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THE BALAYAGE METHOD: BOUNDARY CONTROL OF A
THERMO-ELASTIC PLATE

Abstract. We discuss the null boundary controllability of a linear thermo-
elastic plate. The method employs a smoothing property of the system of
PDEs which allows the boundary controls to be calculated directly by solving
two Cauchy problems.

1. Introduction. In this paper we apply a method of boundary con-
trollability to the system

wtt = −∆2w − α∆θ, θt = β∆θ + α∆wt − γθ in Ω × (0, T ],(1.1)
w(x, 0) = w0(x), wt(x, 0) = w1(x), θ(x, 0) = θ0, x ∈ Ω,(1.2)
Bi(w, θ) = gi, i = 1, 2, 3, on ∂Ω × (0, T ],(1.3)

where Ω ⊂ R2 is a bounded domain, α > 0, β > 0, γ ≥ 0 and T > 0 are
constants, Bi are appropriate boundary operators and gi boundary control
functions, i = 1, 2, 3. These equations model the motion of a thermo-elastic
plate, w and θ being respectively the transverse deflection and temperature
of the plate. We are interested in the null boundary controllability of the
system. Thus we seek control functions gi such that w(x, T ) = wt(x, T ) =
θ(x, T ) = 0 for x ∈ Ω.

Equations (1.1) represent a simple model for a thermo-elastic plate. More
elaborate models are given by similar equations which also have nonlinear
terms and a small rotational inertia term. This particular model interests us
because (1.1) has smoothing properties. In fact Liu and Renardy [21] and
Lasiecka and Triggiani [12], [13], [14], [16] have shown that solutions of (1.1),
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with various boundary conditions, are generated by analytic semigroups.
Such results can also be obtained from an abstract result of Lasiecka and
Triggiani [17, Theorem 3D, p. 311].

Our “balayage method” of boundary control makes use of a smoothing
property of (1.1). We generate the boundary controls by solving two Cauchy
problems. The first Cauchy problem involves finding a solution to (1.1) in
all of R2. We shall see that such solutions are real analytic functions of x
and t if t > 0. An intermediate step in our method involves solving a nonho-
mogeneous version of (1.1). We think of the nonhomogeneous terms in the
equation as being “garbage terms” which must be “swept out”, a concept
described by the French word “balayage”. This is achieved by solving the sec-
ond, non-standard Cauchy problem for which a space variable plays the role
of a time variable. We use a modification of the classical Cauchy–Kowalevski
theorem due to Ovsyannikov to solve this Cauchy problem. An essential in-
gredient is the smoothness of the solution of the first Cauchy problem.

As an example of the kind of controllability result that may be obtained
by use of this method, we state the following theorem, which we prove in
Section 4.

Theorem 1.1. Assume that the controls (1.3) take the form

w = g1, ∆w = g2, θ = g3 on ∂Ω × (0, T ].

Then, given w0 ∈ H2(Ω), w1, θ0 ∈ L2(Ω), we can find boundary control
functions gi such that w(x, T ) = wt(x, T ) = θ(x, T ) = 0 for x ∈ Ω. Further ,
for all ε > 0,

g1 ∈ C1([0, T ];H3/2−ε(∂Ω)), g2, g3 ∈ C([0, T ];H3/2−ε(∂Ω)).

The proof of Theorem 1.1 involves taking a trace on the boundary of
Ω and for this some regularity must be assumed for Ω. It is sufficient that
∂Ω be C2. It is also sufficient that Ω be the C2 diffeomorphic image of a
polyhedron P , the diffeomorphism being defined in an open set containing P .
In the latter case the stated regularity of the gi holds for the deformed faces
of the polyhedron.

The usual approaches to control of thermo-elastic plate equations make
use of Carleman estimates or eigenfunction expansions. For recent work on
this and related parabolic equations we refer to the papers of Lasiecka and
Triggiani on exact null controllability [15]; Avalos and Lasiecka on a range
of topics including boundary controllability [3], boundary reachability with
variable thermal coupling [4], null controllability [5], rates of blow-up for
the minimal energy function [6]; Avalos on the null controllability of von
Kármán thermo-elastic plates [1]; Avalos and Cokeley on boundary and
localized null controllability of structurally damped systems [2]; Cokeley
on control blow-up rates [7], and Triggiani on optimal estimates of norms



The balayage method 469

of fast controls [25]. As an example of the eigenfunction approach, which
may be used for special domains, we mention the work of Lasiecka and
Seidman [11]. For earlier work on thermo-elastic plates, we cite Lagnese’s
work on the reachability problem [10].

A rewarding feature of the balayage method is that it involves a di-
rect calculation of the control functions. The method is a modification of
ideas introduced by Littman [18]. An early form of the method was used
by Littman and Markus [19] on a hybrid elastic system. A later version of
the method which incorporated the Ovsyannikov theorem, a generalization
of the Cauchy–Kowalevski theorem, was used by Guo and Littman [8] for
the boundary controllability of a semilinear heat equation in one space di-
mension. More recently we modified the Ovsyannikov approach to consider
boundary controllability of heat and Schrödinger equations in higher space
dimensions [20] and we use this approach in the present paper.

Our method follows the following steps.

Step 1. Extend the initial data to have compact support in R2 and find
a solution of (1.1) for (x, t) ∈ R2 × (0,∞). Assume for the time being that
the solution functions w and θ are infinitely differentiable with respect to
the t variable; in fact the time derivatives must satisfy Gevrey estimates.
Gevrey class functions lie between the set of C∞ functions and the set of
analytic functions; we give more details on Gevrey spaces later, but see also
page 146 of [9].

Step 2. Let ψ(t), belonging to a certain Gevrey class, satisfy

ψ(t) =
{

1, t ≤ T/2,
0, t ≥ T .

Such functions can be constructed explicitly. Set

f1 = (wψ)tt +∆2(wψ) + α∆(θψ) = 2wtψt + wψtt,

f2 = (θψ)t − β∆(θψ)− α∆(wψ)t + γθψ = (θ − α∆w)ψt
and note that f1(x, t) and f2(x, t) vanish for t outside [T/2, T ].

Step 3. Find a solution W,Θ to the problem

Wtt = −∆2W − α∆Θ + f1, Θt = β∆Θ + α∆Wt − γΘ + f2

for x in a bounded domain Ω2 that contains Ω such that W (x, t) and Θ(x, t)
vanish for t outside [T/2, T ].

Step 4. Let w̃(x, t)=ψ(t)w(x, t)−W (x, t), θ̃(x, t)=ψ(t)θ(x, t)−Θ(x, t).
Then w̃ and θ̃ satisfy equations (1.1) and (1.2) and vanish for t ≥ T . Thus
the control functions may be obtained from the boundary conditions (1.3):

gi = Bi(w̃, θ̃), i = 1, 2, 3,
on ∂Ω × (0, T ].
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There are many different ways to extend the initial data in Step 1. For the
particular problem we consider here, equations (1.1)–(1.3), we desire finite
energy solutions. The physical energy associated with the thermo-elastic
plate is

E(t) =
1
2

�

Ω

(w2
t + (∆w)2 + θ2) dx

so we assume that w0 ∈ H2(Ω) and w1, θ0 ∈ L2(Ω). We assume that Ω is
smooth enough for the existence of an extension operator E0 : H2(Ω) →
H2(R2). Such operators exist for C1,1 domains. Furthermore, we may as-
sume that the support of E0w0 is contained in some ball B containing Ω
(multiplying by a cut-off function equal to one on Ω would achieve this).
The extension of w1, θ0 ∈ L2(Ω) is simpler; we define the extensions to be
equal to zero at points outside Ω.

Much of this paper deals with Step 3 which involves using the Ovsyan-
nikov theorem to find W and Θ.

2. Smoothing properties of the thermo-elastic plate. In this sec-
tion we establish the smoothing results that we need to make use of the
Ovsyannikov theorem. We give two results, the first obtained by keeping
t > 0 and analytically continuing the solution with respect to the spatial
variables into C2 and the second by keeping the spatial variables real and
analytically continuing with respect to t. The latter result corresponds to
the fact that solutions are generated by an analytic semigroup.

We prefer to work with an equivalent system obtained by setting u1 = wt,
u2 = w, u3 = θ so that our PDE system takes the form

ut =

 0 −∆2 −α∆
1 0 0
α∆ 0 −γ + β∆

u = Au, u(x, 0) = u0(x).(2.1)

The Fourier representation of the solution is

(2.2) u(x, t) =
1

2π

�

R2

eR(ξ)tû0(ξ)eix·ξ dξ,

where

R(ξ) =

 0 −(ξ21 + ξ22)2 α(ξ21 + ξ22)
1 0 0

−α(ξ21 + ξ22) 0 −γ − β(ξ21 + ξ22)

 .
It is convenient to write R(ξ) = S(ξ)−1(L(ξ21 + ξ22) + M)S(ξ) where
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L =

0 −1 −α
1 0 0
α 0 β

 , M =

0 0 0
0 0 0
0 0 γ

 , S(ξ) =

1 0 0
0 −(ξ21 + ξ22) 0
0 0 1

 .
Thus we may rewrite the Fourier representation (2.2) as

(2.3) u(x, t) =
1

2π

�

R2

S(ξ)−1e−(L(ξ21+ξ22)+M)tS(ξ)û0(ξ)eix·ξ dξ.

The convergence properties of this integral depend on the eigenvalues of L,
which has characteristic equation

λ3 − βλ2 + (α2 + 1)λ− β = 0.

The same characteristic equation appeared in the work of Liu and Renardy
[21], who showed that all of the eigenvalues have positive real parts when
α and β are positive. The simple proof of this follows from the observation
that there are no roots of the characteristic equation on the imaginary axis
and therefore the signs of the real parts of the eigenvalues do not change
as α and β vary. It is easy to check that the eigenvalues have positive real
parts when β is small; hence this is the case for all positive α and β.

Choosing Λ so that each eigenvalue λ satisfies Reλ > Λ > 0, one easily
verifies that there is some constant C such that

(2.4) ‖e−(L(ξ21+ξ22)+M)t‖ < Ce−Λ(ξ21+ξ22)t, t > 0.

Now, R(ξ) = S(ξ)−1(L(ξ21 + ξ22) + M)S(ξ) is clearly bounded for small |ξ|.
Consequently, exp(R(ξ)t) satisfies an inequality similar to (2.4),

‖exp(R(ξ)t)‖ = ‖S(ξ)−1e−(L(ξ21+ξ22)+M)tS(ξ)‖ < C̃e−Λ(ξ21+ξ22)t, t > 0.

Hence the Fourier representation (2.2) displays u as an entire function of x
for t > 0 (one way to see this is to verify that the power series of (2.2) about
x = 0 converges for all x ∈ C2). Thus, for any compact S ⊂ C2 × (0,∞),
and any R > 0 there is a constant C (related to the previous C but not the
same one) such that

(2.5) |Dµu(x, t)| ≤ C‖u0‖L2

|µ|!
R|µ|

, (x, t) ∈ S,

for all µ. Further, we may use the PDE (2.1), which relates time derivatives
to spatial derivatives, and the previous inequality to conclude that:

Lemma 2.1. For any compact S ⊂ C2 × (0,∞) and any φ > 0 there is
a constant C such that

(2.6) |Dµ∂nt u(x, t)| ≤ C‖u0‖L2(|µ|+ 2n)!φ|µ|+2n, (x, t) ∈ S,

for all µ and n.
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Remark 2.2. One may consider the operator A of equation (2.1) to be
an unbounded operator on the finite energy space HE = L2(R2)×H2(R2)×
L2(R2) with domain H2(R2)×H4(R2)×H2(R2). It is easy to check that A
generates a strongly continuous semigroup S(t) on HE .

For the previous result we kept t real and considered u(x, t) for x ∈ C2. If
instead we keep x ∈ R2 and allow complex t we obtain a different smoothing
result. Pick 0 < ψ < π/2 such that each eigenvalue λ of L satisfies

|arg λ| < ψ.

This together with the boundedness of R(ξ) for small ξ shows that there is
some constant C such that

‖e−(L(ξ21+ξ22)+M)t‖ < C, |arg t| ≤ π/2− ψ,

‖S(ξ)−1e−(L(ξ21+ξ22)+M)tS(ξ)‖ < C, |arg t| ≤ π/2− ψ.
This implies ‖u(·, t)‖L2 ≤ C‖u0‖L2 for |arg t| ≤ π/2 − ψ. Further, we may
write  u1(x, t)

∆u2(x, t)
u3(x, t)

 =
1

2π

�

R2

e−(L(ξ21+ξ22)+M)t

 û10(ξ)
(ξ21 + ξ22)û20(ξ)

û30(ξ)

 eix·ξ dξ,
where u10, u20 and u30 are the components of u0. So in fact we have
‖u(·, t)‖E ≤ C‖u0‖E for |arg t| ≤ π/2 − ψ, where ‖ ‖E denotes the usual
norm for the finite energy space L2 ×H2 × L2. Hence:

Lemma 2.3. The semigroup S(t) of Remark 2.2 is analytic in the sector
|arg t| ≤ π/2− ψ.

Remark 2.4. Solutions of (1.1) with various boundary conditions have
been shown to be generated by analytic semigroups [21], [12], [13], [14], [16].
These results are for bounded spatial domains so they are not applicable to
our system. However, Lemma 2.3 also follows easily from an abstract result
of Lasiecka and Triggiani [17, Theorem 3D, p. 311]. If it were not for the
fact that we had already used the Fourier representation of the solution to
prove Lemma 2.1 then the simplest route to Lemma 2.3 would have been
via [17].

3. The solution of Step 3. We must solve

(3.1) Wtt = −∆2W − α∆Θ + f1, Θt = β∆Θ + α∆Wt − γΘ + f2

where f1 = 2wtψt + wψtt and f2 = (θ − α∆w)ψt vanish for t ≤ T/2 and
for t ≥ T . We shall see that we can solve this system as a Cauchy problem
with x2 as the time variable provided that f1 and f2 are smooth enough.
Lemma 2.1 shows that w and θ are Gevrey-2 functions of t (and real analytic
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in x) for t > 0. We would also like f1 and f2 to have such properties. This
will be the case if the cut-off function ψ is chosen to belong to a “smoother”
Gevrey class, such as Gevrey class 3/2. More precisely, we choose ψ to satisfy
|ψ(n)(t)| ≤ Γ (3n/2)cRn for all n, where Γ denotes the Gamma function and
R and c are constants that do not depend on n.

Definition 3.1. We introduce a compact interval K such that the pro-
jection of Ω onto the x1 axis is contained in the interior of K. We will seek a
solution of (3.1) in the set K × I ×{t > 0}, where I = [0, η] and η is chosen
large enough so that Interior(K × I) ⊃ Ω (see Figure 1). We require that
this solution vanish outside of [T/2, T ], and assume that Ω ⊂ {x2 > 0}.

Ω

x1

x2 = σ

η

K

Fig. 1. The set K and constant η of Definition 3.1

3.1. Solution of equation (3.1). We use Ovsyannikov’s theorem to solve
(3.1). We start by setting

u =


Wt,

∆W,

Θ,

W

 , v =
∂u

∂x2
, ∂1 =

∂

∂x1
, ∂t =

∂

∂t
, σ = x2, y =

[
u

v

]
,

and write (3.1) as the system

(3.2)
dy

dσ
= A(σ)y + F (σ),

where all eight components of F are zero except for F6 = f1 + αf2/β and
F7 = −f2/β. The matrix entries of A are

A =
[

0 I

K + J∂t − I∂2
1 0

]
,(3.3)
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where

J =


0 1 0 0
−1 α2/β −α/β 0
0 −α/β 1/β 0
0 0 0 0

 , K =


0 0 0 0
0 0 −αγ/β 0
0 0 γ/β 0
0 1 0 0

(3.4)

and I is the 4 by 4 identity matrix. We solve (3.2) subject to the initial
condition y(0) = 0 and prove the existence of solutions using the fact that
f1 and f2 are analytic functions of x and Gevrey class 2 functions of t.

We use the following version of the Ovsyannikov theorem.

Theorem 3.2. Let (Es, | |s), s ∈ [0, 1], be a scale of Banach spaces such
that the following assumptions hold :

(1) If s′ ≤ s then Es ⊂ Es′ and the natural injection has norm no greater
than one.

(2) For s′ < s and each σ ∈ [0, η], let A(σ) be a bounded linear mapping
from Es into Es′ with operator norm no greater than M(s−s′)−1+P ,
where M > 0 and P ≥ 0 are constants independent of σ, s and s′.
Also, A(σ) is a continuous function of σ in the uniform operator
topology.

(3) y0 ∈ E1 and F ∈ C([0, η];E1).

Then the problem
dy

dσ
= A(σ)y + F (σ), y(0) = y0,

has a unique solution belonging to C1([0, δ0(1 − s)];Es) for each s ∈ [0, 1],
where δ0 = min(η, (Me)−1).

Remark 3.3. This theorem differs slightly from the classical Ovsyan-
nikov theorem found in Trèves [24]. In the stated form of the theorem the
constant M , which determines the length of the interval in which the solu-
tion exists, does not depend on the constant γ of (1.1).

We omit the proof of the theorem, which is given in [23] and is not
difficult to obtain by modifying the proof of the classical theorem given
in [24].

In the remainder of this section, we define the spaces Es and verify
that our problem (3.2), (3.3) satisfies conditions (3.2) and (3.2) of Theo-
rem 3.2. Verification of condition (3.2) will follow from the smoothing prop-
erty, Lemma 2.1.

Definition 3.4. Let K be a compact interval and let T > 0, φ0 > 0,
and 0 < % < 1. For s ∈ [0, 1] and p ≥ 0, we define Bs,p to be the set of all
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f ∈ C∞(K × R) such that f(x, t) = 0 for t outside [T/2, T ] and

|f |s,p ≡ |f |Ks,p = sup
n,µ

max
x,t

∣∣∣∣ ∂n+µf

∂tn∂xµ

∣∣∣∣
(φ0%s)2(n+p)+µ+p(2n+ µ)!(2n+ µ+ 1)2p

<∞,

where the supremum is taken over all integers n, µ ≥ 0.

Remark 3.5. The set K appearing in Definition 3.4 is identical to the
set introduced in Definition 3.1, and the interval [0, η] of condition (3) of
Theorem 3.2 is identical to the interval appearing in Definition 3.1.

Remark 3.6. Members of Bs,p are functions of x1 and t and the solution
y of (3.2) is a function of x2 = σ with components taking values in certain
Bs,p spaces. Functions belonging to Bs,p satisfy Gevrey-2 bounds for their
time derivatives and analyticity bounds for their space derivatives.

It is easily seen that | |s,p is a norm on Bs,p which makes Bs,p a Banach
space. For fixed p and with s ranging over [0, 1] the spaces Bs,p form a scale
of Banach spaces in the sense that if s′ ≤ s then Bs,p ⊂ Bs′,p and the natural
injection has norm no greater than one.

Definition 3.7. For s ∈ [0, 1] we define Es = (Bs,0)4 × (Bs,1/2)4.

We need to consider the norm of A as a mapping from Es to Es′ with
s′ < s. The expression for A given in (3.3) shows that this is the sum of the
norms of two other maps:

• the natural injection from (Bs,1/2)4 into (Bs′,0)4,
• K + J∂t − I∂2

1 from (Bs,0)4 into (Bs′,1/2)4.

Luckily we have already considered similar mappings in [20]. With the con-
stant θ0 of Part 1 of Lemma 2.8 in [20] given by θ0 = φ2

0, the lemma shows
that the natural injection from Bs,1/2 into Bs′,0 has norm no greater than

φ
3/2
0

(s− s′)e log(1/%)
.

Also, by Part 2 of [20, Lemma 2.8], ∂2
1 and ∂t, regarded as mappings from

Bs,0 into Bs′,1/2, have norms no greater than

φ
1/2
0

(s− s′)e log(1/%)
.

It is easy to check that the norm of K, regarded as a mapping from
Bs,0 into Bs′,1/2, has a norm which is a bounded function of s and s′. This
mapping contributes only to the constant P of the Ovsyannikov theorem.
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The constant M of that theorem thus satisfies

(3.5) M ≤ C(α, β)
φ

3/2
0 + φ

1/2
0

log(1/%)
,

where C(α, β) denotes a constant that depends on the constants α and β of
the thermo-elastic PDEs.

The interval of existence of the Ovsyannikov solution is the whole interval
[0, η] provided that Me < 1/η. Fix any % ∈ (0, 1). It follows that the interval
of existence is all of [0, η] if φ0 is chosen so small that

eC(α, β)
φ

3/2
0 + φ

1/2
0

log(1/%)
< 1/η.

Finally, we must check that our function F , defined by (3.2), satisfies
condition (3) of Theorem 3.2, i.e. F ∈ C([0, η];E1). But, by Definition 3.7,
this is equivalent to the functions σ 7→ f1(·, σ, ·) and σ 7→ f2(·, σ, ·) of equa-
tion (3.3) belonging to C([0, η]; (B1,1/2)4). Recall that f1 = 2wtψt + wψtt
and f2 = (θ − α∆w)ψt, where ψ is a Gevrey class 3/2 function and w, θ is
the solution of the Cauchy problem of Section 1. This allows us to make use
of Lemma 2.1. In fact, if we choose the constant φ of Lemma 2.1 to satisfy
φ < %φ0 then it is easy to see that F has the desired regularity.

4. Massaging the method. Now that the construction of the solution
to Step 3 in the introduction is done, one could construct the boundary
control functions as in Step 4. The boundary control functions are found
by taking the trace of a function which is C∞ for t > 0. Hence the control
function is as smooth as the boundary operators Bi and boundary ∂Ω allow,
for t > 0. However, this smoothness is not valid at t = 0. In this section we
see how to “massage the method” in order to improve the smoothness at
t = 0.

Definition 4.1. For t ≥ 0, let Φ(t) : L2(Ω)×H2(Ω)×L2(Ω)→ L2(Ω)×
H2(Ω)×L2(Ω) denote the solution operator (w1, w0, θ0) 7→ (wt(·, t), w(·, t),
θ(·, t)) obtained by following Steps 1–4 as outlined in the Introduction.

The operator Φ(t) is C∞ in the uniform operator topology for t > 0,
but at t = 0 all that we can say is that Φ(t) is strongly continuous (and
this is because Φ(t) coincides with the C0 semigroup S(t) of Remark 2.2 for
0 ≤ t ≤ T/2). Thus the smoothness of the boundary controls is lost at t = 0.

We illustrate our massaging approach for the case of the controls taking
the form

w = g1, ∆w = g2, θ = g3 on ∂Ω × (0, T ].

In this case, we proceed as follows:
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(1) Solve the mixed problem consisting of equation (2.1) in Ω × (0,∞)
with the homogeneous boundary conditions

u1 = 0, ∆u2 = u2 = 0, u3 = 0 on ∂Ω × (0, T ].

We denote the solution of this problem by u1(x, t).
(2) Let ψ(t) be the same cut-off function introduced in Section 3 and

let u2(x, t) = u1(x, t)ψ(t). Thus u2 satisfies the initial condition, has
zero Dirichlet data and vanishes for t > T . But the PDE satisfied by
u2 is nonhomogeneous:

∂u2

∂t
(x, t) = Au2(x, t) + G(x, t),

where G(x, t) = u1(x, t)ψ′(t).
(3) Use Duhamel’s principle to solve the same nonhomogeneous PDE:

u3(·, t) =
t�

0

Φ(t− τ)G(·, τ) dτ.

Now G(x, t) vanishes for t outside [T/2, T ] so U(x, t) = u2(x, t)−u3(x, t)
satisfies equation (2.1) and vanishes for t ≥ 2T . The boundary controls are
given by

g1t(x, t) = u31(x, t), g2(x, t) = ∆u32(x, t), g3(x, t) = u33(x, t), x ∈ ∂Ω,
where u3 = (u31, u32, u33). Thus we need to consider the regularity of u3.

The operator Φ(t) coincides with the analytic semigroup S(t) of Lemma
2.3 for 0 ≤ t ≤ T/2. The domain of the infinitesimal generator of this
semigroup is D = H2(R2)×H4(R2)×H2(R2). A standard result for analytic
semigroups (see, for example, Pazy [22]) tells us that, for t > 0, S(t) maps
HE = L2(R2) × H2(R2) × L2(R2) into D and the norm of the mapping is
bounded by C/t for some constant C. Hence Φ(t) : L2(Ω)×H2(Ω)×L2(Ω)→
H2(Ω)×H4(Ω)×H2(Ω), with norm bounded by C/t for some constant C.
By interpolation, Φ(t) : L2(Ω)×H2(Ω)× L2(Ω) → H2s(Ω)×H2s+2(Ω)×
H2s(Ω), 0 ≤ s ≤ 1, with norm bounded by C/ts. Hence

‖u3(·, t)‖H2s×H2s+2×H2s ≤ C‖u0‖L2×H2×L2 max(|ψ′|)
t�

0

(t− τ)−s dτ

≤ C ′‖u0‖L2×H2×L2 .

Thus, assuming that the trace theorem holds for ∂Ω, we find that the bound-
ary control functions satisfy

g1t, g2, g3 ∈ L∞([0,∞);H3/2−ε(∂Ω)), ε > 0.

The strong continuity of the semigroup gives us a little more:

g1t, g2, g3 ∈ C([0,∞);H3/2−ε(∂Ω)), ε > 0.
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We finally note that this yields a proof of Theorem 1.1, apart from the
fact that we have a control time 2T instead of T . But T > 0 is arbitrary, so
Theorem 1.1 holds as stated.

Other kinds of boundary control operators may be treated similarly.

5. Concluding remarks. Perhaps the most important aspect of our
method is that it yields control functions directly. Essentially they are ob-
tained by solving two Cauchy problems.

The control functions that we obtain by this method are defined on the
whole boundary but there are ways to include fixed boundary conditions on
parts of the boundary. Suppose, for example, that a thermo-elastic plate is
clamped along a straight section of the boundary. In this case the Ovsyan-
nikov solution could be computed with zero initial values on this part of the
boundary, thereby preserving the clamped boundary conditions.

We should note that nonlinear PDEs may be treated as well and we cite
for this the work by Guo and Littman [8] on the boundary controllability of
a semilinear heat equation in one space dimension.
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