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SELF-AVOIDING WALKS ON THE LATTICE Z2

WITH THE 8-NEIGHBOURHOOD SYSTEM

Abstract. This paper deals with the properties of self-avoiding walks de-
fined on the lattice with the 8-neighbourhood system. We compute the num-
ber of walks, bridges and mean-square displacement for N = 1 through 13
(N is the number of steps of the self-avoiding walk). We also estimate the
connective constant and critical exponents, and study finite memory and
generating functions. We show applications of this kind of walk. In addi-
tion, we compute upper bounds for the number of walks and the connective
constant.

Introduction and basic properties. The aim of this paper is to study
the main properties of self-avoiding walks defined on the lattice with the
8-neighbourhood system. This new type is a natural extension of the ordi-
nary self-avoiding walk (self-avoiding walk on Z2 with the 4-neighbourhood
system; see [1], [4], [5], [7]–[10]) and is useful in many applications. An
example of applications is digital image processing ([11], [12]). The grey-
scaled image is an array of numbers between 0 and 255. The 8-neighbour-
hood system for the points of the image is more natural than the 4-neigh-
bourhood. We use self-avoiding walks in new methods of image enhance-
ment, smoothing and edge detection (see the “Applications” section). It is
possible to apply them in many other fields like pattern recognition, bina-
rization, etc.

A self-avoiding walk takes place on a graph. The most important graph
is the d-dimensional hypercubic lattice Zd. The graph we use is Z2 with some
additional edges. These edges are a collection of pairs of points ((i, j), (k, l))
such that |i − k| = 1 and |j − l| = 1. In this situation, every site has eight
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neighbours. This means that the walker can go not only north, south, west
and east, but also in four additional directions.

Definition 1. An N-step self-avoiding walk ω on Z2 with the 8-neigh-
bourhood system, beginning at a site ω(0), is a sequence of sites ω(0), ω(1),
. . . , ω(N) satisfying %(ω(j + 1), ω(j)) = 1, and ω(i) 6= ω(j) for all i 6= j.
Here %((i, j), (k, l)) = max{|i− k|, |j − l|}.

Many interesting definitions and properties of this kind of walk are sim-
ilar to definitions and properties of the ordinary self-avoiding walk. We de-
note by cN the number of N -step self-avoiding walks starting at the origin.
We are interested in finding values of cN and their asymptotics as N →∞.

It is known that the number cN resists rigorous analysis and most re-
searchers think it is impossible to find a formula for it. Table I gives the
values of cN for N = 1 through 13.

In addition, it is known that the limit

(1) µ = lim
N→∞

N
√
cN

exists for the ordinary self-avoiding walk. The existence of this limit follows
from Lemma 1 below and the fact that the sequence log cN is subadditive.
Lemma 1 was proven by Hammersley and Morton [3].

Lemma 1. Let {an}n≥1 be a sequence of real numbers which is subaddi-
tive, i.e. an+m ≤ an+am. Then the limit limn→∞ n−1an exists in [−∞,∞)
and is equal to

(2) lim
n→∞

an
n

= inf
n≥1

an
n
.

In the case of our self-avoiding walk the situation is similar. The number
of concatenations of M -step and N -step walks is greater than the number
of M+N -step self-avoiding walks: cN+M ≤ cNcM . This implies that the
sequence log cN is subadditive, and in this way we have proven that for
self-avoiding walks on Z2 with the 8-neighbourhood system the limit (1)
exists. We call it the connective constant. Moreover, according to (2), we
have logµ = infN≥1 log cN . Thus

(3) µN ≤ cN
for N ≥ 1.

Bridges and their properties. There is an important subset of self-
avoiding walks, called bridges. The definition is the same as in the ordinary
case.
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Definition 2. An N -step self-avoiding walk ω = (ω1, ω2) is called an
N -step bridge if

ω1(0) < ω1(i) ≤ ω1(N) for 1 ≤ i ≤ N .

The number of N -step bridges starting at the origin will be denoted by
bN . Table I gives the values of bN for N = 1 through 13. Concatenation of
two bridges will always yield another bridge: bMbN ≤ bM+N . This means
that the sequence log bN is superadditive. It is easy to check that Lemma 1
is still true if we replace “subadditive” by “superadditive” and “inf ” in (2)
by “sup”. Therefore the limit

µb = lim
n→∞

N
√
bN

exists. In the same way as in (3) we obtain

(4) bN ≤ µNb ≤ µN .
More information about the asymptotics of cN and bN is given by the

following theorem.

Theorem 1. For any constant T > π
√

2/3, there exists an N0(T ) such
that

(5) cN ≤ bN+1e
T
√
N for all N ≥ N0.

The proof in the ordinary case is based on Hammersley–Welsh’s method
(see [4]). The method uses the fact that self-avoiding walks are subadditive
while bridges are superadditive, and other properties which are the same in
our case. In this way we can rewrite the classical proof with obvious changes.
We will do it using the notation of [8]. First we need two definitions and two
lemmas.

Definition 3. An N-step half-space walk is an N -step self-avoiding walk
ω satisfying ω1(0) < ω1(i) for all i = 1, . . . , N . The number of N -step half-
space walks starting at the origin is denoted by hN .

Definition 4. The span of an N -step self-avoiding walk ω is

max
0≤j≤N

ω1(j)− min
0≤j≤N

ω1(j).

The number of N -step half-space walks (respectively, bridges) starting at
the origin and having span A is denoted by hN,A (respectively, bN,A).

Lemma 2. For each integer A ≥ 1, let PD(A) denote the number of
partitions of A into distinct integers (i.e. the number of ways to write A =
A1 + . . .+ Ak where A1 > . . . > Ak). Then

(6) logPD(A) ∼ π
√
A/3 as A→∞.

This classical result of number theory is proved in [6].
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Lemma 3. For every N ≥ 1,

(7) hN ≤ PD(N)bN .

Proof. Let N ≥ 1, and let ω be an N -step half-space walk that starts at
the origin. Let n0 = 0. For each j = 1, 2, . . . , recursively define Aj(ω) and
nj(ω) so that

Aj(ω) = max
nj−1<i≤N

(−1)j(ω1(nj−1)− ω1(i))

and nj is the largest value of i for which the maximum is attained. The recur-
sion is stopped at the smallest integer k such that nk = N . This means that
Ak+1(ω) and nk+1(ω) are not defined. Observe that A1(ω) is the span of ω;
in general, Aj+1(ω) is the span of the self-avoiding walk (ω(nj), . . . , ω(N)),
which is either a half-space walk or the reflection of one. Moreover, each of
the subwalks (ω(nj), . . . , ω(nj+1)) is either a bridge or the reflection of one.
Also observe that A1 > . . . > Ak > 0.

For every decreasing sequence a1 > a2 > . . . > ak > 0 of integers,
let HN [a1, . . . , ak] be the set of N -step half-space walks ω with ω(0) = 0,
A1(ω) = a1, . . . , Ak(ω) = ak, and nk(ω) = N . In particular HN [a] is the
set of N -step bridges of span a. Given an N -step half-space walk ω, define
a new N -step walk ω′ as follows: for 0 ≤ i ≤ n1(ω), set ω′(i) = ω(i);
and for n1(ω) < i ≤ N , define ω′(i) to be the reflection of ω(i) in the
hyperplane x1 = A1(ω). Observe that if ω is in HN [a1, a2, . . . , ak], then ω′

is in HN [a1 + a2, a3, . . . , ak]; moreover, this transformation is one-to-one, so

|HN [a1, a2, . . . , ak]| ≤ |HN [a1 + a2, a3, . . . , ak]|.
Therefore, summing over all finite integer sequences a1 > . . . > ak > 0 we
get

hN =
∑
|HN [a1, . . . , ak]| ≤

∑
|HN [a1 + . . .+ ak]| =

∑
bN,a1+...+ak ,

which tells us that

(8) hN ≤
N∑

A=1

PD(A)bN,A.

Since PD(A) ≤ PD(N) for A ≤ N , it follows from (8) that

(9) hN ≤ PD(N)
N∑

A=1

bN,A,

which proves the lemma.

Proof of Theorem 1. Fix T > π
√

2/3, and choose ε > 0 so that T − ε >
π
√

2/3. By Lemma 2, there exists a constant K such that

(10) PD(A) ≤ K exp[(T − ε)(A/2)1/2] for all A.
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For an arbitrary n-step self-avoiding walk ω, let M = mini ω1(i) and let m
be the largest i such that ω1(i) = M . Then (ω(m), . . . , ω(n)) is a half-space
walk, as also is

(ω(m)− (1, 0), ω(m), ω(m− 1), . . . , ω(0)).

Using this decomposition, as well as Lemma 3, the inequality bibj ≤ bi+j ,
(10), and the inequality x1/2 + y1/2 ≤ (2x+ 2y)1/2, we obtain

cn ≤
n∑

m=0

hn−mhm+1

≤
n∑

m=0

bm+1bn−mPD(m+ 1)PD(n−m)

≤ bn+1

n∑

m=0

K2 exp
(

(T − ε)
[(

m+ 1
2

)1/2

+
(
n−m

2

)1/2])

≤ bn+1(n+ 1)K2 exp[(T − ε)(n+ 1)1/2]

for all n. Therefore, there exists an N0(T ) such that

cn ≤ bn+1e
T
√
n for all n ≥ N0.

Corollary 1. For any constant T > π
√

2/3, there exists an N0(T )
such that

(11) µN−1e−T
√
N ≤ bN ≤ cN ≤ µN+1eT

√
N for all N ≥ N0.

The first inequality in (11) comes from (5) and (3), the second is obvious
and the last one follows from (5) and (4).

Corollary 2. We have

(12) µb = µ.

This follows immediately from (11).
The sequences N

√
cN and N

√
bN converge very slowly to µ. We obtain

13
√
c13 = 6.335152592 and 13

√
b13 = 5.137860853. In the ordinary case there

is a proof that

(13) lim
N→∞

bN+1

bN
= µ

(see [7], [8]) and there is no proof that

(14) lim
N→∞

cN+1

cN
= µ.

Although, in our case, we have not proven any of these formulas, we expect
that they are true. It appears that sequences (13) and (14) converge faster
than N

√
cN and N

√
bN (Table I). Using this information we conjecture that

the value of µ is about 5.8.
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In our case, some properties of our self-avoiding walks lead to the suppo-
sition that (14) is easier to prove than in the ordinary case. The reason for
the failure of the proof of (14) is generally speaking that in the ordinary case
there does not exist a pair of self-avoiding walks having the same endpoints
whose lengths differ by 1. In our case this disadvantage disappears.

More precisely, the best result in the ordinary case is

(15) lim
N→∞

cN+2

cN
= µ2

(see Kesten [7]). The main idea of the proof is the following. Consider two
self-avoiding walks U and V :

U = ((0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (2, 3), (3, 3), (3, 2), (3, 1), (3, 0)),

V = ((0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (1, 2), (2, 2), (2, 3), (3, 3), (3, 2),

(3, 1), (3, 0)),

Kesten proved that U and V as patterns must both occur many times on
almost all self-avoiding walks, and changing a U to a V increases the length
of a walk by two; this gives us a way to transform N -step walks into (N+2)-
step walks, and (N+2)-step walks into (N+4)-step walks. To finish the proof
he made calculations based on all the possibilities for these transformations.

On the lattice with the 8-neighbourhood system, instead of V we can
use

V ′ = ((0, 0), (0, 1), (0, 2), (0, 3), (1, 3), (2, 2), (2, 3), (3, 3), (3, 2), (3, 1), (3, 0)).

This gives us a method to transform N -step walks into (N + 1)-step walks,
and (N+1)-step walks into (N+2)-step walks, and opens a way to prove (14).

Finite memory. Upper bounds for µ. Since there is no formula for
cN and the exponential growth of cN (which makes it difficult to count
the number of self-avoiding walks for N relatively small by computer) it is
interesting to find sharp bounds for µ. The best upper bound for µ in the
ordinary case was obtained by Noonan [9] using Goulden–Jackson’s method
[2]. We use this method in our case as well.

Definition 5. A walk is said to be self-avoiding with memory r if every
subwalk of r-steps is self-avoiding. We denote by cN,r the number of N -step
walks with memory r beginning at the origin.

The sequence log cN,r is subadditive for every r. Thus, the limit

µr = lim
n→∞

N
√
cN,r

exists. It is easily seen that the following lemma is true (see [8]).

Lemma 4. µr ↘ µ as r →∞.
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Definition 6. Denote by λ(ω) the number of steps of ω. The generating
function for a set D of walks is defined by

g(D) =
∑

ω∈D
sλ(ω).

A trivial verification shows that the generating function for all walks
(not only self-avoiding) is 1/(1− 8s).

Definition 7. A mistake is a walk that begins and ends at the same
point and is otherwise self-avoiding. A mistake with memory r is a mistake
which has at most r steps.

Definition 8. A marked walk is a walk in which a subset of its mistakes
is marked.

Marked walks may have no mistakes marked. If a walk has all of its
mistakes marked, then we say that it is fully marked . (See [9] for more
details.)

We denote by W the set of all marked walks. For ω ∈W let γ(ω) be the
number of mistakes of ω that are marked.

Definition 9. For ω ∈W let g(ω) = (−1)γ(ω)sλ(ω).

Definition 10. For a set S ⊂W let g(S) =
∑
ω∈S g(ω).

Lemma 5. The generating function for self-avoiding walks is g(W ).

The proof is the same as in the ordinary case (see [9]).
The generating function for self-avoiding walks with memory r is also

g(W ), but in this situation we have to use mistakes with memory r.

Definition 11. A cluster of mistakes is a fully marked walk with two
properties: (a) every step contributes to at least one mistake and (b) the
mistakes are fully overlapping (this means that the walk begins and ends at
the same point).

Definition 12. The suffix of length k of a mistake is its last k steps.
The prefix of length k of a mistake is its first k steps.

Definition 13. Let S[σ] denote the set of all clusters of mistakes which
terminate with the mistake σ.

With obvious changes, we can rewrite from [9] the generating function for
the self-avoiding walks (self-avoiding walks with memory if we use mistakes
with memory):

(16) g(W ) =
1

1− 8s− A(s)

with



176 A. Chydziński and B. Smołka

(17) A(s) =
∑

mistakesσ

g(S[σ]).

It is very difficult to calculate A(s) for the self-avoiding walks because
the set of all mistakes is infinite. For the self-avoiding walks with memory r
the set of all mistakes is finite and we can calculate A(s) using the following
equations (see [9]) for all mistakes σ with memory r:

(18) g(S[σ]) = g(σ) +
∑

p
p is a prefix of σ

∑

σ′

p is a suffix of σ′

(−1)sλ(σ)−λ(p)g(S[σ′]).

Of course all mistakes which can be obtained from one particular mistake
by using vertical or horizontal or oblique (π/4) reflection or a composite of
these transformations have identical g(S[σ]). (Thus, we need only one such
equation for every similarity class.)

For memory 2, there are eight mistakes in two classes. After solving a
system of two linear equations (18) we obtain

A2(s) =
−8s2

1 + s

and the generating function is

(19) g2(s) =
1 + s

1− 7s
.

It is known that in general µr is equal to the inverse of the smallest positive
root of the denominator. Thus, µ2 = 7.

For memory 3 there are 32 mistakes in 5 classes. After solving a system
of five equations we obtain

A3(s) =
−8s2 − 32s3 + 8s4 + 48s5 + 8s6

1 + 2s+ 3s2 − 3s3 − 6s4 − s5

and the generating function

(20) g3(s) =
−1− 2s− 3s2 + 3s3 + 6s4 + s5

−1 + 6s+ 5s2 − 5s3 − 10s4 + s5 .

Thus, µ3 = 6.608018511.
For memory 4 there are 176 mistakes in 17 classes and we have to sym-

bolically solve 17 equations (18). We obtain

g4(s) = (1 + 4s+ 13s2 + 30s3 + 23s4 − 6s5 − 113s6 − 240s7 − 300s8

− 367s9 − 291s10 − 236s11 − 75s12 − 54s13 − 39s14 − 30s15

− 63s16 − 14s17 − 3s18 − s19 + s20)/(1− 4s− 11s2 − 26s3 − 17s4

+ 42s5 + 95s6 + 160s7 + 148s8 + 113s9 + 45s10 + 20s11 + 21s12

+ 18s13 + 25s14 + 10s15 + 9s16 + 2s17 − 3s18 − s19 + s20).

Thus, µ4 = 6.387630137.
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Note that our self-avoiding walks have more complicated structure. In
the ordinary self-avoiding walks with memory 2, we have 4 mistakes in 1
class. For memory 4 we have 12 mistakes in 2 classes. For memory 6, we
have only 5 classes.

Another method of computing an upper bound for µ uses the formula
(see [1])

(21) µ ≤ N−1
√
cN/c1,

which is true under the conditions determined by Lemma 1. For N = 13
we obtain the upper bound 6.213161909. In the same paper we can find the
improvement that µ is bounded above by the unique positive root of the
polynominal

(22) c1x
N−1 = [cN − (c1 − 2)cN−1]x+ (c1 − 2)[(c1 − 1)cN−1 − cN ],

which is true when cN/cN−1 > c1 − 2. The numerical solution of (22) for
N = 12 gives the bound 6.233908491.

Mean-square displacement. Critical exponents

Definition 14. Set

(23) dN =
1
cN

∑

ω

|ω(N)|2,

where the sum is over all N -step self-avoiding walks. We call dN the mean-
square displacement.

Table I gives some values of dN . Conjectured behaviour of cN is

(24) cN ∼ EµNNγ−1,

and conjectured behaviour of dN is

(25) dN ∼ FN2ν

(see [8] for a deeper discussion). The numbers γ and ν are examples of
critical exponents. The critical exponents are believed to be independent
of the lattice structure. Applying (24) yields

cN
cN−1

≈ µ
(

N

N − 1

)γ−1

and

γ ≈
log cN

µcN−1

log N
N−1

+ 1.

For N = 13 and µ = 5.8 we obtain γ ≈ 1.399, which is close to the classical
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value γ = 43/32. Likewise we have

ν ≈
log dN

dN−1

2 log N
N−1

and for N = 13 we get ν ≈ 0.724. In the classical case ν = 3/4. The fact
that ν seems to be the same for our self-avoiding walks could be described in
the following way. Flory’s arguments that the classical ν is 3/4 (see [8]) are
based on the following simplification: the distance between the starting and
ending point of a self-avoiding walk has Gaussian behaviour. This means
that for every x ∈ Z2 and fixed ω(0) = 0 we have

Pr{ω(N) = x} ≈ N−1e−|x|
2/N .

We expect that the same formula is correct for our walks.

Table I. Numerical results (cN—number of walks, bN—number of bridges,
dN—mean-squared displacements)

N cN bN dN cN/cN−1 bN/bN−1

1 8 3 1.500000
2 56 15 3.428571 7.00000 5.00000
3 368 69 5.771739 6.57142 4.60000
4 2336 357 8.506849 6.34782 5.17391
5 14576 1923 11.567234 6.23972 5.38655
6 89928 10431 14.921982 6.16959 5.42434
7 550504 57093 18.543567 6.12160 5.47340
8 3349864 315129 22.415740 6.08508 5.51957
9 20290360 1750659 26.522458 6.0570 5.55537
10 122445504 9773955 30.851395 6.03466 5.58301
11 736685008 54790011 35.391505 6.01643 5.60572
12 4421048016 308185371 40.133410 6.00127 5.62484
13 26475370088 1738482795 45.068787 5.98848 5.64103

Applications. An interesting example of applications of our walks is
digital image processing. We demonstrate how to use self-avoiding random
walks in image smoothing.

Treating a digital image as a 2-dimensional lattice with an 8-neighbour-
hood system, a virtual particle performing a self-avoiding random walk can
be introduced. The transition probability between two lattice points is mod-
elled by a median distribution, which can be viewed as a modification of the
classical Gibbs distribution.

Let U be a smoothing operator defined as

(26) U(i, j) =
∑

(k,l)

P [n, (i, j), (k, l)] · F (k, l),
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where n is the number of steps, F (k, l) is the degree of greyness of point
(k, l), (i, j) is the starting point, (k, l) is the end point of a self-avoiding
walk, and the transition probability between two neighbouring points (k, l)
and (m,n) is given by

P [1, (k, l), (m,n)] =
exp{−β|F (k, l)− F (m,n)|}

Z
,(27)

Z =
∑

(u,v)

exp{−β|F (k, l)− F (u, v)|},

where Z is the statistical sum and β is the temperature coefficient.
The smoothing operator has to be applied in an iterative way. Starting

with a low value of β in (27) enables the smoothing of the image noise
components. At each iteration, the parameter β is increased, as in the known
operation of “simulated annealing” (β(k) = β(k−1)·δ). After a few iterations
the image becomes frozen, and further iterations do not produce visible
changes.

The assumption that the random walk is self-avoiding leads to several
interesting features of the operator U . It enables the elimination of small
image objects, which consist of fewer than n pixels, where n is the number
of steps of a self-avoiding walk. This feature makes the new filtering tech-
nique similar to mathematical morphology filters. However, it does not have
the drawbacks of dilation or erosion as the larger objects are not changed
and the connectivity of objects is always preserved. Unlike in mathematical
morphology no structuring element is needed. Instead, the only necessary
input is the number of steps, which makes this method attractive. (See [11],
[12] for more details.)

Conclusions. Many of the basic properties of self-avoiding walks on the
lattice Z2 with the 8-neighbourhood system are the same as in the ordinary
case, namely: the behaviour of the number of walks, bridges, mean-square
displacement; existence of the connective constant for the number of walks
and bridges; some combinatorial bounds for the number of walks, etc.

Some properties of these walks (which are the consequence of their more
complicated structure) lead to the supposition that a few difficult prob-
lems which are unsolved in the ordinary case may have a simpler solu-
tion in our case. For example, we expect that it is easier to prove that
µ = limN→∞ cN+1/cN for the lattice with the 8-neighbourhood system.

Because of this and the applications of this kind of walk, further studies
on this subject would be very interesting.

Though this kind of walk helps us solve some problems, the more com-
plicated structure makes some of the numerical calculations (like finding an
upper bound for µ) more difficult.
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