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GOODNESS-OF-FIT TESTS USING CHARACTERIZATIONS
OF CONTINUOUS DISTRIBUTIONS

Abstract. Using characterization conditions of continuous distributions
in terms of moments of order statistics and moments of record values we
present new goodness-of-fit techniques.

1. Introduction and preliminaries. Let (Xi,...,X,,) be a sample
from a continuous distribution F'(x) = P[X < z], z € R, and let X}.,, denote
the kth smallest order statistic of the sample. We construct goodness-of-fit
tests for continuous distributions using characterizations of distributions via
moments of order statistics and moments of record values (cf. [2]-[5], [10]).
The results presented extend the tests for uniformity and exponentiality
discussed in [6] and [7]. Moreover, we give the proof of statements on tests
for exponentiality announced in [7]. We include a theorem on the asymptotic
effect of substituting estimators for parameters in the tests proposed here.
It can be used, among other things, to construct a test for normality.

(O) Characterizations in terms of moments of order statistics. We use
the characterization conditions contained in the following theorems.

THEOREM 1 (cf. [10], [3]). Let n, k, | be given integers such that
n>k>10>1. Assume that G is a nondecreasing right-continuous function
from R to R. Then F(z) = G(x) on I(F) (the minimal interval containing
the support of F) and F is continuous on R iff

k—10D)!
(1.1) ﬁEG2l(Xk+ll:n+ll)
2k! (k+1)!
— = _EGYXki1m — 7 =
i 2 Krrtnr) + 22T

2000 Mathematics Subject Classification: Primary 62E10, 62F03.
Key words and phrases: goodness-of-fit tests, characterizations, order statistics, record
values, uniform, exponential, Weibull, Pareto, geometric and logarithmic distributions.

[151]



152 K. Morris and D. Szynal

THEOREM 2 (cf. [5]). Under the assumptions of Theorem 1, F(z) =
G(x) on I(F) and F is continuous on R iff

E+D!(n+1)!
EG'(Xpq1mt1) = <k!(n+—(l+1)?’
(k+D!(n—1+1)
(k=Di(n+1+ 1)

Note that Theorem 2 is a consequence of Theorem 1, since (1.1) implies
F = G implies (1.2) implies (1.1).

(1.2)

EG (Xpi1-tni11) =

COROLLARY 1. X ~ F and F is continuous iff

(1.3) EF(Xa2) — EF?*(X) = 3
(1.4) EF(X22) =2, EF*(X)=1.

In particular:
(a) X ~ U(a, ) (uniform distribution), i.e. F(z) = (z — ) /(S — @),
a<xz<pf,iff
E[(X22 —0)/(8 — )]~ E[(X — a)/(8 — )] = §

B[(X22—a)/(B-a)] =3, E[(X-a)/(B-a) =3,

(b) X ~ Exp(a) (exponential distribution), i.e. F(z) = 1 — exp(—ax),
x>0,a>0,iff

E(1 —exp(—aXs2)) — E(1 —exp(—aX))? =1

w

or

E(1 —exp(—aXa2)) =2, E(1—exp(—aX))’=1.

(R) Characterization conditions in terms of moments of record val-
ues. Let {X,,, n > 1} be a sequence of i.i.d. random variables with cdf
F and pdf f. For a fixed k > 1 we define the sequence Uy (1), U(2),... of
k-(upper) record times of X1, X, ... as follows:

Uk(1) =1,

Up(n) = min{j > Up(n — 1) : Xjj06-1 > Xvy (n—1):U0s (n—1)+k—115
n=23,...

Write
YV *) = Xu, n)vy () rh1, 1> 1
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The sequence {Yn(k), n > 1} is called the sequence of k-(upper) record values
of the above sequence. For convenience we also take Yo(k) = 0 and note that
YV = X1 = min(Xy, ..., X3) (cf. [1]).

We see that for k = 1,2,..., the sequences {ngk), n > 1} of kth record
values can be obtained from {X,, n > 1} by inspecting successively the
samples X1, (X7, X2), (X1, X5, X3), and so on. For k =1, Yl(l) = X, and
the following terms are obtained by looking at the maxima of the successive
samples; Y2(1) is the first maximum that exceeds Yl(l), Y3(1) is the first max-
imum that exceeds YQ(l), and so on. For k = 2, Yl(z) = min(X1, X»), and
the following terms are obtained by looking at the next-to-largest values in
the successive samples: Y2(2) is the first next-to-largest value that exceeds
Yl(z), Y3(2) is the next-to-largest value that exceeds YQ(Z), and so on. And
generally, Yl(k) = min(Xy, ..., X;) = X1.k, and the following kth record val-
ues are obtained by looking at the kth largest values in successive samples,
i.e., looking at the order statistics Xo.541 from (X1,..., Xgt1), X3.k42 from
(X1,..., Xkyt2), and so on.

We have the following characterizations.

THEOREM 3 (cf. [4]). Let {X,, n > 1} be a sequence of i.i.d. random
variables with cdf F. Assume that G is a nondecreasing right-continuous

function from R to (—oo,1], and let n, k, | be given integers such that
kE>1and n>1>1. Then F(z) = G(x) on I(F) iff
(15) K (n—1)E[=log(1 - G(Y,") ;)

—2nlk' E[~log(1 — G, X)) + (n+1)! = 0.

THEOREM 4 (cf. [5], [4]). Under the assumptions of Theorem 3, F(x) =
G(z) on I(F) iff

E[-log(1 - GV, M) )] = (nn;ll)!7
E[—1log(1 — G(yn(ﬁ)lﬂ))]m _ %

Following the observation after Theorem 2 we see that Theorem 4 is a
consequence of Theorem 3.

COROLLARY 2. X ~ F and F is continuous iff

(16)  E[log(l— F(Y™))? - %E[— log(1 — F(Y,"))] + % =0

(17)  Bl-lg(l - FY{) = =, B[-log(1 - FOAM)P = .
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In particular:
(a) X ~U(0,1) iff
2

2
E[—log(1 — Yl(k))]2 - EE[_ log(1 — Yz(k))] + == 0
or 5 5
Bl-log(1 - Y;") = . E[-log(1 —Y{")]’ = 5,
(b) X ~ Exp(«) iff
k 2 k 2
?E(YM)? - ﬁaE(YQ( N+ 5 =0
or 9 9
(k) _ (F)y2 _
EYV2 _Jv E(YI ) _agkg'

2. Goodness-of-fit tests based on characterizations via moments
of order statistics. The cases when parameters of F' are specified and
unknown will be treated separately.

(A) Parameters of F are specified. First we construct goodness-of-fit
tests based on the characterization in (1.1) (see also (1.3)) which we can
write in the form

E(F(X22)) - 3(B(F*(X1) + F*(X5))) = §

where X7 and X5 are i.i.d. as X.
Let (X4,...,X5,) be asample from F', where F' is continuous and strictly
increasing. Define

Yj = F?(Xyj1) + F? (X)),

Zj :F(maX(XQj_l,ng)), jzl,,n
Then Y3,...,Y, are i.id. and Z,,...,Z, are i.i.d. Writing ¥ = Y; =
F2(X1)+F%(X3), Z := Z; = F(max(X1, X2)) we state the following result.

LEMMA 1. Under the above assumptions, the density function of (Y, Z)
is given by
1y =22, 0<2<1, 22 <y <222
f(y7 Z) - .
0, otherwise,

and

, Var(Z) = &, Cov(Y,Z) = 4.

EY = %, Var(Y)= L&, EZ = T8 i

45

wlN

Now we define

Ri=2Z;-3Y;, j=1,....n
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We see that
BR, = 57, 1BV, =}
Vaer:Vaij+%VarYj—Cov(Zj,Yj):l j=1,...,n.

90°
Write
1 &
R, = EZ;RJ;
J:

then by the CLT

3v10n (R, — 1) 2 v ~ N(0,1),
and hence
(2.1) DY = 45-2m(R, — 1)* B 21,

and so DS) provides a simple asymptotic test of the hypothesis X ~ F.
Setting X7 = max(Xa;_1, X2;), j = 1,...,n, we note that Dg) in (2.1)
has the form

1 n 1 2n 1 2
(1) — 45.9n( = © _ 2(x.) _ =
(2.2) DM =45 2n<njle(Xj) anle (X;) 3) :

Next we construct goodness-of-fit tests based on the characterization in
(1.2) (see also (1.4)), which we write in the form

EF(max(X1,X2)) =2, EF*(X)) = 1.

Y.
W]:(Z‘;)’ j::l,...,n,

o= ()10

Y :=Var(W;) = E(W; — EW)(W; — EW,) = (?ﬁ? Z117112) ’

Define

and write W, =n~' 377 W;. The CLT says that

(2.3) Vi (W, =) 2V ~ N0, 5),
whence
DY :=n(W, —u) T (W, — ) 2 V'Z7IV ~ 3(2).

But D is a reasonable measure of the “size” of (W,, — ) and so by (2.3)
provides a test of the hypothesis that X has the distribution function F'.

And since
1 5/8 —1
Y7 =45 ( ‘1 9 )
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it follows that in extended form
24) D =13V -1 +2(Z - 3 -2V 3)(

In terms of X7, D in (2.4) has the form

(25) DR =45.2n[1(F2(Xa,) — 1) + (F2(Xam) — F(X;

By (2.5) and (2.2) we have

LEMMA 2.
— 2
D@ =% . 2n(F2(Xan) — 3)” + DV.

Special cases:

(a) If X ~ U(c, B) then

1 — B+a 1 —  af
DM —45.9p( —— x2 - T T X
n =9 "<<ﬁ—a>2 TG aE T e Tha
45 X2 X a2 1\?
D@ — =2 op 220 o9 2n _Z DM
T ”<<ﬂ—a>2 “G-ay " G-ap 3) "

REMARK. If X ~ U(0, ) then

DM =45 20 (X3, /82 — Xan/B — Xt /B + 1)%,

D =% .9n(X2 /8> - 1)* + DV

(b) If X ~ Pow(a) (power distribution), i.e. F(z) = 1 — (1 — z/a)®

0<z<a 0<a<l,then

2n

1 1<
(1) — 45. o0 — _(1— )2 4= _
DM = 45 2n<2n2(1 (1-Xj/a)" +nz (1-X;/a)*
Jj=1 Jj=1
2n
45 1 1
D) = = .9 1-(1-X; - D).

(c) If X ~ Exp(c) then

]- 1 *
(1) _ . - _ —aX;)\2 - —aX?
D} =45 2n(2n g (1—e %) +op et

45 1 1\2
D =— on( —> (1-e*%)? -2 D).
nT ”<2n (L—em™) =3 ) + Dy

2
~ 3

),
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(d) If X ~ W(B,a) (Weibull distribution), i.e. F(x) = 1 — exp(—az”),
x>0, a>0,3>0, then

1 & s, 1 s 2\?
(1) _ 4k . = _—axfy2 1 —a(X))P _ 2
D} =45 2n<2n E (1—e %) +o E e 3) ,
Jj=1 Jj=1
45 1 & s, 1V’
D) =—-2n(—> (1-e %) -2 D,
nt =g 2nj:1( R Y A

(e) If X ~ Parg(a, o) (single-parameter Pareto distribution), i.e. F'(x) =
1—(o/z)* z>0,a>0,0 >0, then

2

2n aN 2 n
1 o 1 2
DM =45.9n( — 1—(— — Xne - =

j=1
2n aN 2 2
45 1 o 1
DO =S (1-(Z) ) -5) +DW.
" 4 n(2nj:1< (Xj> ) 3) T

(f) If X ~ Parp(a,0) (two-parameter Pareto distribution), i.e. F(x) =

1- (%)% 2>0,a>0,0>0, then

2n 0 ay 2 1n 0 @ 22
1) — — 7 ) _=z
o =man(53 (-(75) ) X wm) -5)

2n aN 2 2
45 1 0 1
D? == .9 > (1- — = DWW,
1 ”<2n, 1( (Xj+9> ) 3) T n

Jj=

(g) If X ~ Log(a, ) (logistic distribution), i.e.
F(x):[1+exp(—(m—a)/ﬁ)]*1, —o<r<oo, a €R, >0,
then

DY) = 4520 5 51+ exp(-(X; - 0)/5)

J=1

1n = . 12
— 23 expl=(X; — a4 g )
=1

n
e 45 1 & IP D
no= g 2n %Z(l‘i'exp(—(Xj—a)/ﬁ)) —3) tDn
j=1

(B) Unknown parameters. We discuss asymptotic tests obtained from
DS and D in (A) when parameters are replaced by estimators.
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PROPOSITION 1. Goodness-of-fit tests for F(z) = x/0,x € (0,0), 8 > 0,
are given by

- . X X.F
DY .= DV (3,) :45-2n(A—22" - =R

_ 4 X2 1\? ~
D@ = DO (B,) = 15 ' 2”( 2 _> + DV (Bn) 252 (2),

where B\n = max(X1,..., Xon).
PROPOSITION 2. Goodness-of-fit tests for F(x) = =% z € (a,f),

B—a?
a < (B, are given by
~ R X—2 N X—n
DY := D{P(@n, Bn) = 45 - 2n<7A 2 (Bt Q)
(Bn - an)2 (/Bn - an)2
X;F G 1\2
e ﬁA +2) B2,
(ﬂn - an) (ﬂn - an)2 3
5 P
D® .= D?(&,,5,) = . 2n< Koy OnXon
4 (ﬁn - an)Q (571 - an)
a2 N> )~ 5.D
+(B A)2_§ +Dn (anvﬂn)_)X(Q)a
n — Qn

where Bn = max(Xy,...,Xo,) and @, = min(Xy,..., Xo,).

The proofs of Propositions 1 and 2 are given in [6] and [7]. For the
following propositions concerning exponential and normal distributions we
use a general theorem based on results in [8] and [9].

THEOREM 5 ([8]). Let Ty, = To(X1, .., Xni An), where Ay = An(X1, . ..
.., Xy) is an estimator of a parameter )/\\of the distribution of X, and let
Tn =Tn(X1,..., Xn; A) (here T,,, X and A\, may be vectors). Suppose that:
(i) For each A,
T,

ﬁ(xn _)\) BT~ N(0,V),

Vii Vi
V=
< Var  Vag >
and Vao is nonsingular.

(ii) There is a matriz B, possibly depending continuously on A, such that

VT, =nT, + Byn (A, — A) + o0,(1).

where
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~

(iil) Ay, is asymptotically efficient (cf. [8]).
Then
(2.6) vnT, 2 T* ~ N(0,Vi, — BV B).
Note that (ii) is satisfied when T, is differentiable in A, and then
0
B=lim F|—-T,]|.
oo [m ]

The following result is a consequence of Theorem 5.

THEOREM 6. Let (X1,...,Xo,) be a sample with an absolutely contin-
wous distribution function F(xz;\) differentiable with respect to the m x 1

vector A. Set - -

where

where

/Y\;L = Yn(B\\Qn)y Z\n = Zn(B\\Qn)

and Xgn 1s the MLE of X\. Suppose that F is such that the MLE }:271 18
“regqular” in the sense that

V2n (Aan — A) 57 ~ N(0,17),

where I = I(\) is the information matriz for X based on a single observation.
Then

(2.7) Vi (Wa(han) — 1) 5 W ~ N(0, 21),
=~ = = 2

(2.8) DM :=45-2n(F(X}) — F2(Xa,) — )7 — x%(1),
ey 45 A~ 2 o~

~

where £y = X —B(2I)"'B, p and X are taken from (2.3), F(z) := F(z, ),

and
2
B =2 /
()
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where

dF(X;\
d:= E(F(X; )\)%) ism x 1,

and
b:=b(\) = 180d'I *d.

Proof. The statement (2.7) follows directly from (2.3) and (2.6). Now
note that

oY, OF%(X;\) oF
E—" =op=— 0 _yp(r—
AN, AN, ( aAj)
OF .
—4SF(9c,)\)a—)\jf(:v,)\)dx, ji=1,...,m,

and correspondingly

GZ_n _ GF(maX(ng,l,ng);)\) N 1 @
E(&)\j>_E< O\j _2E8)\j’

since the pdf of X = max(Xg;_1, Xo;) is 2F(x*; \) f(z*; ), i =1,...,n.
It follows that

ot () - () (e 25) - (e 3)) - ()

and hence that

—1 /_ / r—1 4 2 _ i 4 2
B(2I)""B'=2d'1 d<2 1>—90 9 1)
Thus we have

_ 1 /16 8 b (4 2

j=1...,m,

1 [4(4—-b) 2(4-0b)
_%<2(4—b) 5—b >
and
1 5—-b/(4(4-b)) —-1/2
2] :90< ~1/2 1 )
Therefore

DR = n(W —u)' S (W - ) 2 x*(2),
which (in extended form) proves (2.9).
Finally, writing a = (711/ 2) we see that
~ 1~ 1 —
vn (Zn i §> = (VAW — 1) 2 «W ~ N(0,d $1a),
and @’ X'1a = 1/90, which shows (2.8) and completes the proof of Theorem 6.
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PROPOSITION 3. Goodness-of-fit tests for X ~ Exp(a) are given by
DY = D) (@sn)

2n n 2
1 _a rL _0‘ n
:45271(%21(1—6 2 Z 2 J——>
J: :
D
= x*(1),
D = DP (@z)
2n 2
45-36_ (1 a1 ~) D
= m(— Y (1—e %2 _ = DIV = 3 (2

where Qg = 1/Xo,.

Proof. The first statement of Proposition 3 follows from (c) after Lemma
2 and Theorem 6. To prove the second statement it is enough to see that
for X ~ Exp(a) we have I(a) = 1/a?,
[e.e]
d=a« S (re™2%" — ge 3%) dx = 5/(360),
0

and b = 125/36, which by (2.9) gives the test statistic DY,
PROPOSITION 4. Goodness-of-fit tests for X ~ N(u,o?) with

Plz) = — [ e/ gt

B 2o

x

1 2 2
f(z) = e @m0 <z < o0,
V2ro

are given by

DY := DV (fizn, 53,)
= = = = 2
=45 - 2n(P?((Xan — fizn)/Oon) — P((X}; — 2n)/02n) + 3)
D
= x3(1),
D®) = D (fizn, 53,)
45 - 872

— o (D2((Xapy — Tian) /Gan) — 1)> + DW
3272 — 15(67 + 1) n(H(Xan = fi2n)/T2n) = 3)" + Di,

where
1 7 2
P(r) = — e V2 dt,
(z) o _S



162 K. Morris and D. Szynal

¢2((X2n H2n /0-271 — Z¢2 :u2n)/o-2n)
@((X ;u2n /U2n — Z@ _Mn /Gn)
and
L 1 2n L
ﬂzn = Xon, oin = % Zl(Xj - in)Q-
j=
Proof. Here
2
-1 _ g O
= ( 0 204>
and OF OF 1
o = e =T
SO
o0 1 o0
di=— | F@)fP@)de, d=-55 | @-nF@/Pe)d.

To evaluate the integrals, write
e 1
Fla)= —= | e dy= 2 + (),
where -
m=(@—p)fo, Glo)=—= eV ?dy
=

Changing variables to 1 = (x — p) /0 gives

[ee]

1T/l > 1 2 1
d = —— — 7m1d = —— 7l‘1d = —
! 2o _SOO (2 * 1[)(:61))6 o Ao _Sooe o 4ymo’
where we have used the fact that v is an odd function. Similarly
1 T /1 a2 17 a2
dy =~ — _Soo 5+ Y(z1) |z " day = "oz _5}01/1(371)3716 dxy
1T g2 1
= T 8no? S Pia)e™ day = _8\/§7r02’

where we have used integration by parts and the facts that xle*”f is an odd

function and 1
V2T

e~ 1/2,

P (1) =
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Hence
1, 42 0 2 4 1,42 8 2 )

which by (2.9) leads us to the f)ff) test. Then 137(11) is obtained immediately
from (2.8).

3. Goodness-of-fit tests based on characterizations via moments
of record values. Suppose that X has df F' and pdf f. To simplify the
notation we write

gle) =1—-F(z) and h(z)=—log(g(x))
if F(z) <1 and 0 otherwise.
Then Theorem 3 says (see (1.5)) that X ~ F' iff
K2 n — DERZ (Y™, ) — 20K ER (Y + (n+ 1)1 = 0.

Since the definition of YTSk) requires an infinite sequence it is hard to see

how a finite sample can be used to estimate EYTSk). So our procedure is as
follows.
We consider the special case [ = n. Then X ~ F iff

n 2n! L (k (2n)!
(3.1) BN (Xp) = S Eh v, %) + e = 0.
We know that the pdf of Y,Sk) is
k™ . _
fyw (@) = (= 1)!h Ya)g" (@) f(x)  (cf [1])
and that
kn
(3.2) Fyo (2) = Fyw () - — "(x)g" (x)
k . kj j
=1-g (90)2 —h (@) (cf. [2])
=07
Hence
n n k" e _
EW"(Y,00) = EW" (V) = g B0 (09" (X)

k.nJrl

+ ER*™(X)gF 1 (X).

n!
Taking into account that

Eg* Y (X)W H(X) = %g) for a, > 0
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as X has df F', we get
ney®y — gpey )y 4 20Y
En"(Y, 1) = Eh"(Y,™) + T

Hence by (3.1) we obtain
2n!
BR* (Xy) = T ER(Y) = 0.

Letting n = 1 we have

2
(3.3) Eh* (X)) — EEh(Xlzk) =0.
Similarly using the second equality in (3.2) we get
2n! 2n)! — 2(n!)?
(34) Eh2n(X1;k) . k_ZEhn(Xlk) _ (n)k# =0

To verify H : X ~ F we use (3.3). Consider first the case k = 1. Then
E(h*(X1) — 2h(X1)) = 0.

The sample (X1, ..., X,,) provides an estimator of EW7, where W = h?(X;)
— 2h(X1), of the form

W, = h?(X,) — 2h(X,),

where
PG = 3 SR, %) = > h(X,).

It follows from the CLT that
Vi Wn 2 N(0, Var(Wh)),

and hence that
T = anQ/Var(Wﬂ 23,

and so provides a simple asymptotic test of the hypothesis X ~ F when the
parameters of F' are known. Here

Var W, = Eh*(X,) — 4Eh3(X,) + 4ER*(X1) = 8
since h(X7) ~ Exp(1) gives ER™(X1) =m!, m=1,2,..., and so

T = g(hQ(Xn) — 2R (X))
We have proved

PropOSITION 5. If X,, ~ F, n > 1, are independent then

(3.5) T = S(R0X,) - 2R(X))° 2 X3(1).
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Now consider the case k = 2. Write U; := X1.2 = min(X;, X2). Here from
(3.3) we have to estimate EW/, where W| = h?(U;) — h(Uy). The sample
Xi, ..., Xa, provides the sample W7,..., W, where W/ = h2(U;) — h(U;)
and U; = min(Xy;_1, X9;), 7 =1,...,n. Then EW] is estimated by

W), = h2(Un) — h(Un),

and
T = n(W7)2/Var(W]) 2 y2(1).

Taking into account that h(U;) ~ Exp(2) we see that Var(W7]) = 1/2. Thus
another simple asymptotic test is provided by

ProposiTION 6. If X,, ~ F, n > 1, are independent then

(3.6) T2 = 2n(h2(U,) — h(Un))? 2 x2(1).

The same argument leads to a similar test for the case k =3,...,n—1
based on a sample of size kn.

We now consider the case k = n. Write U,, = min(X;,...,X,). Then by
(3.3) we have to estimate E(h?(U,) — (2/n)h(U,)). The obvious estimate is
h2(Uy,) — (2/n)h(U,) itself, and if the parameters of F' are specified the test
statistic is

T — (h2(Un) - %h(Un)>2.

As above, under H, h(U,,) ~ Exp(n), whence
(3.7) R, :=nh(U,) ~U ~ Exp(1), n>1.
It follows that
1
T = E(be —2R,)?

and so an equivalent test statistic is T}, := (R2 —2R,)? ~ T := (U? — 2U)?,
n > 1, which provides an exact test for H : X ~ F.

PROPOSITION 7 (cf. [7]). The significance probability of the test using
T, is
(3.8) P, :=P[T, > t]

L) e VIRV L ot VIVE ot IVIVE G g <t <,
e~ 1-V1+Vt if t> 1.

Proof. The significance probability P[T,, > t| associated with an ob-
served value ¢ can be obtained by considering the graph of u?(u — 2)? =t
and using the fact that P[U < u] = 1 — e~ *. One finds readily that (3.8)
holds true.
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In particular we consider the 5% test of H, i.e. P, = 0.05. But since
P[T>1]=e 1+V2 5 0,05

the 5% test rejects when R,, > ug, where e~“¢ = 0.05, i.e. when ug = 3.00.
Thus the exact 5% test rejects when nh(U,) > 3.

Now we show that instead of T,, = [R2—2R,,]? one can use more generally
the statistics

T .= {(R™ —m!)? — ((2m)! — (m))?)}2, m > 1.

We note that T,, = Ty[L”.
Writing (3.4) in the form

EE*™h*™ (X 1.4) — 2m! EE™h™(X1.1,) — ((2m)! — 2(m!)?) = 0
and letting k£ = n (sample size), we have
B{((nh(X1:n))™ = m!)? = ((2m)! = (m)*)} = 0.
Taking into account that R,, = nh(X1.,) ~ Exp(1), n > 1, we see that
T = (R~ ml)? — ap}? ~ (U™ — m1)? — a
where
am = (2m)! — (m!)%

It follows that the statistics Ty[Lm} have for every n > 1 the distribution of
(U™ —m!))? — a,,)%, and we reject H : X ~ F if T s large enough.
Moreover, we can state the following result.

PROPOSITION 8. The significance probability of the test using T7[1m} 18

(3.9 P™ .= p[rim > ¢

1— e b1 4 o=b (1) if 0<t<tp,
eV () _ =W 4 omt® g <t <t
e b () if t>t,

where

bg)(t):(m!—\/am—\/{f)l/m, bgﬁ)(t):(m!—i—\/am—\/{f)l/m,
b () = (m!+\ am + VO™, by = (4 — (m))?)?, 1, = ap,.

The proof of (3.9) is similar to the proof of Proposition 7.
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COROLLARY. Pt[l] is given by (3.8) and Pt[2] is given by the formula

PP = P12 > ¢
1 — e V2HV20-VE | p—\/24/201VE if 0<t< 256,
=3 V2 V20 Vi _ 24 V20E V21201 if 256 < t < 400,
V2201 if t > 400.

4. Tests for exponentiality. We consider corresponding tests for
X ~ Exp(a) when « is not specified. Note that in this case h(z) =
—log(l — F(z)) = ax. Using T = T,sl)(a), 7 = T,§2)(a) in (3.5)
and (3.6) respectively, we replace « by the estimator a,,. We have proved
in [7] the following results.

ProrosiTioN 9. If X,, ~F, n>1, are z'ndependent then
T = 20V (@) = 700/ (Xa)? =2 23 (1),
where a,, = 1/X,,.
ProposiTiON 10. If X, ~ F, n > 1, are independent then

N . 2 5 2
T2 .= 4T(2)( Qn) = : U3 - AiUn _ & —Un - —ﬂ - X2(1),
" 3" 3IV" a, 3\ (Xaon)?  Xopn

where a, = 1/X,,.

PROPOSITION 11. Let T, := T(@n) = (U2—2U,)? where U,, = na,U,, =
nU, /Xy, and let P, = P[T > t] stand for the associated significance prob-
ability. Then lim,, s Pt P, where P; is given by Proposition 7.

Now by Proposition 8 we have the following generalization of Proposi-
tion 11.

PROPOSITION 12. Let
T .= TIm(@,) = {[(n@nUn)™ — m!)* — am}?

and let ]St[m} = P[ﬁgm] > t] stand for the associated significance probability.

Then Siml _ plm]
lim P/™ =P™, m>1,

where Pt[m} 1s given by Proposition 8.
Proof. Since a, £ a, from (3.7) we get na,U, = (@, /a)R, 2 U and

SO
T B (om — mh)? — anm)?,

which is distributed as Ty[bm].
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