T ;X). Then the Cauchy problem (4.1)–
(4.4) possesses at most one mild solution.

The next proposition ensures the local existence and uniqueness of mild
solutions to (4.1)–(4.4). The proof is by a standard fixed point argument.

Proposition 4.3. Let u0 ∈ D(A1/2), u1 ∈ X and f ∈ L1(0, T ;X).
Then there exists a positive number T0 ≤ T such that the Cauchy problem
(4.1)–(4.4) admits a unique mild solution on [0, T0].

For more regular data, the mild solution is a strong one: we state that
in the following result.

Proposition 4.4. Let u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈W 1,1(0, T ;X).
Then the mild solution of the Cauchy problem (4.1)-(4.4) in [0, T0], T0 ∈
(0, T ], is a strong solution. In addition, u belongs to C1([0, T0];D(A1/2))
and there exists a constant CT > 0 such that for any t ∈ [0, T ] we have

(4.7) ‖ü(t)‖+ ‖Au(t)‖+ ‖A1/2u̇(t)‖
≤ CT (‖Au0‖+ ‖A1/2u1‖+ ‖f(0)‖+ ‖ḟ‖1,T )

+ CT sup
τ∈[0,T0]

[‖u̇(τ)‖+ ‖A1/2u(τ)‖].

4.2. Global existence. In this section we will investigate the existence in
the large of the solution to the Cauchy problem

(4.8)

 ü(t) + F (u(t))u̇(t) +Au(t)−
t�

0

β(t− s)Au(s) ds = f(t),

u(0) = u0, u̇(0) = u1.
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Global existence will follow from the uniform estimates obtained previously
under the extra assumption

(4.9) F (x) ≥ 0 ∀x ∈ D(Aθ).

Let T > 0 be given.

Theorem 4.5. Under assumptions (4.2), (4.3) and (4.9), for any u0 ∈
D(A1/2), u1 ∈ X, f ∈ L1(0, T ;X) problem (4.8) possesses a unique mild
solution u on [0, T ] such that

(4.10)
1
2
‖u̇(t)‖2 +

1
2
‖A1/2u(t)‖2 ≤ C(‖u1‖2 + ‖A1/2u0‖2 + ‖f‖21,T )

for any t ∈ [0, T0] and some constant C > 0 independent of T0 and T . If ,
in addition, u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ W 1,1(0, T ;X), then u is a
strong solution of the equation in (4.8) on [0, T ] and u ∈ C1([0, T ];D(A1/2)).

The following a priori estimates are a crucial step in the proof of Theo-
rem 4.5.

Lemma 4.6. Let 0 < T0 ≤ T , u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈
W 1,1(0, T ;X). If u is the strong solution of the equation in (4.8) on [0, T0],
then

(4.11) sup
τ∈[0,T0]

[‖u̇(τ)‖+ ‖A1/2u(τ)‖] ≤ C1,

(4.12) sup
τ∈[0,T0]

[‖ü(t)‖+ ‖Au(t)‖+ ‖A1/2u̇(t)‖] ≤ C2,

where C1 = C1(‖u1‖, ‖A1/2u0‖, ‖f‖1,T ) and C2 = C2(T, ‖Au0‖, ‖A1/2u1‖,
‖f(0)‖, ‖ḟ‖1,T ) are positive functions, increasing in each variable and inde-
pendent of T0.

The next result follows at once from Theorem 4.5.

Corollary 4.7. Under assumptions (4.2), (4.3) and (4.9), for any u0 ∈
D(A1/2), u1 ∈ X, f ∈ L1(0,∞;X) problem (4.8) possesses a unique mild
solution u on [0,∞) such that

(4.13)
1
2
‖u̇(t)‖2 +

1
2
‖A1/2u(t)‖2 ≤ C(‖u1‖2 + ‖A1/2u0‖2 + ‖f‖21)

for any t ≥ 0 and some constant C > 0. If , in addition, u0 ∈ D(A),
u1 ∈ D(A1/2) and f ∈ W 1,1

loc (0,∞;X) ∩ L1(0,∞;X), then u is a strong
solution of the equation in (4.8) on [0,∞) and u ∈ C1([0,∞);D(A1/2)).
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5. Exponential decay of the energy. This section is devoted to the
study of the asymptotic behaviour of the solution to the Cauchy problem

(5.1)

 ü(t) + F (u(t))u̇(t) +Au(t)−
t�

0

β(t− s)Au(s) ds = f(t),

u(0) = u0, u̇(0) = u1.

For any measurable function g : [0,∞)→ X and α ∈ R let us set

gα(t) = eαtg(t), t > 0.

The exponential decay at ∞ of the energy will follow, in a rather straight-
forward way, from the uniform estimates obtained previously under the fol-
lowing assumptions:

(5.2)

(a) F : D(Aθ)→ R, 0 < θ ≤ 1/2, locally Lipschitz continuous,

(b) F (x) ≥ c0 > 0 ∀x ∈ D(Aθ),

(c) 〈Ax, x〉 ≥M‖x‖2 ∀x ∈ D(A),

(d) βα0 ∈ L1(0,∞),

(e) t 7→
∞�

t

βα0(s) ds is of positive type,

(f)
∞�

0

|β(s)| ds < 1,

(g) u0 ∈ D(A1/2), u1 ∈ X, fη0 ∈ L1(0,∞;X),

for some constants M,α0, η0 > 0.

Theorem 5.1. Under assumptions (5.2), for any R > 0 there exist αR ∈
(0, α0 ∧ η0] and CR ≥ 0 such that the mild solution u of (5.1) with ‖u1‖2 +
‖A1/2u0‖2 + ‖fη0‖21 ≤ R satisfies

(5.3)
1
2
‖u̇(t)‖2 +

1
2
‖A1/2u(t)‖2 ≤ CRe−2αRt ∀t ≥ 0.

Proof. Let us suppose, first, that u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈
C1([0,∞);X), so that the mild solution u is a strong one (see Corollary 4.7).
For any α ≤ α0, we note that βα ∈ L1(0,∞) and the kernel

K(t) :=
∞�

t

βα(s) ds

is of positive type, as one can see by noting that K(t)=
	∞
t e−(α0−α)sβα0(s) ds

and applying Proposition 2.7 to βα0 . Also, let us set

να := 1−
∞�

0

βα(r) dr ∀α ≥ 0.
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Observe that, in particular,

ν0 = 1−
∞�

0

β(r) dr > 0.

Now, it is easy to see that, for any α ≥ 0, the function uα(t) = eαtu(t) solves
the problem

(5.4)


üα(t) + (F (u(t))− 2α)u̇α(t) + (α2 − F (u(t))α)uα(t)

+Auα(t)− βα ∗Auα(t) = fα(t),
uα(0) = u0, u̇α(0) = u0 + αu1.

To proceed with the proof, we need the following two lemmas. Notice that
our first lemma holds under the weaker assumption

(5.5)
∞�

0

β(s) ds < 1.

Lemma 1. There exists α ∈ (0, α0 ∧ η0] such that , for any R > 0, if

‖u1‖2 + ‖A1/2u0‖2 + ‖fη0‖21 ≤ R,

then

(5.6)
1
2
‖u̇α(t)‖2 +

ν0

8
‖A1/2uα(t)‖2 +

c0
2

t�

0

‖u̇α(τ)‖2 dτ

≤ C1,R +
t�

0

(αC1,R + |βα0(τ)|)‖A1/2uα(τ)‖2 dτ

for some constant C1,R > 0.

Proof of Lemma 1. First, multiplying the equation in (5.4) by u̇α(t),
since u ∈ C1([0,∞);D(A1/2)) (see Corollary 4.7) we obtain

1
2
d

dt
‖u̇α(t)‖2 + (F (u(t))− 2α)‖u̇α(t)‖2 + (α2 − F (u(t))α)〈uα(t), u̇α(t)〉

+
1
2
d

dt
‖A1/2uα(t)‖2 − 〈βα ∗A1/2uα(t), A1/2u̇α(t)〉 = 〈fα(t), u̇α(t)〉.

Integrating the above identity from 0 to s, 0 < s ≤ t, by (5.2)(b) and the
fact that K̇ = −βα,

(5.7)
1
2
‖u̇α(s)‖2 + (c0 − 2α)

s�

0

‖u̇α(τ)‖2 dτ

+
1
2
‖A1/2uα(s)‖2 +

s�

0

〈K̇ ∗A1/2uα(τ), A1/2u̇α(τ)〉 dτ
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≤ 1
2
‖u1 + αu0‖2 +

1
2
‖A1/2u0‖2 +

s�

0

〈fα(τ), u̇α(τ)〉 dτ

+
s�

0

(F (u(τ))α− α2)〈uα(τ), u̇α(τ)〉 dτ.

The convolution term K̇ ∗ A1/2uα(τ) can be computed by integrating by
parts:

τ�

0

K̇(τ − r)A1/2uα(r) dr = K(τ)A1/2u0 −K(0)A1/2uα(τ)

+
τ�

0

K(τ − r)A1/2u̇α(r) dr.

Using the above identity to evaluate the fourth term on the left-hand side
of (5.7), we have

(5.8)
s�

0

〈K̇ ∗A1/2uα(τ), A1/2u̇α(τ)〉 dτ

=
〈
A1/2u0,

s�

0

K(τ)A1/2u̇α(τ) dτ
〉
− K(0)

2
‖A1/2uα(s)‖2

+
K(0)

2
‖A1/2u0‖2 +

s�

0

〈K ∗A1/2u̇α(τ), A1/2u̇α(τ)〉 dτ

≥
〈
A1/2u0,

s�

0

K(τ)A1/2u̇α(τ) dτ
〉
− K(0)

2
‖A1/2uα(s)‖2 +

K(0)
2
‖A1/2u0‖2

since
	s
0〈K ∗ A

1/2u̇α(τ), A1/2u̇α(τ)〉 dτ ≥ 0. Another integration by parts
yields
s�

0

K(τ)A1/2u̇α(τ) dτ = K(s)A1/2uα(s)−K(0)A1/2u0 +
s�

0

βα(τ)A1/2uα(τ) dτ.

Hence, from (5.8) it follows that
s�

0

〈K̇∗A1/2uα(τ), A1/2u̇α(τ)〉 dτ≥K(s)〈A1/2u0, A
1/2uα(s)〉−K(0)

2
‖A1/2u0‖2

+
s�

0

βα(τ)〈A1/2u0, A
1/2uα(τ)〉 dτ − K(0)

2
‖A1/2uα(s)‖2.

By the above estimate and (5.7) we obtain, since α ≤ η0,
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(5.9)
1
2
‖u̇α(s)‖2 + (c0 − 2α)

s�

0

‖u̇α(τ)‖2 dτ +
να
2
‖A1/2uα(s)‖2

≤ 1
2
‖u1 + αu0‖2 +

1
2

(
1 +

∞�

0

βα(r) dr
)
‖A1/2u0‖2−K(s)〈A1/2u0, A

1/2uα(s)〉

−
s�

0

βα(τ)〈A1/2u0, A
1/2uα(τ)〉 dτ +

s�

0

‖fη0(τ)‖ ‖u̇α(τ)‖ dτ

+ α

s�

0

|F (u(τ))− α| ‖uα(τ)‖ ‖u̇α(τ)‖ dτ.

Thanks to (5.2)(d), the dominated convergence theorem and (5.5), for some
α1 ∈ (0, α0 ∧ η0] we have

να = 1−
∞�

0

βα(r) dr ≥ 1
2

(
1−

∞�

0

β(r) dr
)

=
ν0

2
> 0 for any 0 ≤ α ≤ α1.

So, by the fact that |βα(τ)| ≤ |βα0(τ)|, from (5.9) we deduce that

(5.10)
1
2
‖u̇α(s)‖2 + (c0 − 2α)

s�

0

‖u̇α(τ)‖2 dτ +
ν0

4
‖A1/2uα(s)‖2

≤ ‖u1‖2 +
(
α2

0

M
+ 1
)
‖A1/2u0‖2 + ‖βα0‖1‖A1/2u0‖ ‖A1/2uα(s)‖

+ ‖A1/2u0‖
s�

0

|βα0(τ)| ‖A1/2uα(τ)‖ dτ

+
s�

0

‖fη0(τ)‖ ‖u̇α(τ)‖ dτ + α

s�

0

|F (u(τ))− α| ‖uα(τ)‖ ‖u̇α(τ)‖ dτ.

The analysis of the right-hand side of (5.10) can be completed by observing
that

‖βα0‖1‖A1/2u0‖ ‖A1/2uα(s)‖ ≤ ν0

8
‖A1/2uα(s)‖2 +

2‖βα0‖21
ν0

‖A1/2u0‖2

and

‖A1/2u0‖
s�

0

|βα0(τ)| ‖A1/2uα(τ)‖ dτ

≤ ‖βα0‖1‖A1/2u0‖2 +
1
4

s�

0

|βα0(τ)| ‖A1/2uα(τ)‖2 dτ.

Moreover,
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‖fη0‖1 sup
0≤τ≤t

‖u̇α(τ)‖ ≤ ‖fη0‖21 +
1
4

sup
0≤τ≤t

‖u̇α(τ)‖2.

In view of the the above three inequalities, from (5.10) we deduce that

(5.11)
1
2
‖u̇α(s)‖2 + (c0 − 2α)

s�

0

‖u̇α(τ)‖2 dτ +
ν0

8
‖A1/2uα(s)‖2

≤ ‖u1‖2 +
(
α2

0

M
+ 1 +

2‖βα0‖21
ν0

+ ‖βα0‖1
)
‖A1/2u0‖2

+
1
4

s�

0

|βα0(τ)| ‖A1/2uα(τ)‖2 dτ

+ ‖fη0‖21 +
1
4

sup
0≤τ≤t

‖u̇α(τ)‖2 + α

s�

0

|F (u(τ))− α| ‖uα(τ)‖ ‖u̇α(τ)‖ dτ.

Now, for α < c0/2, a straightforward computation yields

1
4

sup
0≤τ≤t

‖u̇α(τ)‖2 ≤ ‖u1‖2 +
(
α2

0

M
+1+

2‖βα0‖21
ν0

+‖βα0‖1
)
‖A1/2u0‖2 +‖fη0‖21

+
1
4

t�

0

|βα0(τ)| ‖A1/2uα(τ)‖2 dτ + α

t�

0

|F (u(τ))− α| ‖uα(τ)‖ ‖u̇α(τ)‖ dτ.

By the above estimate and (5.11), we obtain

(5.12)
1
2
‖u̇α(t)‖2 + (c0 − 2α)

t�

0

‖u̇α(τ)‖2 dτ +
ν0

8
‖A1/2uα(t)‖2

≤ 2‖u1‖2 + 2
(
α2

0

M
+ 1 +

2‖βα0‖21
ν0

+ ‖βα0‖1
)
‖A1/2u0‖2

+
1
2

t�

0

|βα0(τ)| ‖A1/2uα(τ)‖2 dτ

+ 2‖fη0‖21 + 2α
t�

0

|F (u(τ))− α| ‖uα(τ)‖ ‖u̇α(τ)‖ dτ.

Therefore, to complete the proof we only need to bound the last term in
(5.12). In view of (5.2)(b), F (u(τ)) − α ≥ c0 − α > 0 for any τ ≥ 0. Since
F is Lipschitz continuous on bounded subsets of D(A1/2) and ‖A1/2u(t)‖
is bounded on [0,∞) on account of (4.13), for any R > 0 we see that, if
‖u1‖2 + ‖A1/2u0‖2 + ‖fη0‖21 ≤ R, then there is a constant C∗R ≥ 0 such that
F (u(τ)) ≤ C∗R for all τ ≥ 0. Hence, by (5.2)(c) we obtain
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2α
t�

0

(F (u(τ))− α)‖uα(τ)‖ ‖u̇α(τ)‖ dτ ≤ 2C∗Rα
t�

0

‖uα(τ)‖ ‖u̇α(τ)‖ dτ

≤ α
(C∗R)2

M

t�

0

‖A1/2uα(τ)‖2 dτ + α

t�

0

‖u̇α(τ)‖2 dτ.

Finally, for α < c0/6, the above inequality can be used to obtain (5.6) from
(5.12).

Lemma 2. For any R > 0 there are constants α∗R ∈ (0, α0 ∧ η0] and
C2,R ≥ 0 such that , if

‖u1‖2 + ‖A1/2u0‖2 + ‖fη0‖21 ≤ R,

then

(5.13)
t�

0

‖A1/2uα(τ)‖2 dτ ≤ C2,R

(
1 +

t�

0

‖u̇α(τ)‖2 dτ
)

+ C
(
‖u̇α(t)‖ ‖A1/2uα(t)‖+

t�

0

‖fη0(τ)‖ ‖A1/2uα(τ)‖2 dτ
)

for any α ∈ (0, α∗R], where C ≥ 0 is another constant , independent of R.

Proof of Lemma 2. We will follow the same method as in the above
proof, now using uα(t) as a multiplier. Taking the scalar product of both
sides of the equation in (5.4) with uα(t) and integrating on [0, t] we obtain

〈u̇α(t), uα(t)〉 −
t�

0

‖u̇α(τ)‖2 dτ +
t�

0

(F (u(τ))− 2α)〈u̇α(τ), uα(τ)〉 dτ

+
t�

0

(α2 − F (u(τ))α)‖uα(τ)‖2 dτ +
t�

0

‖A1/2uα(τ)‖2 dτ

−
t�

0

〈βα ∗A1/2uα(τ), A1/2uα(τ)〉 dτ

= 〈u̇α(0), uα(0)〉+
t�

0

〈fα(τ), uα(τ)〉 dτ.

Hence, for any α ≤ η0,

(5.14)
t�

0

‖A1/2uα(τ)‖2 dτ ≤ ‖u1 + αu0‖ ‖u0‖+ ‖u̇α(t)‖ ‖uα(t)‖



418 P. Cannarsa and D. Sforza

+
t�

0

‖fη0(τ)‖ ‖uα(τ)‖ dτ +
t�

0

‖u̇α(τ)‖2 dτ +
t�

0

〈βα ∗A1/2uα(τ), A1/2uα(τ)〉 dτ

+
t�

0

|F (u(τ))− 2α| ‖u̇α(τ)‖ ‖uα(τ)‖ dτ + α

t�

0

(F (u(τ))− α)‖uα(τ)‖2 dτ.

Now, recalling that ‖u1‖2 + ‖A1/2u0‖2 + ‖fη0‖21 ≤ R, by (5.2)(c) we have

(5.15) ‖u1 + αu0‖ ‖u0‖+ ‖u̇α(t)‖ ‖uα(t)‖+
t�

0

‖fη0(τ)‖ ‖uα(τ)‖ dτ

≤ CR +
1√
M
‖u̇α(t)‖ ‖A1/2uα(t)‖+

1
M

t�

0

‖fη0(τ)‖ ‖A1/2uα(τ)‖2 dτ

for some constant CR ≥ 0. Moreover,

(5.16)
t�

0

〈βα ∗A1/2uα(τ), A1/2uα(τ)〉 dτ ≤ ‖βα‖
2
1 + 1
2

t�

0

‖A1/2uα(τ)‖2 dτ,

where, in view of (5.2)(f), we can assume that, for some α1 ∈ (0, α0 ∧ η0],
∞�

0

|βα(t)| dt < 1 for any 0 ≤ α ≤ α1.

Finally, in order to estimate the last two integrals in (5.14) recall that, as
we already observed in the proof of Lemma 1, there is a constant C∗R ≥ 0
such that F (u(τ)) ≤ C∗R for all τ ≥ 0. So, for all 0 < α < c0/2,

(5.17)
t�

0

|F (u(τ))−2α| ‖u̇α(τ)‖ ‖uα(τ)‖ dτ+α
t�

0

(F (u(τ))− α)‖uα(τ)‖2 dτ

≤
C∗R√
M

t�

0

‖u̇α(τ)‖ ‖A1/2uα(τ)‖ dτ +
αC∗R
M

t�

0

‖A1/2uα(τ)‖2 dτ

≤
(

1− ‖βα‖21
8

+
αC∗R
M

) t�

0

‖A1/2uα(τ)‖2 dτ + CR

t�

0

‖u̇α(τ)‖2 dτ

for some constant CR ≥ 0. Thus, taking α∗R = M(1− ‖βα‖21)/8C∗R and using
(5.15), (5.16) and (5.17) to bound the right-hand side of (5.14), we can easily
obtain the conclusion.

Proof of Theorem 5.1 (continued). Using (5.13) to bound the right-hand
side of (5.6) we obtain, for all α ∈ (0, α∗R],



A stability result for equations with L1 kernels 419

1
2
‖u̇α(t)‖2 +

ν0

8
‖A1/2uα(t)‖2 +

c0
2

t�

0

‖u̇α(τ)‖2 dτ

≤ CR
[
1 +

α

2
(‖u̇α(t)‖2 + ‖A1/2uα(t)‖2)

]
+ αCR

t�

0

‖u̇α(τ)‖2 dτ

+
t�

0

(CR‖fη0(τ)‖+ |βα0(τ)|)‖A1/2uα(τ)‖2 dτ

for some constant CR ≥ 0. Hence, taking

(5.18) αR = min
{
α∗R,

1
2CR

,
c0

2CR
,
ν0

8CR

}
,

we have

1
2
‖u̇α(t)‖2+

1
2
‖A1/2uα(t)‖2 ≤ CR+CR

t�

0

(‖fη0(τ)‖+|βα0(τ)|)‖A1/2uα(τ)‖2 dτ.

Since βα0 and fη0 are summable, by Gronwall’s lemma we conclude that

(5.19)
1
2
‖u̇α(t)‖2 +

1
2
‖A1/2uα(t)‖2 ≤ CR for any t ≥ 0.

Now, recalling that u(t) = e−αtuα(t) and u̇(t) = e−αtu̇α(t) − αe−αtuα(t),
from (5.19) we obtain (5.3) for strong solutions. Since none of the above
constants depend on the regularity of u, an approximation argument suffices
to extend such a conclusion to mild solutions.

Remark 5.2. Analysing the proofs of Lemmas 1 and 2, one can easily
realize that, when F is bounded above, all the constants in (5.6) and (5.13)
are independent of the size of the initial conditions and forcing term. Con-
sequently, in this case, the decay rate α in (5.3) is independent of R. This
observation applies, in particular, to linear problems.

6. Application to a problem in viscoelasticity. In this section we
will use our abstract results to obtain an exponential decay estimate for a
partial differential equation that models the vibrations of viscoelastic beams
and plates. In a bounded domain Ω ⊂ Rn, with sufficiently smooth bound-
ary, let us consider the viscoelastic Euler–Bernoulli equation

(6.1)


∂2
t u+ µ(t)∂tu+∆2u−

t�

0

β(t− s)∆2u(s) ds = 0 in Ω × (0,∞),

u = ∂νu = 0 on ∂Ω × (0,∞),
u(0, ξ) = u0(ξ) and ∂tu(0, ξ) = u1(ξ) ξ ∈ Ω,
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where µ(t)∂tu is a frictional damping term. The damping coefficient µ(t) is
a nonlinear term of nonlocal type, indeed we take

(6.2) µ(t) = M
( �

Ω

[λ1|∇u(t, ξ)|2 + λ2|∆u(t, ξ)|2] dξ
)
,

where λ1, λ2 ≥ 0 and M : [0,∞) → [0,∞) is a given locally Lipschitz
function.

For λ2 = 0, problem (6.1) has been addressed in [6] in the case of a
C2-smooth convolution kernel. By the theory of the previous section, we
can easily obtain exponential stability for the above problem in the case of
singular kernels.

Theorem 6.1. Assume that:

(i) β ∈ L1(0,∞) is such that , for some constant α0 > 0,
∞�

0

|β(s)| ds < 1, βα0 ∈ L1(0,∞),

t 7→
∞�

t

βα0(s) ds is of positive type,

where βα0(t) = eα0tβ(t);
(ii) M : [0,∞)→ [0,∞) is a Lipschitz continuous function satisfying

(6.3) ∃c0 > 0 such that M(s) ≥ c0 ∀s ≥ 0.

Then for any R > 0 there are αR ∈ (0, α0] and CR ≥ 0 such that for every
(u0, u1) ∈ H2

0 (Ω) × L2(Ω) with ‖u0‖H2
0 (Ω) + ‖u1‖L2(Ω) ≤ R, the solution u

of problem (6.1) satisfies
�

Ω

[|∂tu(t, ξ)|2 + ‖∇2u(t, ξ)‖2] dξ ≤ CRe−2αRt ∀t ≥ 0,

where ‖∇2u(t, ξ)‖ denotes the (operator) norm of the Hessian of u with
respect to ξ.

The proof of Theorem 6.1 is a straightforward application of Theo-
rem 5.1. Indeed, we can rewrite (6.1) as an abstract problem of type (5.1)
in the Hilbert space X = L2(Ω) endowed with the usual inner product and
norm. Let A : D(A) ⊂ X → X be the operator defined by

D(A) = H4(Ω) ∩H2
0 (Ω),

Ax(ξ) = ∆2x(ξ), x ∈ D(A), ξ ∈ Ω a.e.

It is well-known that A satisfies assumption (5.2)(c) and D(A1/2) = H2
0 (Ω)

(see, e.g., [7, pp. 28–29]). Moreover, owing to assumption (ii), the nonlinear
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functional F : H2
0 (Ω)→ R defined by

F (x) = M
( �

Ω

[λ1|∇x(ξ)|2 + λ2|∆x(ξ)|2] dξ
)
∀x ∈ H2

0 (Ω)

satisfies conditions (5.2)(a), (b). So, the conclusion follows from Theorem 5.1.

A. Appendix

Proof of Proposition 4.2. Assume that there exist two mild solutions u
and v of (4.1)–(4.4). Taking the difference, we get

u(t)− v(t) =
t�

0

1 ∗ S(t− τ)[F (v(τ))v̇(τ)− F (u(τ))u̇(τ)] dτ, t ∈ [0, T ],

u̇(t)− v̇(t) =
t�

0

S(t− τ)[F (v(τ))v̇(τ)− F (u(τ))u̇(τ)] dτ, t ∈ [0, T ].

Set

R = cθ sup
τ∈[0,T ]

[‖u̇(τ)‖+ ‖A1/2u(τ)‖+ ‖v̇(τ)‖+ ‖A1/2v(τ)‖],

where cθ is the constant in (2.1). In view of (3.7), (4.3) and (2.1), we have,
for any t ∈ [0, T ],

‖A1/2u(t)−A1/2v(t)‖+ ‖u̇(t)− v̇(t)‖

≤
[(

1−
∞�

0

β(t) dt
)−1/2

+ 1
]

×
[ t�

0

|F (v(τ))− F (u(τ))| ‖v̇(τ)‖ dτ +
t�

0

|F (u(τ))| ‖v̇(τ)− u̇(τ)‖ dτ
]

≤ (2RLR + |F (0)|)
[(

1−
∞�

0

β(t) dt
)−1/2

+ 1
]

×
t�

0

[‖A1/2u(τ)−A1/2v(τ)‖+ ‖u̇(τ)− v̇(τ)‖] dτ.

Hence, by Gronwall’s lemma, ‖A1/2u(t)−A1/2v(t)‖ ≡ 0.

Proof of Proposition 4.4. Let u be the mild solution of (3.16)–(3.17)
in [0, T0]. Thanks to the assumptions on data, we shall show that t 7→
F (u(t))u̇(t) is Lipschitz continuous, proving that u̇ and A1/2u are Lipschitz
continuous functions as well.
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First of all, we observe that u̇ is given by

(A.1) u̇(t) = Ṡ(t)u0 + S(t)u1 +
t�

0

S(t− τ)(f(τ)− F (u(τ))u̇(τ)) dτ.

To show that u̇ is Lipschitz continuous, we fix 0 < t < t+h < T0; using also
formula f(t) = f(0) +

	t
0 ḟ(s) ds we have

u̇(t+ h)− u̇(t)

=
t+h�

t

S̈(τ)u0 dτ +
t+h�

t

Ṡ(τ)u1 dτ

+
t+h�

t

S(r)f(0) dr +
t�

0

S(τ)
( t−τ+h�

t−τ
ḟ(r) dr

)
dτ

+
t+h�

t

S(τ)
( t−τ+h�

0

ḟ(r) dr
)
dτ

−
t�

0

S(τ)[F (u(t− τ + h))− F (u(t− τ))]u̇(t− τ + h) dτ

−
t+h�

t

S(τ)F (u(t− τ + h))u̇(t− τ + h) dτ

−
t�

0

S(τ)F (u(t− τ))[u̇(t− τ + h)− u̇(t− τ)] dτ.

Set
R = (1 + cθ) sup

τ∈[0,T0]
[‖u̇(τ)‖+ ‖A1/2u(τ)‖].

In view of (3.8), (3.11), (3.7), (4.3) and (2.1) we have

‖u̇(t+ h)− u̇(t)‖

≤ h(1 + ‖β‖1)
(
‖Au0‖+

(
1−

∞�

0

β(t) dt
)−1/2

‖A1/2u1‖
)

+ h(‖f(0)‖+ 2‖ḟ‖1,T )

+ LRR

t�

0

‖A1/2u(τ + h)−A1/2u(τ)‖ dτ + h(LRR+ |F (0)|)R

+ (LRR+ |F (0)|)
t�

0

‖u̇(τ + h)− u̇(τ)‖ dτ.
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Applying Gronwall’s lemma we get

(A.2) ‖u̇(t+ h)− u̇(t)‖ ≤ hC1 + C2

t�

0

‖A1/2u(τ + h)−A1/2u(τ)‖ dτ,

where the constants C1, C2 are given respectively by

C1 = e(LRR+|F (0)|)T
[
(1 + ‖β‖1)

(
‖Au0‖+

(
1−

∞�

0

β(t) dt
)−1/2

‖A1/2u1‖
)]

+ e(LRR+|F (0)|)T [‖f(0)‖+ 2‖ḟ‖1,T + (LRR+ |F (0)|)R],

C2 = e(LRR+|F (0)|)TLRR.

As regards A1/2u(t), in a similar way we can write

A1/2u(t+ h)−A1/2u(t)

=
t+h�

t

Ṡ(τ)A1/2u0 dτ +
t+h�

t

S(τ)A1/2u1 dτ

+
t+h�

t

A1/2(1 ∗ S)(r)f(0) dr +
t�

0

A1/2(1 ∗ S)(τ)
( t−τ+h�

t−τ
ḟ(r) dr

)
dτ

+
t+h�

t

A1/2(1 ∗ S)(τ)
( t−τ+h�

0

ḟ(r) dr
)
dτ

−
t�

0

A1/2(1 ∗ S)(τ)[F (u(t− τ + h))− F (u(t− τ))]u̇(t− τ + h) dτ

−
t+h�

t

A1/2(1 ∗ S)(τ)F (u(t− τ + h))u̇(t− τ + h) dτ

−
t�

0

A1/2(1 ∗ S)(τ)F (u(t− τ))[u̇(t− τ + h)− u̇(t− τ)] dτ.

Using again (3.11), (3.7), (4.3) and (2.1) we have

‖A1/2u(t+ h)−A1/2u(t)‖

≤ h(1 + ‖β‖1)
(

1−
∞�

0

β(t) dt
)−1/2

‖Au0‖+ h‖A1/2u1‖

+ h
(

1−
∞�

0

β(t) dt
)−1/2

(‖f(0)‖+ 2‖ḟ‖1,T )
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+
(

1−
∞�

0

β(t) dt
)−1/2

LRR

t�

0

‖A1/2u(τ + h)−A1/2u(τ)‖ dτ

+ h
(

1−
∞�

0

β(t) dt
)−1/2

(LRR+ |F (0)|)R

+
(

1−
∞�

0

β(t) dt
)−1/2

(LRR+ |F (0)|)
t�

0

‖u̇(τ + h)− u̇(τ)‖ dτ.

Applying Gronwall’s lemma we get

(A.3) ‖A1/2u(t+ h)−A1/2u(t)‖ ≤ hC ′1 + C ′2

t�

0

‖u̇(τ + h)− u̇(τ)‖ dτ,

where the constants C ′1, C
′
2 are given respectively by

C ′1 = e(1−
	∞
0 β(t) dt)−1/2LRRT

×
[
(1 + ‖β‖1)

((
1−

∞�

0

β(t) dt
)−1/2

‖Au0‖+ ‖A1/2u1‖
)]

+ e(1−
	∞
0 β(t) dt)−1/2LRRT

×
(

1−
∞�

0

β(t) dt
)−1/2

[‖f(0)‖+ 2‖ḟ‖1,T + (LRR+ |F (0)|)R],

C ′2 = e(1−
	∞
0 β(t) dt)−1/2LRRT

(
1−

∞�

0

β(t) dt
)−1/2

(LRR+ |F (0)|).

Combining (A.2) and (A.3), we obtain

‖u̇(t+ h)− u̇(t)‖ ≤ h(C1 + C2C
′
1T ) + C2C

′
2T

t�

0

‖u̇(τ + h)− u̇(τ)‖ dτ,

whence applying again Gronwall’s lemma it follows that

(A.4) ‖u̇(t+ h)− u̇(t)‖ ≤ eC2C′2T
2
(C1 + C2C

′
1T )h,

and by (A.3),

(A.5) ‖A1/2u(t+ h)−A1/2u(t)‖ ≤ (C ′1 + C ′2e
C2C′2T

2
(C1 + C2C

′
1T )T )h.

Therefore, u̇ and A1/2u are Lipschitz continuous on [0, T0], because the pos-
itive constants in (A.4) and (A.5) are independent of t and h. It follows that
F (u)u̇ is also Lipschitz continuous, since by (4.3), (2.1), (A.5) and (A.4) we
have, for any 0 < t < t+ h < T0,
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‖F (u(t+ h))u̇(t+ h)− F (u(t))u̇(t)‖
≤ ‖(F (u(t+ h))− F (u(t)))u̇(t+ h)‖+ ‖F (u(t))(u̇(t+ h)− u̇(t))‖
≤ LRR‖A1/2u(t+ h)−A1/2u(t)‖+ (LRR+ |F (0)|)‖u̇(t+ h)− u̇(t)‖

≤ [LRR(C ′1 + C ′2e
C2C′2T

2
(C1 + C2C

′
1T )T )

+ (LRR+ |F (0)|)eC2C′2T
2
(C1 + C2C

′
1T )]h;

consequently, F (u)u̇ has bounded derivative on [0, T0] and for any t ∈ [0, T0],∥∥∥∥ ddt(F (u(t))u̇(t))
∥∥∥∥ ≤ LRR(C ′1 + C ′2e

C2C′2T
2
(C1 + C2C

′
1T )T )

+ (LRR+ |F (0)|)eC2C′2T
2
(C1 + C2C

′
1T ).

Therefore, if we consider u as the mild solution of the linear Cauchy problem
(3.16)–(3.17) with non-homogeneous term given by f −F (u)u̇, then we can
conclude thanks to Theorem 3.9.

Proof of Theorem 4.5. We note that the uniqueness of the mild solution
to (4.8) follows from Proposition 4.2. Therefore, we only have to show that
such a solution exists and is a strong solution of the equation for smooth
data. We will obtain these conclusions in reverse order.

Suppose first that u0 ∈ D(A), u1 ∈ D(A1/2), f ∈ W 1,1(0, T ;X) and
let u be the strong solution of (4.8) on [0, T0] given by Proposition 4.4.
Then, a standard continuation argument applying estimate (4.12) implies
that T0 = T .

We now proceed to show the existence of a mild solution to (4.8) for
u0 ∈ D(A1/2), u1 ∈ X and f ∈ L1(0, T ;X). Take sequences {u0n} ⊂ D(A),
{u1n} ⊂ D(A1/2) and {fn} ⊂ C1([0, T ];X) such that u0n → u0 in D(A1/2),
u1n → u1 in X and fn → f in L1(0, T ;X). We have just proved that problem
(4.8) with u0 replaced by u0n, u1 by u1n and f by fn has a unique strong
solution for any n ≥ 1. Let un be such a solution. Then

un(t) = S(t)u0n +
t�

0

S(τ)u1n dτ(A.6)

+
t�

0

1 ∗ S(t− τ)(fn(τ)− F (un(τ))u̇n(τ)) dτ,

for any t ∈ [0, T ]. Moreover, estimate (4.11) applied to un yields

(A.7) sup
τ∈[0,T ]

[‖u̇n(τ)‖+ ‖A1/2un(τ)‖] ≤ C,

where C is independent of n, since {u0n}, {u1n} and {fn} are bounded
sequences.
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We claim that {un} is a Cauchy sequence in C1([0, T ];X) ∩ C([0, T ];
D(A1/2)).

Finally, let us denote by u the limit of {un} in C1([0, T ];X) ∩ C([0, T ];
D(A1/2)). Again by assumption (4.3) and (2.1) one can easily pass to the
limit in (A.6) and (A.7) and deduce that u is the mild solution of (4.8),
satisfying (4.10).

Proof of Lemma 4.6. If we multiply the equation in (4.8) by u̇(t), then
we obtain
1
2
d

dt
‖u̇(t)‖2 + F (u(t))‖u̇(t)‖2 +

1
2
d

dt
‖A1/2u(t)‖2 − 〈β ∗A1/2u(t), A1/2u̇(t)〉

= 〈f(t), u̇(t)〉,
keeping in mind that u ∈ C1([0, T0];D(A1/2)) (see Proposition 4.4). Inte-
grating the above identity from 0 to s, 0 < s ≤ t, yields

(A.8)
1
2
‖u̇(s)‖2 +

s�

0

F (u(τ))‖u̇(τ)‖2 dτ +
1
2
‖A1/2u(s)‖2

+
s�

0

〈k̇ ∗A1/2u(τ), A1/2u̇(τ)〉 dτ

=
1
2
‖u1‖2 +

1
2
‖A1/2u0‖2 +

s�

0

〈f(τ), u̇(τ)〉 dτ,

in view of the fact that k̇ = −β. The convolution term k̇ ∗ A1/2u(τ) can be
estimated integrating by parts:
τ�

0

k̇(τ − r)A1/2u(r) dr = k(τ)A1/2u0 − k(0)A1/2u(τ) +
τ�

0

k(τ − r)A1/2u̇(r) dr.

Plugging this identity in (A.8), we have

(A.9)
1
2
‖u̇(s)‖2 +

s�

0

F (u(τ))‖u̇(τ)‖2 dτ +
1
2

(
1−

∞�

0

β(r) dr
)
‖A1/2u(s)‖2

≤ 1
2
‖u1‖2 +

1
2

(
1−

∞�

0

β(r) dr
)
‖A1/2u0‖2

−
〈
A1/2u0,

s�

0

k(τ)A1/2u̇(τ) dτ
〉

+
s�

0

‖f(τ)‖ ‖u̇(τ)‖ dτ

since, k being of positive type,
s�

0

〈k ∗A1/2u̇(τ), A1/2u̇(τ)〉 dτ ≥ 0.
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Another integration by parts yields
s�

0

k(τ)A1/2u̇(τ) dτ = k(s)A1/2u(s)− k(0)A1/2u0 +
s�

0

β(τ)A1/2u(τ) dτ.

If we use the last identity, from (A.9) it follows that

1
2
‖u̇(s)‖2 +

s�

0

F (u(τ))‖u̇(τ)‖2 dτ +
1
2

(
1−

∞�

0

β(r) dr
)
‖A1/2u(s)‖2

≤ 1
2
‖u1‖2 +

1
2

(
1 +

∞�

0

β(r) dr
)
‖A1/2u0‖2 − k(s)〈A1/2u0, A

1/2u(s)〉

−
s�

0

β(τ)〈A1/2u0, A
1/2u(τ)〉 dτ +

s�

0

‖f(τ)‖ ‖u̇(τ)‖ dτ.

Since
	∞
0 β(r) dr < 1, from the previous inequality we also deduce that

(A.10)
1
2
‖u̇(s)‖2 +

s�

0

F (u(τ))‖u̇(τ)‖2 dτ +
1
2

(
1−

∞�

0

β(r) dr
)
‖A1/2u(s)‖2

≤ 1
2
‖u1‖2 + ‖A1/2u0‖2 + ‖β‖1‖A1/2u0‖ ‖A1/2u(s)‖

+ ‖A1/2u0‖
s�

0

|β(τ)| ‖A1/2u(τ)‖ dτ +
s�

0

‖f(τ)‖ ‖u̇(τ)‖ dτ

≤ ‖u1‖2 +
(

1 +
4‖β‖21

1−
	∞
0 β(r) dr

+ 4‖β‖1
)
‖A1/2u0‖2

+
1
4

(
1−

∞�

0

β(r) dr
)
‖A1/2u(s)‖2

+
1
4

s�

0

|β(τ)| ‖A1/2u(τ)‖2 dτ + sup
0≤τ≤t

‖u̇(τ)‖ ‖f‖1,T .

As F (u(t)) ≥ 0, a straightforward computation yields

(A.11)
1
2
‖u̇(s)‖2 +

1
4

(
1−

∞�

0

β(r) dr
)
‖A1/2u(s)‖2

≤ ‖u1‖2 +
(

1 +
4‖β‖21

1−
	∞
0 β(s) ds

+ 4‖β‖1
)
‖A1/2u0‖2

+
1
4

s�

0

|β(τ)| ‖A1/2u(τ)‖2 dτ +
1
4

sup
0≤τ≤t

‖u̇(τ)‖2 + 4‖f‖21,T , 0 < s ≤ t.
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Thus, by an easy computation,

1
4

sup
0≤τ≤t

‖u̇(τ)‖2 ≤ ‖u1‖2 +
(

1 +
4‖β‖21

1−
	∞
0 β(s) ds

+ 4‖β‖1
)
‖A1/2u0‖2

+ 4‖f‖21,T +
1
4

t�

0

|β(τ)| ‖A1/2u(τ)‖2 dτ.

By the above estimate and (A.11), we obtain

(A.12)
1
2
‖u̇(t)‖2 +

1
4

(
1−

∞�

0

β(r) dr
)
‖A1/2u(t)‖2

≤ 2‖u1‖2 + 2
(

1 +
4‖β‖21

1−
	∞
0 β(s) ds

+ 4‖β‖1
)
‖A1/2u0‖2

+ 8‖f‖21,T +
1
2

t�

0

|β(τ)| ‖A1/2u(τ)‖2 dτ,

whence

1
2
‖A1/2u(t)‖2 ≤ 4

1−
	∞
0 β(s) ds

×
[
‖u1‖2 +

(
1 +

4‖β‖21
1−

	∞
0 β(s) ds

+ 4‖β‖1
)
‖A1/2u0‖2 + 4‖f‖21,T

]
+

1
1−

	∞
0 β(s) ds

t�

0

|β(τ)| ‖A1/2u(τ)‖2 dτ.

Thus, by Gronwall’s lemma,

1
2
‖A1/2u(t)‖2 ≤ 4e‖β‖1/(1−

	∞
0 β(s) ds)

1−
	∞
0 β(s) ds

×
[
‖u1‖2 +

(
1 +

4‖β‖21
1−

	∞
0 β(s) ds

+ 4‖β‖1
)
‖A1/2u0‖2 + 4‖f‖21,T

]
.

Now, (A.12) and the above inequality yield

1
2
‖u̇(t)‖2 +

1
2
‖A1/2u(t)‖2

≤
(

2 +
4e‖β‖1/(1−

	∞
0 β(s) ds)

1−
	∞
0 β(s) ds

(‖β‖1 + 1)
)

×
[
‖u1‖2 +

(
1 +

4‖β‖21
1−

	∞
0 β(s) ds

+ 4‖β‖1
)
‖A1/2u0‖2 + 4‖f‖21,T

]
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≤ 8
(

1 +
2e‖β‖1/(1−

	∞
0 β(s) ds)

1−
	∞
0 β(s) ds

(‖β‖1 + 1)
)

×
(

1 +
‖β‖21

1−
	∞
0 β(s) ds

+ ‖β‖1
)

(‖u1‖2 + ‖A1/2u0‖2 + ‖f‖21,T ).

So, (4.11) holds, and (4.12) follows from (4.7) and (4.11).
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