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ESTIMATION OF THE GENERALIZED VARIANCE
IN A BIVARIATE NORMAL DISTRIBUTION
FROM AN INCOMPLETE SAMPLE

Abstract. The aim of the paper is estimation of the generalized variance
of a bivariate normal distribution in the case of a sample with missing ob-
servations. The estimator based on all available observations is compared
with the estimator based only on complete pairs of observations.

1. Introduction. Let a random variable (y, z) have normal distribution

2
with mean p = [u1, po]’ and variance-covariance matrix 3 = [U?’ vz }:

(1) (y,z)~N2<[Z;],E>. Z

Let [y, z] be a simple random sample of size k from the distribution (1).
We are interested in estimation of the generalized variance, i.e. the deter-
minant |X|. The generalized variance is used in various statistical analyses
concerning the covariance structure of the model.

The sample generalized variance

1 b 1 k
HZ(yi—y)Q mz(yi_g)(zi—f)
(2) |S| = z:l 1,:1 7
1 1
m;(yi —7)(zi —2) m;(zl —2)?

where 7 = k! Zle vi, 2 = k71 Zle zi, is very well investigated ([1], [7],
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, 13, . It 1s known for example that
5], 3], [4]). It is k f le th
[(k = 1)S|
|2‘ - 271'962727

where x7_, and x7_, are independently x? distributed with k¥ —1 and k —2
degrees of freedom, respectively. Thus

k k
N k_1’S’_ , ;(yz—y) ;(yi—y)(zi—Z)
E—2"" (k=1 (k—2)| & k
Z}m—?ﬂ%—Z) 23%—5V

is an unbiased estimator of |X| and

k—1 _2ZP(2k - 1)
. e (129 = Gy

2. Estimation of |X| in the case of missing observations. Let us
consider an incomplete sample

/
Yi oo Yk Yk+1 -+ Yk+4p * e *
Z1 e Rk * e * Zk+p+1 e Zk+p+s

where * denotes an observation missing completely at random ([2], [6]). So,
we have k complete pairs of observations, p additional observations of the y
variable and s additional observations of the z variable. To simplify let us
write the sample in the following form:

Yo | Zo
(5) Yi *
* Z9
where yg = [Y1,~-,Yk]/7 Zy = [Z17"'7Z’€]/7 y1 = [Yk+1,~-,}’k+p]/, zy =

[Zktptis- - Zhipts| - Let us set

[3]. -]

The question is: how should we estimate || using the additional infor-
mation contained in the vectors y; and zy and is it worth doing? Perhaps
the estimator based on complete pairs [yo, zo| (complete-case estimator) is
better?

As an alternative to the complete-case estimator we consider the avai-
lable-case estimator which uses all the available values to estimate parame-
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ters in model (1). To estimate |X| we use the following sums:

k+p k k+p+s k
6) > w-1% d(m-2*+ Y (z-2% > (w-D(-2
i=1 i=1 i=k+p+1 i=1

where § and z are the arithmetic means of elements of y and z, respectively.
Each of these sums, multiplied by a suitable constant, is a better unbiased
estimator of 0 , 02, 0y than the complete-case estimators

k k
1 _ 1 _ B
_1§:@V_%V7 % —Z0)%, Ejji (Yi —Yo)(2i — Zo),
=1 =1

where 7, and Z, are the means of y( and zo.

IIMw

Let us consider the following estimate of |X|:

k+p k k+p+s
(7) E=aY -9 [Y -2+ Y (-2
i=1 i=1 i=k+p+1
—b. (i(y — )z — 2))2

where a and b are constants (depending on k, p, s) giving unbiasedness of E.
To determine a and b and then to calculate the variance of E we use the
results of Wilks [8]. He considered the following random variables for the
incomplete sample (5):

1 k+p 1 k 9 k+p+s
o = mzl(yz Y)S, mo= k+s(;(zl Z) + kz (z: — ) >,
1= 1= 1=k+p+1
k
1 _
gz —2),

and found the moment generating function
p(7,0,¢) = B(ersotomtecn),
which can be used for finding joint moments of (&g, 70, (o):

orokd!

E(&nCh) = M(h, k,1) = ng

(v,0,¢)
y=0=e=0

We have used ¢(v,0d,¢) to obtain the required moments of sums (6). All



146 W. Oktaba and J. Tarasinska

computations were done by using Maple V. The values of a and b are
2k —1)+c+c2+(k—1+¢)?
(k+p—-1)(k+s—1k—-1+2+(k—-1+c)?-2k—-1+4¢)?’
(k+p—1)k+s—1)+2(k—1+¢)
(k+p—1(k+s—1[k—14+(k—1+¢)?—2(k—1+4¢)?

where ¢ = m. When s = 0, a and b have a simpler form:

B k+1 ) k+p+1
CTh-DR—k+pk—-2))  (k-L(k2—k+pk—2)
For a complete sample (p = s = 0) we have the known values
1
= b e ——
¢ (k—1)(k—2)

(see (3)). The variance of E is
Var(E) = a®(k + p)*(k + s)*[M(2,2,0) — M(1,1,0)?]
+ b?k*[M(0,0,4) — M(0,0,2)?]
— 2abk?(k + p)(k + s)[M(1,1,2) — M(1,1,0) - M(0,0,2)].
We do not give here the expressions for the moments M (h, k, 1) because they
are long and complicated (especially M (2,2,0), M(0,0,4), M(1,1,2)). We

are interested in comparing the estimator E given by (7) and the estimator
Ej based on complete pairs of observations:

Ey = m [i(yi—ﬂo)Q'i(zi—Eo)g_ (Zk:(yi_%)(zi_z“)f}

i=1 i=1 i=1
When s = 0 we get a simple equation
—2poyoi(k+1)[Ag* + Bo* + C]
(k—2)(k—1)(k2+pk —k—2)2’
where A = 4(k + 1)(k — 2) + 2pk, B = —2(k? —4)(k +p+ 1) — 4pk, C =
(k —2)(k* — 1) + p(k? — k +2) and g is the correlation coefficient between
y and z.

Superiority of one estimator over the other depends on 2, k, p, namely
E is better when o? < f(k,p) and Ej is better when o?> > f(k,p), where

f(k,p) is the smaller root of the quadratic equation Az? + Bx + C = 0.
Analysing f(k,p) we can state the following simple corollary:

(8) Var(E) — Var(Ey) =

COROLLARY 1. If 0% < 0.3 than E is better than Eqy for each k > 3 and
for each p > 0. If 0*> > 0.5 then Ey is better than E for each k > 3 and for
each p > 0.
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The case s = 0 can be applied to the situation when getting an obser-
vation of one variable (for example z) is much more difficult or expensive
than for the other (y). Suppose we have k complete pairs of observations.
The question is: how large is pg, the number of additional observations of
y that cause at least the same decrease of variance of E as one additional
complete pair? Using Maple V we get the following answer:

COROLLARY 2. e If |p| < 0.3 and k > 10 then py = 3.
e If |o| <0.5 and k > 10 then py = 5.
o If |o| <0.5 and k > 20 then py = 3.

When s > 0 then the difference Var(E) — Var(E)p) is not so simple as in
(8) and we do not give here the long expression for that. Let us only state
that Var(F) is symmetric in p and s, that is,

Var(E)(k,pﬁ) = Var(E)(k,s,p) .

In Tables 1, 2, 3 and 4 we give the values of Var(F)/Var(Ey) for various
k,p,s and . The upper value in the tables is for |o| = 0.3, the middle one
for |o| = 0.5 and the lower one for |g| = 0.8.

So the estimator F can be either much better or much worse than Ej.
E is not recommended when |g| is greater than 0.5. Unfortunately E has one
disadvantage: theoretically it can have a negative value. We tried to estimate
how often it can happen using Maple V simulation. We generated 1000
samples from a bivariate normal distribution with py = po = 0, 05 =02 =1,
o = 0.5 for different k,p, s. The results of this simulation in Table 5 show
that the probability of getting negative values of E is small.

Table 1. k=10 Table 2. k=20
P 2 5 10 15 p 5 10 15 20
s s
0.910 | 0.824 | 0.740 | 0.690 0.897 | 0.830 | 0.782 | 0.747
0 0.937 | 0.875 | 0.814 | 0.778 0 0.917 | 0.863 | 0.825 | 0.796
1.392 | 1.770 | 2.135 | 2.348 1.331 | 1.552 | 1.710 | 1.829
0.827 | 0.745 | 0.666 | 0.620 0.800 | 0.738 | 0.693 | 0.660
2 0.887 | 0.837 | 0.787 | 0.757 5 0.853 | 0.811 | 0.781 | 0.759
1.898 | 2.377 | 2.830 | 3.091 1.852 | 2.193 | 2.434 | 2.613
0.669 | 0.595 | 0.552 0.677 | 0.634 | 0.602
5 0.798 | 0.759 | 0.735 10 0.777 | 0.752 | 0.734
2.948 | 3.488 | 3.798 2.612 | 2.906 | 3.125
0.526 | 0.486 0.593 | 0.562
10 0.731 | 0.713 15 0.732 | 0.717
4.112 | 4.472 3.239 | 3.486
0.447 0.532
15 0.700 20 0.704
4.861 3.753
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Table 3. k=50 Table 4. k£ =100
p| 10 20 30 40 | 50 p| 20 40 60 80 | 100
s S
0.916 | 0.857 | 0.812 | 0.778 | 0.750 0.917 | 0.858 | 0.813 | 0.779 | 0.751
0 0.928 | 0.877 | 0.838 | 0.801 | 0.758 | | 0 0.927 | 0.875 | 0.836 | 0.806 | 0.781
1.216 | 1.372 | 1.489 | 1.580 | 1.653 1.198 | 1.340 | 1.446 | 1.530 | 1.596
0.836 | 0.779 | 0.737 | 0.704 | 0.677 0.837 | 0.780 | 0.738 | 0.705 | 0.678
10 | 0.868 | 0.826 | 0.795 | 0.770 | 0.751 || 20 | 0.866 | 0.823 | 0.791 | 0.766 | 0.746
1.570 | 1.821 | 2.010 | 2.156 | 2.273 1.533 | 1.772 | 1.951 | 2.091 | 2.202
0.724 | 0.683 | 0.651 | 0.625 0.725 | 0.684 | 0.652 | 0.626
20 0.790 | 0.764 | 0.743 | 0.726 | | 40 0.786 | 0.759 | 0.737 | 0.720
2.141 | 2.380 | 2.565 | 2.713 2.080 | 2.311 | 2.491 | 2.634
0.643 | 0.611 | 0.587 0.643 | 0.612 | 0.587
30 0.740 | 0.722 | 0.708 | | 60 0.735 ] 0.716 | 0.701
2.656 | 2.870 | 3.041 2.581 | 2.790 | 2.957
0.581 | 0.556 0.581 | 2.557
40 0.706 | 0.694 | | 80 0.700 | 0.687
3.107 | 3.296 3.022 | 3.208
0.532 0.532
50 0.682 | | 100 0.675
3.499 3.408
Table 5. The number of negative values of E (per 1000 samples)
k=10 k=20 k=50 | k=100
p=5|p=5|p=10|p=10 | p=10 | p=10 | p=20 | p=50 | p= 100
s=0]|s=5|s=0|s=5|s5s=10|s=10|s=20| s=050 1| s=100
3 18 10 21 40 0 6 0 0
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