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CARLEMAN ESTIMATES WITH TWO LARGE
PARAMETERS FOR SECOND ORDER OPERATORS AND

APPLICATIONS TO ELASTICITY WITH
RESIDUAL STRESS

Abstract. We derive Carleman type estimates with two large parame-
ters for a general partial differential operator of second order. The weight
function is assumed to be pseudo-convex with respect to the operator. We
give applications to uniqueness and stability of the continuation of solutions
and identification of coefficients for the Lamé system of dynamical elasticity
with residual stress. This system is anisotropic and cannot be principally
diagonalized, but it can be transformed into an “upper triangular” form.
The use of two large parameters is essential for obtaining our results with-
out smallness assumptions on the residual stress. In the proofs we use the
classical technique of differential quadratic forms combined with a special
partitioning of these forms and demonstrating positivity of terms containing
highest powers of the second large parameter.

1. Introduction. We consider the general partial differential operator
of second order

A =
n∑

j,k=1

ajk∂j∂k +
∑

bj∂j + c

in a bounded domain Ω of the space Rn with the real-valued coefficients
ajk ∈ C1(Ω), bj , c ∈ L∞(Ω). The principal symbol of this operator is

(1.1) A(x, ζ) =
∑

ajk(x)ζjζk.

We use the following convention and notations. Sums are over repeated
indices j, k, l,m = 1, . . . , n. Let ∂j = ∂/∂xj , ∂ = (∂1, . . . , ∂n), D = −i∂,
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α = (α1, . . . , αn) is a multi-index with integer components, ζα = ζα1
1 · · · ζαn

n ,
Dα and ∂α are defined similarly. ν is the outward normal to the boundary
of a domain, C, κ are generic constants (different at different places) de-
pending only on the operator A, on the elastic parameters %, λ, µ,R, on the
function ψ, and on the domain Ω. In Theorems 1.2–1.6 we assume that C, κ
depend on Ω, %, λ, µ,R(; 2), ψ,u0,u1,M, δ0. Any additional dependence will
be indicated. We set Ω(δ) = Ω ∩ {ψ > δ}. We recall that

‖u‖(k)(Ω) =
( ∑
|α|≤k

�

Ω

|∂αu|2
)1/2

is the norm in the Sobolev space H(k)(Ω) and ‖ ‖2 = ‖ ‖(0) is the L2-norm.
A function ψ is called pseudo-convex onΩ with respect to A if ψ ∈ C2(Ω),

A(x,∇ψ(x)) 6= 0, x ∈ Ω, and

(1.2)
∑

∂j∂kψ(x)
∂A

∂ζj

∂A

∂ζk
(x, ξ) +

∑(
∂A

∂ζk
∂k
∂A

∂ζj
− ∂kA

∂2A

∂ζj∂ζk

)
∂jψ(x)

≥ K|ξ|2

for some positive constant K, for any ξ ∈ Rn and any point x of Ω provided

(1.3) A(x, ξ) = 0,
∑ ∂A

∂ζj
(x, ξ)∂jψ(x) = 0.

We will use the weight function

(1.4) ϕ = eγψ

and let σ = γτϕ where γ, τ are some real numbers (large parameters).

Theorem 1.1. Let ψ be pseudo-convex with respect to A in Ω. Then
there are constants C, C0(γ) such that

(1.5)
�

Ω

σ3−2|α|e2τϕ|∂αu|2 ≤ C
�

Ω

e2τϕ|Au|2

for all u ∈ C2
0 (Ω) and α, γ, τ with |α| ≤ 1, C < γ, and C0(γ) < τ .

In [2] this result (for C∞-coefficients) was stated without proof and in
[3] there are incomplete proofs for isotropic hyperbolic equations.

In [14] it is shown that ψ(x, t) = |x − a|2 − θ2t2 is pseudo-convex with
respect to A if the speed of propagation for A is monotone in a certain
direction. According to [15], ψ(x, t) = d2(x, a)−θ2t2 (d is the distance in the
Riemannian metric determined by the elliptic part of A) is pseudo-convex
provided some convexity type conditions are satisfied.

In [1], [3], [7] Carleman estimates with two large parameters were used to
obtain results on unique continuation and controllability for thermoelasticity
systems.
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In this paper we consider an elasticity system with residual stress R [16].
In Theorems 1.2–1.6 we let x ∈ R3 and (x, t) ∈ Ω ⊂ R4. The residual stress
is modeled by a symmetric second-rank tensor R(x) = (rjk(x))3j,k=1 ∈ C2(Ω)
which is divergence free, ∇ ·R = 0. Let u(x, t) = (u1, u2, u3)> : Ω → R3 be
the displacement vector in Ω. We introduce the operator of linear elasticity
with residual stress

ARu = %∂2
t u− µ∆u− (λ+ µ)∇(div u)−∇λ div u(1.6)
− 2ε(u)∇µ− div((∇u)R),

where % ∈ C1(Ω), λ, µ ∈ C2(Ω) are the density and Lamé parameters
depending only on x, and ε(u) = (1

2(∂iuj + ∂jui)). Let

2(µ;R) = ∂2
t −

∑
jk

µδjk + rjk
%

∂j∂k

and recall that σ = τγϕ.

Theorem 1.2. Let ψ be pseudo-convex with respect to the operators
2(µ;R) and 2(λ + 2µ;R) in Ω. Then there are constants C,C0(γ) such
that

(1.7)
�

Ω

(σ(|∇x,tu|2 + |∇x,t div u|2 + |∇x,t curl u|2)

+ σ3(|u|2 + | div u|2 + | curl u|2))e2τϕ

≤ C
�

Ω

(|ARu|2 + |∇x(ARu)|2)e2τϕ

for all u ∈ H3
0 (Ω) and γ > C, τ > C0.

In [11] this result was obtained when R is “small”, without quantifying
how small.

Let us consider the following Cauchy problem:

(1.8) ARu = f in Ω, u = g0, ∂νu = g1 on Γ ⊂ ∂Ω,
where Γ ∈ C3. By a standard argument ([8, Section 3.2]) the Carleman
estimate of Theorem 1.2 implies the following conditional Hölder stability
estimate for (1.8) in Ω(δ) (and hence uniqueness in Ω(0)).

Theorem 1.3. Suppose that all coefficients λ, µ, %,R are in C2(Ω). Let
ψ be pseudo-convex with respect to 2(µ;R) and 2(λ+ 2µ;R) in Ω. Assume
that Ω(0) ⊂ Ω ∪ Γ . Then there exist C(δ) > 0 and κ(δ) ∈ (0, 1) such that
the solution u ∈ H2(Ω) to (1.8) satisfies

(1.9) ‖u‖(1)(Ω(δ)) + ‖div u‖(1)(Ω(δ)) + ‖curl u‖(1)(Ω(δ))

≤ C(F +M1−κ
2 F κ),

where F = ‖f‖(1)(Ω(0)) + ‖g0‖(5/2)(Γ ) + ‖g1‖(3/2)(Γ ) and M2 = ‖u‖(2)(Ω).
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In Theorems 1.4–1.6 we assume that Ω = G×(−T, T ), Γ = Γ ′×(−T, T ),
Γ ′ ⊂ ∂G and that the system (1.8) is t-hyperbolic. A sufficient condition of
hyperbolicity is

0 ≤ λ, 0 < 2µI3 +R on G.

This condition is satisfied when any eigenvalue of the matrix R is strictly
greater than −2µ; this happens when, for example,

∑3
i,j=1 r

2
ij < 4µ2 on G.

We use the conventional energy integral

E(t; u) =
�

G

(|∂tu|2 + |∇u|2 + |u|2)( , t).

Theorem 1.4. Suppose that λ, µ, %,R are in C2(Ω). Let ψ be pseudo-
convex with respect to 2(µ;R), and 2(λ+ 2µ;R) in Ω. Assume that

(1.10) ψ < 0 on G× {−T, T}, ψ ≥ 0 on G× {0}.
Let Γ = ∂G×(−T, T ). Then there exists C such that the solution u ∈ H2(Ω)
to (1.8) satisfies

(1.11) E(t; u) + E(t;∇u)

≤ C(‖f‖(1)(Ω) + ‖g0‖(5/2)(Γ ) + ‖g1‖(3/2)(Γ ))2, −T < t < T.

Now we state results about identification of residual stress from addi-
tional boundary data.

Let u( ; 1),u( ; 2) be solutions to

(1.12) ARu = 0 in Ω, u = u0, ∂tu = u1 on G× {0},
corresponding to sets of coefficients R( ; 1) and R( ; 2), respectively. We
introduce the norm of the differences of the lateral Cauchy data

Fc =
4∑

β=2

(‖∂βt (u( ; 2)− u( ; 1))‖(5/2)(Γ )(1.13)

+ ‖∂βt ∂ν(u( ; 2)− u( ; 1))‖(3/2)(Γ )).

By examining the equation (1.12), we can see that since the residual
stress tensor is divergence free it appears in the equation without first deriva-
tives. It turns out that a single set of Cauchy data is sufficient to recover the
residual stress. To guarantee the uniqueness, we impose some nondegeneracy
condition on the initial data (u0,u1). More precisely, we assume that

(1.14) det M ≥ δ0 on G,

where

M =

(
∂2

1u0 2∂1∂2u0 2∂1∂3u0 ∂2
2u0 2∂2∂3u0 ∂2

3u0

∂2
1u1 2∂1∂2u1 2∂1∂3u1 ∂2

2u1 2∂2∂3u1 ∂2
3u1

)
.
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Note that M(x) is a 6× 6 matrix-valued function. For example, one can
check that u0(x) = (x2

1, x
2
2, x

2
3)> and u1(x) = (x2x3, x1x3, x1x2)> satisfy

(1.14) with δ0 = 64.
We first state the Hölder stability estimate for the coefficients in Ω(δ).
We introduce the following bound:

(1.15) ‖∂βt ∂αxu( ; j)‖∞(Ω) < M when |α| ≤ 3, β ≤ 4.

Theorem 1.5. Assume that ψ is pseudo-convex with respect to the op-
erators 2(µ;R( ; 2)) and 2(λ+2µ;R( ; 2)) in Ω. Let the initial data (u0,u1)
satisfy (1.14) and u( ; j), j = 1, 2, satisfy (1.15). Assume that Ω(0) ⊂ Ω∪Γ .
Then there exist constants C = C(M, δ) > 0 and κ = κ(δ) ∈ (0, 1) such that

(1.16) ‖R( ; 1)−R( ; 2)‖(0)(Ω(δ)) ≤ CF κc .

If Γ is the whole lateral boundary and T is sufficiently large, then a much
stronger (and, in a certain sense, best possible) Lipschitz stability estimate
holds.

Theorem 1.6. Assume that λ, µ, %,R( ; 1), R( ; 2) are in C2(Ω). Let ψ
be pseudo-convex with respect to 2(µ;R( ; 2)) and 2(λ + 2µ;R( ; 2)) in Ω.
Assume that the condition (1.10) is satisfied. Let the initial data (u0,u1)
satisfy (1.14) and u( ; j), j = 1, 2, satisfy (1.15). Assume that Ω(0) ⊂ Ω∪Γ .
Let Γ = ∂G × (−T, T ). Then there exists C = C(M) such that for R( ; 1),
R( ; 2) satisfying the condition

(1.17) R( ; 1) = R( ; 2) on Γ,

one has

(1.18) ‖R( ; 2)−R( ; 1)‖(0)(G) ≤ CFc.

The bound (1.15) follows from certain bounds on the initial and bound-
ary value data and coefficients of the elasticity system with residual stress
and from uniform hyperbolicity of this system. Indeed, one can augment
(1.12) by the Dirichlet type boundary condition u = g0 on ∂G × (−T, T ).
Assuming that u0 ∈ H9(G), u1 ∈ H8(G), g0 ∈ H9(∂G×(−T, T )), ∂G ∈ C9,
the C5(G)-norms of %, λ, µ, rjk are bounded by M , appropriate compatibil-
ity conditions for u0,u1,g0 at ∂G × {0} are satisfied and the family of
systems (1.12) is uniformly hyperbolic, from standard energy estimates and
embedding theorems for Sobolev spaces one can derive the bound (1.15).
Also one can use the stress boundary condition instead of the Dirichlet type
condition.

Moreover, by using uniform pseudo-convexity and bounds on coefficients
one can show that the constants C, κ depend only on the bounds on the
coefficients and the constant in the uniform pseudo-convexity condition. We
will give the details in the forthcoming paper [10].
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Now we give explicit sufficient conditions for pseudo-convexity of ψ(x, t)
= |x−β|2−θ2t2 when %, λ, µ are constants and R is small compared to %, λ, µ.
Observe that our smallness condition is explicit compared to conditions
in [11], [13]. Smallness of the residual stress is a natural assumption for
applications in geophysics and material science.

We denote by ‖R‖ the norm (
∑3

j,k=1 r
2
jk)

1/2 of a matrix R = (rjk). Let
β ∈ R3, D = supx∈G |x− β| and d = infx∈G |x− β|.

Lemma 1.7. Let θ, d1 be some numbers. Let %, λ, µ be constants, the
matrix R be symmetric positive at any point of Ω, and

(1.19) 2µ%θ2 + 3‖R+ µI‖ ‖∇R‖ |x− β| < 2µ2 on Ω.

Suppose that

(1.20) θ2T 2 < d2.

Then the function ψ(x, t) = |x−β|2−θ2t2−d2
1 is pseudo-convex with respect

to the anisotropic wave operator A = 2(µ;R) in Ω.

The proof uses standard calculations to verify the pseudo-convexity con-
dition (1.2) and is given in [9].

Assume that

(1.21) D2 < 2d2.

Let d1 = d and

(1.22)
D2 − d2

θ2
< T 2 <

d2

θ2
.

Then the conditions (1.20) and (1.10) are satisfied. So if in addition (1.19)
holds we have the conclusions of Theorems 1.4 and 1.6. The condition (1.21)
can always be achieved by choosing β at some distance from G. So the
assumptions of Theorems 1.4 and 1.6 are satisfied when the observation
time is sufficiently large and the residual stress is relatively small.

If, for some d1,

(1.23) |x− β|2 − d2
1 < 0 when x ∈ ∂G \ Γ ′, D2 − θ2T 2 − d2

1 < 0,

then the assumptions of Theorems 1.3 and 1.5 are satisfied.
Carleman estimates were introduced by Carleman in 1939 to demon-

strate uniqueness in the Cauchy problem for a first order system in R2 with
nonanalytic coefficients. His idea turned out to be very fruitful and until now
it dominates the field. In 1950–80s Carleman type estimates and unique con-
tinuation theorems have been obtained for wide classes of partial differential
equations including general elliptic and parabolic equations of second order
and some hyperbolic equations of second order. For an account of these re-
sults we refer to books [5], [8]. While there are still challenges for scalar par-
tial differential operators, in many cases results are quite complete. The sit-
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uation with systems is quite different. No useful concept of pseudo-convexity
is available for systems and Carleman estimates have been obtained only in
very special cases. A general 1958 result of Calderón is applicable only to
some elliptic systems of first order. Only recently there has been progress
for classical isotropic dynamical Maxwell and elasticity systems [4]. This
progress was achieved by using principal diagonalization and Carleman esti-
mates for scalar hyperbolic equations. An important system of thermoelas-
ticity cannot be prinicipally diagonalized, but it has “triangular” structure
which allows one to obtain Carleman estimates and unique continuation by
exploiting Carleman estimates for second order scalar operators with two
large parameters [1], [7]. So far Carleman estimates with two large parame-
ters were obtained only for elliptic, parabolic, and isotropic hyperbolic oper-
ators of second order [3]. Carleman estimates are also very useful in control
theory (controllability and stabilization for initial boundary value problems)
and inverse problems [8]. In particular, they were a main tool in the first
proof of uniqueness and stability of all three elastic parameters in the dy-
namical Lamé system from two sets of boundary data [6]. Anisotropic sys-
tems have been studied only in some (important) particular cases, like small
scalar perturbation of classical elasticity (elasticity with residual stress) in
[11], [12], [13] where there are Carleman estimates, unique continuation and
stability of identification of elastic coefficients for such systems.

In this paper we obtain Carleman estimates with two large parame-
ters for general partial differential operators of second order (including as
a particular case operators of hyperbolic type). Applying these estimates
we obtain Carleman estimates, unique continuation results and stability of
identification of the residual stress R without smallness assumption on R,
i.e. globally. We have to assume pseudo-convexity with respect to two scalar
operators involving the residual stress.

We have stated our basic results above. In Section 2 we give complete
proofs of crucial symbol bounds and outline the remaining parts of the proof
of the fundamental Carleman estimate of Theorem 1.1 referring for complete
proofs to [9]. In Section 3 we derive from this Carleman estimate a Carle-
man estimate for a system of elasticity with residual stress which explains
the role of the two large parameters. In Section 4 we prove uniqueness and
Hölder type stability estimate for identification of the six functions defining
the residual stress from one set of special boundary measurements of dis-
placement and stress. A crucial assumption is that the initial data are in
a certain sense independent (which excludes the practically important zero
initial conditions). This assumption enables us to use a modification of the
1981 method of Bukhgeim and Klibanov used by Imanuvilov and Yamamoto
in 2002 for scalar equations. This modification was essential in handling in-
verse problems for isotropic elasticity in [6]. We observe that, if the initial
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data are zero, currently there are no uniqueness of identification results for
the residual stress; moreover, most likely, no such results are true. Indeed,
as is known, one cannot uniquely identify general (anisotropic) hyperbolic
equations from all possible boundary measurements. In addition, even for
the isotropic and scalar case, while there are complete uniqueness of iden-
tification results obtained by the method of boundary control of Belishev
(see for example, [8]), stability of identification is very weak (of logarith-
mic type). This weak stability leads to poor results on numerical solution
of inverse problems. Special nonzero initial data and pseudo-convexity as-
sumptions imply much better Hölder and in some cases even best possible
Lipschitz stability. Better stability promises a substantial improvement in
numerical solution, which is crucial for applications.

2. Proof of Carleman estimates for scalar operators. In the fol-
lowing, ζ(ϕ)(x) = ξ+iτ∇ϕ(x). We introduce the differential quadratic form

(2.1) F(x, τ,D,D)vv = |A(x,D + iτ∇ϕ(x))v|2 − |A(x,D − iτ∇ϕ(x))v|2.

This differential quadratic form is of order (3, 2), since the coefficients of the
principal part of A are real-valued. By Lemma 8.2.2 in Hörmander’s book
[5] there exists a differential quadratic form G(x, τ,D,D) of order (2, 1) such
that

(2.2)
�

Ω

G(x, τ,D,D)vv =
�

Ω

F(x, τ,D,D)vv;

its symbol is

G(x, τ, ξ, ξ) =
1
2

∑ ∂2

∂xk∂ηk
F(x, τ, ζ, ζ)

∣∣∣
η=0

, ζ = ξ + iη,

where
F(x, τ, ζ, ζ) = A(x, ζ + iτ∇ϕ)A(x, ζ − iτ∇ϕ)

−A(x, ζ − iτ∇ϕ)A(x, ζ + iτ∇ϕ).

By using the formula for the symbol of G one can prove

Lemma 2.1. We have

G(x, τ, ξ, ξ) = 2τ
∑ ∂A

∂ζj

∂A

∂ζk
∂j∂kϕ+ 2=

∑
∂kA

∂A

∂ζk
(2.3)

+ 2=
∑

A

(
∂2A

∂ζk∂xk
− iτ ∂2A

∂ζj∂ζk
∂j∂kϕ

)
where A, ∂kA, . . . are taken at (x, ζ(ϕ)(x)).

The following differentiation formulae follow from (1.4) and will be used
in our proofs:
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(2.4) ∂jϕ = γϕ∂jψ, ∂j∂kϕ = γϕ∂j∂kψ + γ2ϕ∂jψ∂kψ.

Using these formulae, from Lemma 2.1 by standard calculations we obtain

τ−1G(x, τ, ξ, ξ) = G1(x, τ, ξ, ξ) + G2(x, τ, ξ, ξ)(2.5)
+ G3(x, τ, ξ, ξ) + G4(x, τ, ξ, ξ)

where

G1(x, τ, ξ, ξ) = 8γϕ
∑

ajmakl(ξmξl + σ2∂mψ∂lψ)∂j∂kψ,

G2(x, τ, ξ, ξ) = 4γϕ
∑

alk∂ka
jm(σ2∂jψ∂mψ∂lψ + 2ξmξl∂jψ − ξjξm∂lψ),

G3(x, τ, ξ, ξ) = 4γϕ
(

2
∑

akm∂ja
lj∂kψξlξm

−
∑

ajk(∂malm∂lψ + alm∂l∂mψ)(ξjξk − σ2∂jψ∂kψ)
)
,

G4(x, τ, ξ, ξ) = 4γ2ϕ
((

2
∑

ajmξm∂jψ
)2

+ 2σ2
(∑

ajm∂jψ∂mψ
)2

−
(∑

alm(ξlξm − σ2∂lψ∂mψ)
)(∑

ajk∂jψ∂kψ
))
.

Observe that the terms of τ−1G with highest powers of γ are collected in G4.

Proof of Theorem 1.1. First, make the substitution u = e−τϕv. Obvi-
ously, Dk(e−τϕv) = e−τϕ(Dk + iτ∂kϕ)v. Hence∑

ajkDjDk(e−τϕv) =
∑

ajke−τϕ(Dj + iτ∂jϕ)(Dk + iτ∂kϕ)v.

Accordingly, the bound (1.5) is transformed into

(2.6)
∑ �

Ω

σ3−2|α||∂αv|2 ≤ C
�

Ω

|A( , D + iτ∇ϕ)v|2.

Lemma 2.2. Under the assumptions of Theorem 1.1, for any ε0 there is
C such that

(2.7) γϕ(x)(2K − ε0)|ζ(ϕ)(x)|2

≤ τ−1G(x, τ, ξ, ξ) + γϕ(x)Cγ2 |A(x, ζ(ϕ)(x))|2

|ζ(ϕ)(x)|2

for all γ > C, ξ ∈ Rn, and x ∈ Ω.

Proof. By homogeneity reasons we can assume |ζ(ϕ)|(x) = 1. In the
proof we will use the fact that

A(x, ζ(ϕ)(x)) =
n∑

j,k=1

ajk(ξjξk − σ2∂jψ∂kψ) + 2i
n∑

j,k=1

ajkσξj∂kψ(2.8)

= A(x, ξ)− σ2A(x,∇ψ(x)) + 2iσ
∑ ∂A

∂ζj
(x, ξ)∂jψ(x).
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To show (2.7) we will use pseudo-convexity of ψ and consider four pos-
sible cases.

Case 1:

(2.9) σ = 0, A(x, ξ) = 0,
∑ ∂A

∂ζj
(x, ξ)∂jψ(x) = 0.

Then
σ = 0,

∑
ajkξjξk = 0,

∑
ajkξj∂kψ = 0,

and from (2.5) we obtain

τ−1G(x, 0, ξ, ξ)

= 2γϕ
∑

∂j∂kψ2ajmξm2aklξl + 4γϕ
∑

alk∂ka
jm(2ξlξm∂jψ − ξjξm∂lψ)

= 2γϕ
∑

∂j∂kψ
∂A

∂ζj

∂A

∂ζk

+ 2γϕ
∑((

∂k
∂A

∂ζj

)
∂A

∂ζk
− (∂kA)

∂2A

∂ζj∂ζk

)
∂jψ(x, ξ)

≥ 2γϕK

by pseudo-convexity of ψ (1.2).

Case 2:

(2.10) σ < δ, |γ(A(x, ξ)− σ2A(x,∇ψ(x)))| < δ,

where δ is a (small) positive number to be chosen later.
Using (2.5) as in Case 1, bounding the terms with σ2 by −Cγϕδ and

dropping the second (positive) term in G4 we obtain

(2.11) τ−1G(x, τ, ξ, ξ) ≥ 2γϕ
∑

2ajmξm2aklξl∂j∂kψ − Cγϕδ2

+ 4γϕ
∑

alk∂ka
jm(2ξlξm∂jψ − ξjξm∂lψ)

+ 4γϕ2
∑

∂ja
ljξl(akm∂kψξm)

− 4γϕ
∑

ajk(ξjξk − σ2∂jψ∂kψ)
∑

(∂malm∂lψ + alm∂l∂mψ)

+ 8γ2ϕ
(∑

ajmξm∂jψ
)2

− γϕ
(
γ
∑

ajk(ξjξk − σ2∂jψ∂kψ)
)(∑

alm∂lψ∂mψ
)

≥ 2γϕ
(∑

∂j∂kψ2ajmξm2aklξl + 2
∑

alk∂ka
jm(2ξlξm∂jψ − ξjξm∂lψ)

)
− Cγϕδ + 8γϕγ

(∑
ajkξj∂kψ

)2
,

due to (2.8) and (2.10).
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Let us assume in addition to (2.10) that

(2.12)
∣∣∣∣∑ ∂A

∂ζj
(x, ξ)∂jψ(x)

∣∣∣∣ < δ.

Then

(2.13) h(x, ξ, σ) =
∑

∂j∂kψ(x)2ajm(x)ξm2akl(x)ξl

+ 2
∑

alk∂ka
jm(x)(2ξlξm∂jψ(x)− ξjξm∂lψ(x)) ≥ K − ε(δ)

due to continuity arguments, compactness of the set

M = {(x, ξ, σ) : x ∈ Ω, |ξ|2 + σ2|∇ψ(x)|2 = 1},

and (2.10). Here ε(δ)→ 0 as δ → 0.
Indeed, assuming the opposite of (2.13) we get a positive number ε1 and

a sequence (x(k), ξ(k), σ(k)) ∈M such that h(x(k), ξ(k), σ(k)) ≤ K−ε1 and
(2.10), (2.12) hold with δ = k−1. Since M is compact, (by extracting a subse-
quence if necessary) we may assume that (x(k), ξ(k), σ(k))→ (x, ξ, 0) ∈ M
as k → +∞. By continuity h(x, ξ, 0) ≤ K − ε1. On the other hand, by the
choice of the sequence, since γ ≥ 1, (x, ξ, 0) satisfies (2.9). Hence by Case 1,
h(x, ξ, 0) ≥ K and we have a contradiction.

Because of (2.13) the right side in (2.11) is greater than

γϕ(2K − ε(δ)− Cδ) ≥ γϕ(2K − ε0).

Here we let δ < 1/C, so that ε(δ) + Cδ < ε0. From now on we will fix
such δ and denote it by δ0. We can choose δ0 to be dependent on the same
parameters as C.

If ∣∣∣∣∑ ∂A

∂ζj
(x, ξ)∂jψ(x)

∣∣∣∣ ≥ δ0,
then using (2.10) with δ = δ0 we conclude that the right side in (2.11) is
greater than

−Cγϕ+ 8γϕγδ20 ≥ γϕ2K

when γ > 8−1δ−2
0 (C + 2K).

Finally, the condition (2.10) with δ = δ0 implies (2.7).
To conclude the proof we observe that due to (2.8) in addition to (2.10)

only the following cases 3 and 4 are possible.

Case 3: σ > δ0 and |γ<A(x, ζ(ϕ)(x))| < δ0. Using (2.5) as above we
obtain

τ−1G(x, τ, ξ, ξ) ≥ −Cγϕ(x) + G4(x, τ, ξ, ξ)
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(by dropping the first (positive) term in G4, using that ∇ψ is noncharac-
teristic and bounding the last term in G4 from (2.8) and δ0-smallness of
|γ<A|)

≥ −Cγϕ(x) + 8C−1γ2ϕδ20 ≥ 2γϕ(x)K

when we choose γ > C2.

Case 4: |γA(x, ζ(ϕ)(x)| > δ0. From (2.5) we similarly have

τ−1G(x, τ, ξ, ξ) + γϕ(x)C1|γA(x, ζ(ϕ)(x))|2

≥ − Cγϕ(x)− Cγ2ϕ|A(x, ζ(ϕ)(x))|+ γϕC1|γA(x, ζ(ϕ)(x))|2

≥ − Cγϕ(x)− Cγϕ(x)|γA(x, ζ(ϕ)(x))|+ γϕC1|γA(x, ζ(ϕ)(x))|2

≥ − Cγϕ(x) + Cγϕ(x)|γA(x, ζ(ϕ)(x))|
(
C1

2C
|γA(x, ζ(ϕ)(x))| − 1

)
+ γϕ(x)

C1

2
|γA(x, ζ(ϕ)(x))|2

≥ − Cγϕ(x) + Cγϕ(x)|γA(x, ζ(ϕ)(x))|
(
C1δ0
2C
− 1
)

+ γϕ(x)
C1

2
δ20

≥ Kγϕ(x)

when C1 > 2C/δ0 + (C + 2K)/2δ20 .
The proof is complete.

We fix x0 ∈ Ω, introduce the norm

(2.14) |||v|||−1 =
( � |v̂(ξ)|2

|ξ|2 + τ2γ2ϕ2(x0)|∇ψ(x0)|2
dξ

)1/2

and observe that

(2.15) |||v|||−1 ≤ Cτ−1‖v‖2.
Lemma 2.3. There are a function ε(δ; γ) convergent to 0 as δ → 0 for

fixed γ and a constant C(γ) such that

τ−1|(G(x0, τ,D,D)− G( , τ,D,D))vv| ≤ ε(δ; γ)
∑
|α|≤1

τ2−2|α||∂αv|2,

|||A(x0, D + iτ∇ϕ(x0))v −A( , D + iτ∇ϕ)v|||2−1

≤ (ε(δ; γ) + C(γ)τ−1)
∑
|α|≤1

(γτϕ(x0))2−2|α|
�
|∂αv|2

for all v ∈ C2
0 (B(x0; δ)).

The proof of this lemma is quite similar to the proof of Lemma 4.1 in
[3]. It is given in detail in the forthcoming paper [9].

Now we continue the proof of Theorem 1.1.
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By using Parseval’s identity,

(τ2|∇ϕ(x0)|2)m−|α|
�
|∂αv|2 dx ≤ (2π)−n

�
|ζ|2m(ϕ)(x0)|v̂(ξ)|2 dξ.

Hence multiplying the inequality (2.7) by |v̂(ξ)|2 where v ∈ C2
0 (Ωε), and

integrating over Rn yields

(2.16) C−1γϕ(x0)
∑
|α|≤1

�
(γτϕ(x0))2−2|α||∂αv|2

≤ τ−1
�
G(x0, τ,D,D)vv + γϕ(x0)γ2

� |A(x0, ζ(ϕ)(x0))|2

|ζ(ϕ)(x0)|2
|v̂(ξ)|2 dξ

≤ τ−1
�
G(x0, τ,D,D)vv + γϕ(x0)γ2|||A(x0, D + iτ∇ϕ(x0))v|||2−1

≤ τ−1
�
G(x, τ,D,D)vv + ε(δ; γ)

∑
|α|≤1

τ2−2|α|
�
|∂αv|2

+ γϕ(x0)γ2|||A( , D + iτ∇ϕ)v|||2−1

+ (ε(δ; γ) + C(γ)τ−2)
∑
|α|≤1

τ2−2|α|
�
|∂αv|2

for v ∈ C2
0 (Ωε∩B(x0, δ)). Here we have used Lemma 2.3 and the elementary

inequality a2 ≤ 2b2 + 2(b− a)2. Choosing δ > 0 small and τ large enough so
that

(2C)−1γϕ(x0)(γτϕ(x0))2−2|α| > (ε(δ; γ) + C(γ)τ−2)τ2−2|α|

we absorb the second and fourth term on the right side of the inequality
(2.16) to arrive at the inequality∑

|α|≤1

�
(γτϕ(x0))3−2|α||∂αv|2

≤ C
�
G( , τ,D,D)vv + τγϕ(x0)γ2|||A( , D + iτ∇ϕ)v|||2−1.

As above by choosing large τ > C(γ) one can replace ϕ(x0) on the left side
of this inequality by ϕ. Using (2.1), (2.2) and the property (2.15) of the
norm ||| |||−1 we conclude that∑

|α|≤1

�
(γτϕ)3−2|α||∂αv|2

≤ C‖A( , D + iτ∇ϕ)v‖22 + C(γ)τ−1‖A( , D + iτ∇ϕ)v‖22
for v ∈ C2

0 (B(x0, δ)). Choosing τ > C(γ) we eliminate the second term on
the right side. Now the bound (2.6) follows by a partition of unity argument.

The proof is complete.
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3. Proof of Carleman estimates for the elasticity system

Lemma 3.1. Let |∇ψ| > δ0 > 0 on Ω. Then for a second order elliptic
operator A there are constants C, C0(γ) such that

γ
�

Ω

σ4−2|α|e2τϕ|∂αv|2 ≤ C
�

Ω

σe2τϕ|Av|2

for all v ∈ C2
0 (Ω), |α| ≤ 2, γ > C and τ > C0(γ).

Proof. Apply the Carleman estimate in [3]:∑
|α|≤2

√
γ‖σ3/2−|α|eτϕ∂αu‖ ≤ C ‖eτϕA(x,D)u‖

to u = σ1/2v.

Proof of Theorem 1.2. By using the standard substitution (u, v = div u,
w = curl u) the system ARu = f (with ARu given by (1.6)) can be reduced
[11, Proposition 2.1] to a new system where the leading part is a special
lower triangular matrix differential operator with the wave operators on the
diagonal:

(3.1)

2(µ;R)u =
f
%

+A1;1(u, v),

2(λ+ 2µ;R)v = div
f
%

+
∑
jk

∇
(
rjk
%

)
· ∂j∂ku+A2;1(u, v,w),

2(µ;R)w = curl
f
%

+
∑
jk

∇
(
rjk
%

)
× ∂j∂ku +A3;1(u, v,w),

where Aj;1 are first order differential operators.
Applying Theorem 1.1 to each of the seven scalar differential operators

forming the extended system (3.1) and summing up the resulting seven
Carleman estimates, we get

�

Ω

(σ|∇x,tu|2 + σ|∇x,tv|2 + σ|∇x,tw|2 + σ3|u|2 + σ3|v|2 + σ3|w|2)e2τϕ

≤ C
�

Ω

(|ARu|2 + |∇(ARu)|2)e2τϕ + C
�

Ω

3∑
j,k=1

|∂j∂ku|2e2τϕ

+ C
�

Ω

(|∇u|2 + |∇u|2 + |∇w|2 + |u|2 + v2 + |w|2)e2τϕ.

By choosing τ > 2C the third integral on the right side can be absorbed by
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the left side. So we arrive at the inequality

(3.2)
�

Ω

Q(σ|∇x,tu|2 + σ|∇x,tv|2

+ σ|∇x,tw|2 + σ3|u|2 + σ3|v|2 + σ3|w|2)e2τϕ

≤ C
�

Ω

(|ARu|2 + |∇(ARu)|2)e2τϕ + C
�

Ω

3∑
j,k=1

|∂j∂ku|2e2τϕ.

To eliminate the second order derivatives on the right side we need the
second large parameter γ. By Lemma 3.1,

γ
�

Ω

3∑
j,k=1

|∂j∂ku|2e2τϕ ≤ C
�

Ω

σ|∆u|2e2τϕ ≤ C
�

Ω

σ(|∇v|2 + |∇w|2)e2τϕ

≤ C
�

Ω

(|f |2 + |∇f |2)e2τϕ + C
�

Ω

|∂j∂ku|2e2τϕ,

where we have used the known identity ∆u = ∇v−curl w and (3.2). Choos-
ing γ > 2C we can see that the second order term on the right side is
absorbed by the left side. This yields

γ
�

Ω

3∑
j,k=1

|∂j∂ku|2e2τϕ ≤ C
�

Ω

(|f |2 + |∇f |2)e2τϕ.

So using again (3.2) we complete the proof of (1.7).

4. Hölder stability for the residual stress. In this section we prove
Theorem 1.5. Let u( ; 1) and u( ; 2) satisfy (1.12) corresponding to R( ; 1)
and R( ; 2), respectively. Set u = u( ; 2)−u( ; 1) and F = R( ; 2)−R( ; 1) =
(fjk), j, k = 1, . . . , 3. By subtracting equations (1.12) for u( ; 1) from the
equations for u( ; 2) we obtain

(4.1)

AR( ;2)u = A( ; u( ; 1))F on Ω, where

A( ; u( ; 1))F =
3∑

j,k=1

fjk∂j∂ku( ; 1)

and

(4.2) u = ∂tu = 0 on G× {0}.

Differentiating (4.1) in t and using time-independence of the coefficients of
the system, we get

(4.3) AR( ;2)U = A( ; U( ; 1))F on Ω,

where
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U =

∂
2
t u

∂3
t u

∂4
t u

 and U( ; 1) =

∂
2
t u( ; 1)
∂3
t u( ; 1)
∂4
t u( ; 1)

 .

Since Γ is noncharacteristic with respect to AR we can uniquely solve
the equation AR( ;2)U = 0 on Γ for ∂2

νU in terms of U, ∂νU and their
second and first tangential derivatives on Γ . Moreover,

(4.4) ‖∂2
νU‖(1/2)(Γ ) ≤ C(‖U‖(5/2)(Γ ) + ‖∂νU‖(3/2)(Γ )) ≤ CFc

due to definitions of U in (4.3) and of Fc in (1.13).
By extension theorems for Sobolev spaces there exists U∗ ∈ H3(Ω) such

that

(4.5) U∗ = U, ∂νU∗ = ∂νU, ∂2
νU
∗ = ∂2

νU on Γ,

and

‖U∗‖(3)(Ω) ≤ C(‖U‖(5/2)(Γ ) + ‖∂νU‖(3/2)(Γ ) + ‖∂2
νU‖(1/2)(Γ ))(4.6)

≤ CFc
due to (4.4).

We now introduce V = U−U∗. Then

(4.7) AR( ;2)V = A( ; u( ; 1))F−AR( ;2)U
∗ on Ω

and

(4.8) V = ∂ν(V) = ∂2
ν(V) = 0 on Γ.

To use the Carleman estimate (1.7) we need zero Cauchy data on ∂Ω(0).
To create such data we introduce a cut-off function χ ∈ C2(R4) such that
0 ≤ χ ≤ 1, χ = 1 on Ω(δ/2) and χ = 0 on Ω \Ω(0). By the Leibniz formula,

AR( ;2)(χV) = χAR( ;2)(V) + A1V = χAF− χAR( ;2)U
∗ + A1V

and hence

∇xAR( ;2)(χV) = ∇x(χAF)−∇x(χAR( ;2)U
∗) + A2V

due to (4.7). Here (and below) Aj denotes a jth order matrix differential
operator with coefficients uniformly bounded by C(δ). By the choice of χ,
AjV = 0 on Ω(δ/2). Because of (4.8), χV ∈ H3

0 (Ω), so we can apply to it
the Carleman estimate (1.7) with fixed γ to get

(4.9)
�

Ω

τ(|χV|2 + |∇x(χV)|2)e2τϕ

≤ C(δ)
�

Ω

(|F|2 + |∇xF|2 + |AR( ;2)(U
∗)|2
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+ |∇x(AR( ;2)(U
∗))|2)e2τϕ + C

�

Ω\Ω(δ/2)

(|A1V|2 + |A2V|2)e2τϕ

≤ C
( �

Ω

(|F|2 + |∇xF|2)e2τϕ + F 2
c e

2τΦ + C(δ)e2τδ1
)

where Φ = supΩ ϕ and δ1 = eγδ/2. To get the last inequality we have used
the bounds (4.6) and (1.15).

On the other hand, from (1.12), (4.1), (4.2) we have

%∂2
t u =

∑
fjk∂j∂ku( ; 1), %∂3

t u =
∑

fjk∂t∂j∂ku( ; 1)

on G×{0}. From now on we will consider the symmetric matrix-valued func-
tion F as a vector-valued function with components (f11,f12,f13,f22,f23,f33).
So using the definitions of M we obtain %(∂2

t u, ∂
3
t u) = MF on G×{0}, and

from the condition (1.14) we have
F = M−1(%(∂2

t u, ∂
3
t u)), ∇xF = ∇x(M−1(%(∂2

t u, ∂
3
t u)))

on G× {0}. Hence, by using (1.15),

(4.10) |F|2 + |∇xF|2 ≤ C
∑

|α|≤1, β=2,3

|∂βt ∂αxu( , 0)|2.

Since χ( , T ) = 0,
�

G

|χ∂βt ∂αxu(x, 0)|2e2τϕ(x,0) dx = −
T�

0

∂t

( �

G

|χ∂βt ∂αxu(x, t)|2e2τϕ(x,t) dx

)
dt

≤
�

Ω

2χ2(|∂β+1
t ∂αxu| |∂

β
t ∂

α
xu|+ τ |∂tϕ| |∂βt ∂αxu|2)e2τϕ

+ 2
�

Ω\Ω(δ/2)

|∂βt ∂αxu|2χ|∂tχ|e2τϕ

where β = 2, 3, |α| ≤ 1. The right side does not exceed

C
( �

Ω

τ |χ∂αxU|2e2τϕ + C(δ)
�

Ω\Ω(δ/2)

|∂αxU|2e2τϕ
)

≤ C
( �

Ω

τ |χ∂αxV|2e2τϕ + C(δ)
�

Ω\Ω(δ/2)

|∂αxU|2e2τϕ + τ
�

Ω

|∂αxU∗|2e2τϕ
)

because U = V + U∗.
Since χ = 1 on G(δ/2), ϕ < δ1 on Ω \ Ω(δ/2) and on G \ G(δ/2), and

ϕ < Φ on Ω, from these inequalities, (4.9), (4.6), and (1.15) we obtain

(4.11)
�

G

|∂βt ∂αxu|2( , 0)e2τϕ( ,0)

≤ C
( �

Ω

(|F|2 + |∇xF|2)e2τϕ + C(δ)e2τδ1 + τe2τΦF 2
c

)
.



464 V. Isakov and N. Kim

First we get this bound with G(δ/2) instead of G on the left side and then
add to both sides of the inequality the integral over G \ G(δ/2) which is
bounded by C(δ)e2τδ1 due to the bound (1.15) and the inequality ϕ < δ1 on
G \G(δ/2). From (4.10) and (4.11) we obtain

(4.12)
�

G

(|F|2 + |∇xF|2)e2τϕ( ,0)

≤ C
( �

Ω

(|F|2 + |∇xF|2)e2τϕ + τe2τΦF 2
c + C(δ)e2τδ1

)
.

To eliminate the integral on the right side of (4.12) we observe that

(4.13)
�

Ω

(|F|2(x) + |∇xF|2(x))e2τϕ(x,t) dx dt

=
�

G

(|F|2(x) + |∇xF|2(x))e2τϕ(x,0)
( T�

−T
e2τ(ϕ(x,t)−ϕ(x,0)) dt

)
dx.

Due to our choice of ϕ we have ϕ(x, t) − ϕ(x, 0) < 0 when t 6= 0. Hence
by the Lebesgue theorem the inner integral (with respect to t) converges
to 0 as τ goes to infinity. By continuity of ϕ, this convergence is uniform
with respect to x ∈ G. For τ > C we the integral over Ω(δ/2) on the
right side of (4.12) can be absorbed by the left side, leading to the inequal-
ity �

Ω(δ)

|F|2e2τϕ( ,0) ≤ C(e2τΦF 2
c + C(δ)e2τδ1).

Letting δ2 = eγδ ≤ ϕ on Ω(δ) and dividing by e2τδ2 yields
�

Ω(δ)

|F|2 ≤ C(τe2τ(Φ−δ2)F 2
c + e−2τ(δ2−δ1))(4.14)

≤ C(δ)(e2τΦF 2
c + e−2τ(δ2−δ1))

since τe−2τδ2 < C(δ). To prove (1.16) it suffices to assume that Fc < 1/C.
Then τ = − logFc/(Φ+ δ2 − δ1) > C and we can use this τ in (4.14). Due
to the choice of τ ,

e−2τ(δ2−δ1) = e2τΦF 2
c = F 2(δ2−δ1)/(Φ+δ2−δ1)

c

and from (4.14) we obtain (1.16) with κ = (δ2 − δ1)/(Φ+ δ2 − δ1).
The proof of Theorem 1.5 is now complete.
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