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PRICING FORWARD-START OPTIONS
IN THE HJM FRAMEWORK;

EVIDENCE FROM THE POLISH MARKET

Abstract. We show how to use the Gaussian HJM model to price modi-
fied forward-start options. Using data from the Polish market we calibrate
the model and price this exotic option on the term structure. The specific
problems of Central Eastern European emerging markets do not permit the
use of the popular lognormal models of forward LIBOR or swap rates. We
show how to overcome this difficulty.

1. The Gaussian HJM model. Let [0, τ ], for τ > 0, be a trading
interval and (Ω, {F t : t ∈ [0, τ ]},P ) be a probability space, where Ft is
the P -augmentation of the natural filtration generated by an n-dimensional
Brownian motion W (t) = {W1(t), . . . ,Wn(t)}. Assume that there are zero-
coupon bonds in the market with all maturities and face value 1. For t ≤ T
let P (t, T ) denote the t time price of such a T maturity bond. Of course
P (T, T ) ≡ 1 must hold for all T . We require that ∂ logP (t, T )/∂T exists.
We would like to consider a rate at time t of lending 1 unit at time T ,
which shall be returned after period δ. The loan costs P (t, T )−P (t, T + δ).
Therefore the rate R of return of such a loan at time t can be evaluated
from the equation

−1 · P (t, T ) + (1 + δR)P (t, T + δ) = 0,

hence

R =
P (t, T )− P (t, T + δ)

δP (t, T + δ)
.

To define the basic process in the Heath–Jarrow–Morton (HJM) model [3],
we take the limit of the above expression as δ → 0. Thus the instantaneous
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forward rate f(t, T ) for t < T is defined as

f(t, T ) = −∂ logP (t, T )
∂T

.

Solving this differential equation we obtain

P (t, T ) = exp
(
−
T�
t

f(t, s) ds
)
.

When t = T the forward rate f(t, t) is called the spot rate and is denoted
by r(t). Similarly one can interpret r(t) as the rate of loan at time t which
is returned an instant later. The dynamics of the forward rate f(t, T ) is
assumed to be driven by the standard Brownian motion as given by

df(t, T ) = α(t, T )dt+ σ(t, T )∗dW (t),

where ∗ denotes transposition.
Under certain assumptions about the processes α(t, T ) and σ(t, T ) (see

[3]), the process P (t, T ) can be expressed as a solution of the SDE

dP (t, T ) = P (t, T )([r(t) + b(t, T )]dt+ a(t, T )∗dW (t)),

where a(t, T ) = − � T
t
σ(t, v) dv and b(t, T ) = − � T

t
α(t, v) dv + 1

2 |a(t, T )|2.
Let the price process of a savings account be given by B(t) =

exp( � t0 r(s) ds). If one invests 1 unit in the cash market, after time t one will
get the amount B(t). The conditions on the processes α(t, T ) and σ(t, T )
which assure existence and uniqueness of a measure Q (making the dis-
counted bond price process a martingale) are known [3].

Thus if W̃ (t) denotes Brownian motion with respect to Q we get

df(t, T ) = σ(t, T )∗
T�
t

σ(t, y) dy dt+ σ(t, T )∗dW̃ (t)

and

dP (t, T ) = P (t, T )r(t)dt− P (t, T )
T�
t

σ(t, v)∗ dW̃ (t).

In this case each financial instrument with pay-off function X, which is
an FT -measurable random variable, can be priced at time t by using the
formula

(1) EQ
(
B(t)
B(T )

X

∣∣∣∣Ft
)
.

In this paper we will assume that the volatility σ(t, T ) of the forward
rate is a deterministic function. In the literature such a case is referred to
as the Gaussian HJM model (see [6]).
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2. Forward-start call options. In this section we will focuss on the
so-called forward-start options, i.e. options that are paid for at present but
received by holders at a prespecified future date. In the classic Black–Scholes
model the forward-start call option has terminal pay-off (ST −ST0)+, where
T0 < T and its price can be easily obtained since it suffices to consider the
option’s value at the delivery date T0. That is,

CFS
T0

= ST0(Φ(d̃+)− e−r(T−T0)Φ(d̃−))

where Φ(·) is the normal cumulative distribution function and

d̃± =
(r ± σ2/2)(T − T0)

σ
√
T − T0

(see [6], p. 207). However, in the case of a fixed-income market the situation
is more complex.

Let us consider a call option with maturity u on a zero-coupon bond
P (·, T ), u < T , where the strike price K is eRP (s, T ), s < u. If the price of
the bond increases over the interval (s, u) at a rate higher than R, than the
buyer gets P (u, T )−eRP (s, T ). If not, the pay-off is 0. To price this security
we will need the following lemmas, which are crucial to the application of
the forward measure technique.

Lemma 2.1 ([7]). Define a new forward measure by letting , for all
A ∈ FT ,

QT (A) =
�
A

(P (0, T )B(T ))−1 dQ.

Then for any random variable X which is FT -measurable and such that
E|X|p <∞ for a certain p > 1 we have

EQ
(
B(t)
B(T )

X

∣∣∣∣Ft
)

= P (t, T )EQT (X | Ft).

Lemma 2.2. For t ≤ u ≤ T and every Fu-measurable pay-off function
X the following relation holds:

EQ
(
B(t)
B(u)

P (u, T )X
∣∣∣∣Ft
)

= EQ
(
B(t)
B(T )

X

∣∣∣∣Ft
)
.

Proof. Because B(t), B(u) and X are Fu-measurable we have

EQ
(
B(t)
B(T )

X

∣∣∣∣Ft
)

= EQ
(

EQ
(
B(t)
B(u)

B(u)
B(T )

X

∣∣∣∣Fu
) ∣∣∣∣Ft

)

= EQ
(
B(t)
B(u)

XEQ
(
B(u)
B(T )

∣∣∣∣Fu
) ∣∣∣∣Ft

)

= EQ
(
B(t)
B(u)

XP (u, T )
∣∣∣∣Ft
)
.



214 P. Sztuba and A. Weron

Lemma 2.3. For any 0 ≤ t ≤ u ≤ T the inverted bond price process has
the following representation:

P (u, T )−1 =
P (t, u)
P (t, T )

exp
( u�
t

T�
u

σ(x, s)∗ ds dW (x, T )− 1
2

u�
t

∣∣∣
T�
u

σ(x, s) ds
∣∣∣
2
dx

)
,

where W (t, T ) denotes the Brownian motion with respect to the forward
measure QT .

Proof. The bond price process satisfies the following SDE:

dP (t, T ) = P (t, T )
(
r(t)dt−

T�
t

σ(t, s)∗ ds dW (t)
)
,

therefore by Itô’s lemma,

d
P (t, u)
P (t, T )

=
P (t, u)
P (t, T )

T�
u

σ(t, s)∗ ds
( T�
t

σ(t, s) ds dt+ dW (t)
)
,

=
P (t, u)
P (t, T )

T�
u

σ(t, s)∗ ds dW (t, T ).

Hence

(2)
P (t, u)
P (t, T )

=
P (0, u)
P (0, T )

exp
( t�

0

T�
u

σ(x, s)∗ ds dW (x, T )− 1
2

t�
0

∣∣∣
T�
u

σ(x, s) ds
∣∣∣
2
dx

)

for any t ≤ u. This yields the result because P (u, T )−1 = P (u, u)/P (u, T ).

Lemma 2.4. Assume that a random variable Z has normal N(−Var ζ/2,
Var ζ) distribution. Then for every positive constant K,

E((1−K exp(Z))+) = Φ

(− logK + 1
2 Var ζ√

Var ζ

)

−KΦ
(− logK − 1

2 Var ζ√
Var ζ

)
.

Proof. Set ke−rT = K−1, S0 = 1, σ2T = Var ζ. Then

E((1−K exp(Z))+) =
erT

k
E(e−rT (k − S0e

Z+rT )+)

and the expectation is equal to the value of a European put option on a
stock for

S0e
Z+rT = S0e

σBT (−σ2/2+r)T = ST .
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Thus the Black–Scholes formula yields

E((1−K exp(Z))+) =
erT

k

(
ke−rTΦ

(
log k/S0 − (r − σ2/2)T

σ
√
T

)

− S0Φ

(
log k/S0 − (r + σ2/2)T

σ
√
T

))

= K

(
K−1Φ

(
logK−1 + 1

2 Var ζ√
Var ζ

)

− Φ
(

logK−1 − 1
2 Var ζ√

Var ζ

))
.

Now, we will price the forward-start options.

Theorem 2.1. The price of a forward-start call option with maturity
u < T and strike price eRP (s, T ), for s < u, on a zero-coupon bond with
price process P (·, T ) is given by the following formula:

(3) CFS
t = P (t, T )

[
Φ(d+)− P (t, u)

P (t, s)
eR+AΦ(d−)

]
,

where

d± =
log

P (t, s)
P (t, u)

−R− A±B/2
√
B

,

A =
1
2

s�
t

(∣∣∣
T�
s

σ(x, y) dy
∣∣∣
2

+
∣∣∣
u�
s

σ(x, y) dy
∣∣∣
2
−
∣∣∣
T�
u

σ(x, y) dy
∣∣∣
2)
dx,

B =
u�
s

∣∣∣
T�
u

σ(y, x) dx
∣∣∣
2
dy +

s�
t

∣∣∣
u�
s

σ(y, x) dx
∣∣∣
2
dy.

Proof. Let t < s < u < T . We start by applying formula (1):

CFS
t ≡ EQ

(
B(t)
B(u)

(P (u, T )− eRP (s, T ))+

∣∣∣∣Ft
)

= EQ
(
B(t)
B(T )

(
1− eR P (s, T )

P (u, T )

)+ ∣∣∣∣Ft
)

because of Lemma 2.2.
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Using Lemmas 2.3 and 2.1 we can write

CFS
t = P (t, T )EQT

([
1− P (t, u)

P (t, s)
exp

(
R+

u�
t

T�
u

σ(y, x) dx dW (y, T )

−
s�
t

T�
s

σ(y, x) dx dW (y, T )− 1
2

u�
t

∣∣∣
T�
u

σ(y, x) dx
∣∣∣
2
dy

+
1
2

s�
t

∣∣∣
T�
s

σ(y, x) dx
∣∣∣
2
dy

)]+ ∣∣∣∣Ft
)
.

Let a random variable ζ be given by the formula

ζ =
u�
s

T�
u

σ(y, x) dx dW (y, T )−
s�
t

u�
s

σ(y, x) dx dW (y, T ).

Then ζ has normal distribution with respect to the measure QT with mean
0 and variance

Var ζ =
u�
s

∣∣∣
T�
u

σ(y, x) dx
∣∣∣
2
dy +

s�
t

∣∣∣
u�
s

σ(y, x) dx
∣∣∣
2
dy.

Finally we get

CFS
t = P (t, T )EQT

((
1−K exp(ζ − 1

2 Var ζ
))+ ∣∣Ft

)

for

K =
P (t, u)
P (t, s)

exp
(
R+

1
2

s�
t

(∣∣∣
T�
s

σ(x, y) dy
∣∣∣
2

+
∣∣∣
u�
s

σ(x, y) dy
∣∣∣
2
−
∣∣∣
T�
u

σ(x, y) dy
∣∣∣
2
)
dx

)

and because K is Ft-measurable and ζ is independent of Ft we can apply
Lemma 2.4 to obtain the final result:

CFS
t = P (t, T )

(
Φ

(− logK + 1
2 Var ζ√

Var ζ

)
−KΦ

(− logK − 1
2 Var ζ√

Var ζ

))
.

Remarks. It is easy to observe that:

• limR→∞CFS
t = 0.

• lims→u CFS
t = 0 for R ≥ 0.

• For s = t the price CFS
t is equal to the price of a European call option

on a bond struck (at time t) at the current price of the bond with maturity
T , i.e. K = eRP (t, T ).
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3. Calibration of the model. In this section the one-factor model
with constant volatility function σ(t, T ) ≡ σ will be considered.

The standard procedure when dealing with an interest rate in the HJM
model is as follows:

• at time t0 = 0 use market data to calibrate (fit) the model to the
observed bond prices,
• use the calibrated model to compute prices of various interest rate

derivatives,
• at time t1 = t+ θ, repeat the above procedure in order to recalibrate

the model, etc.

Let us fix times 0 = t0 < t1 < . . . < tn. We can get the follow-
ing ti-prices of (ti + δ)-maturity bills from the market: P (t0, t0 + δ), P (t1,
t1 + δ), . . . , P (tn, tn + δ) for some fixed δ. For example, in the case studied
in the next section, δ = 364/365, which corresponds to 52-week bills traded
on the Polish money market. We work with a model with continuously com-
pounded rates. The yield curve determined by the market at time t0 = 0 is
denoted by Y (0, ·). Thus for each T > 0 we have

P (0, T ) = exp(−T · Y (0, T )).

According to [3] in a one-factor HJM model with a constant volatility σ, the
price of a zero-coupon bond is given by the expression

P (t, T ) =
P (0, T )
P (0, t)

exp[−(σ2/2)Tt(T − t)− σ(T − t)W̃ (t)].

The formula for the volatility σ is provided by the following theorem:

Theorem 3.1. For a one-factor HJM model the maximum likelihood es-
timator σ̂ of the constant volatility σ is given by the formula

(4) σ̂ =

√√√√−n+
√
n2 + 4

∑n−1
i=0 a(i)2

∑n−1
i=0 x(i)2

2
∑n−1
i=0 a(i)2

,

where a(i) =
√
ti+1 − ti (δ + ti + ti+1)/2 and

x(i) =
1

δ
√
ti+1 − ti

ln
P (ti+1, ti+1 + δ)
P (ti, ti + δ)

+
(ti+1 + δ)Y (0, ti+1 + δ)− ti+1Y (0, ti+1)− (ti + δ)Y (0, ti + δ) + tiY (0, ti)

δ
√
ti+1 − ti

for times 0 = t0 < t1 < . . . < tn, i = 0, . . . , n− 1, δ > 0.
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Proof. For each ti, i = 0, . . . , n,

(5) P (ti, ti + δ) =
P (0, ti + δ)
P (0, ti)

exp[−(σ2/2)(ti + δ)tiδ − σδW̃ (ti)]

= exp[−(ti + δ)Y (0, ti + δ) + tiY (0, ti)− (σ2/2)(ti + δ)tiδ − σδW̃ (ti)].

Taking the logarithms of both sides we get

lnP (ti, ti + δ) = − (ti + δ)Y (0, ti + δ) + tiY (0, ti)

− (σ2/2)(ti + δ)tiδ − σδW̃ (ti).

Therefore

ln
P (ti+1, ti+1 + δ)
P (ti, ti + δ)

=− (ti+1 + δ)Y (0, ti+1 + δ) + ti+1Y (0, ti+1)

− (σ2/2)(ti+1 + δ)ti+1δ − σδW̃ (ti+1)

+ (ti + δ)Y (0, ti + δ)− tiY (0, ti)

+ (σ2/2)(ti + δ)tiδ + σδW̃ (ti).

After dividing by δ
√
ti+1 − ti we obtain

(6)
1

δ
√
ti+1 − ti

ln
P (ti+1, ti+1 + δ)
P (ti, ti + δ)

+
(ti+1 + δ)Y (0, ti+1 + δ)− ti+1Y (0, ti+1)− (ti + δ)Y (0, ti + δ) + tiY (0, ti)

δ
√
ti+1 − ti

= −(σ2/2)
√
ti+1 − ti (δ + ti + ti+1)− σ√

ti+1 − ti
(W̃ (ti+1)− W̃ (ti)).

The right side of the above equation yields, for i = 0, . . . , n − 1, a se-
quence of n independent random variables. Denote these variables by Xi, i =
0, . . . , n− 1. Each Xi is normally distributed with mean −(σ2/2)

√
ti+1 − ti

(δ + ti + ti+1) and variance σ2 (see (6)). Simultaneously, for each i =
0, . . . , n − 1, we can obtain a realization of every Xi by computing the
left-hand side of this equation using only the market data. Hence, Xi has
the following density function:

fi(x) =
1√
2π σ

exp
(
− (x− σ2a(i))2

2σ2

)
,

where a(i) =
√
ti+1 − ti (δ + ti + ti+1)/2 for i = 0, . . . , n− 1.

Now we can evaluate σ using the maximum likelihood method. Since the
ML function is given by
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L(x(0), . . . , x(n− 1), σ) =
(

1√
2π σ

)n
exp

(
1

2σ2

n−1∑

i=0

(x(i)− σ2a(i))2
)

the equality ∂L/∂σ = 0 is satisfied for σ̂ given by (4).

4. The empirical analysis of the Polish market. Statistics show
that a steady recovery began in the Central Eastern European countries in
1994. According to a CASE forecast the economic growth in Poland should
rise above 5% mark in 2000 and even more than 6% in 2001. A substantial
growth is also expected in the other countries of the region.

Uncertainty surrounding monetary growth plays an important role in re-
ducing expectations for bond market risks. So as long as the US bond market
remains stable, bond yields in Central Eastern Europe are also expected to
decline. The expansion of liquidity in Poland and elsewhere appears to sig-
nal better growth ahead. However, the liquidity is likely to remain the main
obstacle in implementation of advanced interest rate methodology from the
hard-currency countries. Therefore in this section we demonstrate how one
can deal with these difficulties for emerging markets, taking Poland as an
example.

The HJM methodology of term structure modeling is based on the
arbitrage-free dynamics of instantaneous continuously compounded forward
rates. Hence, this methodology requires some degree of smoothness with
respect to maturity of bond prices and their volatilities. Alternative ap-
proaches based on forward LIBOR and swap rates were developed recently
(see [1], [4], [7] and [6]). However, on emerging markets we do not have
yet the market practice of pricing caps, swaptions and other interest rate
derivatives. Therefore we will develop a simple methodology based on the
use of T-bills only.

On the Polish money market, every Monday T-bills are offered by the
Polish National Bank (NBP). T-bills are zero-coupon securites with a face
value of 100 PLN. They are offered at a discount and usually have three
different maturites: 13, 26 and 52 weeks. For these T-bills average weighted
rates of return are quoted in financial news services (an example is given
in Fig. 1). On the secondary market the T-bills are traded before their
maturities. A certain day is fixed to be time 0 at the beginning of the
analysis. We assume that arbitrage is not possible between the T-bills and
the cash market.

To obtain the yield curve we have chosen average weighted rates of return
of 13, 26 and 52-week T-bills from the primary and the secondary market.
In contrast to the well developed markets, the rates from the interbank cash
market (WIBOR and WIBID) cannot be taken into account because as yet
it is difficult to regard them as traded securities [8].
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Fig. 1. Rates of Polish T-bills for two different maturities

Table 1. 52-week T-bills used for estimating volatility: average weighted
prices and rates of return

i Date Model time
ti

Price
P (ti, ti + 364/365)

Quoted yield
rti

0 98-06-01 0 82.49 20.85%
1 98-06-08 0.01918 82.76 20.53%
2 98-06-15 0.03836 82.8 20.50%
3 98-06-22 0.05753 82.92 20.31%
4 98-06-29 0.07671 83.12 20.00%
5 98-07-06 0.09590 83.96 18.89%
6 98-07-13 0.11509 84.46 18.20%
7 98-07-20 0.13427 85.53 16.69%
8 98-07-27 0.15342 85.55 16.65%
9 98-08-03 0.17260 85.92 16.18%
10 98-08-10 0.19178 86.45 15.36%
11 98-08-17 0.21096 86.45 15.33%
12 98-08-24 0.23014 86.10 15.46%
13 98-08-31 0.24932 85.14 16.89%
14 98-09-07 0.26849 85.14 17.15%

Table 1 presents results of consecutive auctions on Mondays. The date is
the date of the offering, and the model time is a fraction of a 365-day year.
The quoted yield is a rate computed for a 360-day year, that is,

e(364/365)·Y (t,t+364/365) = (1 + (364/360) · rt)
for every quoted rate rt and time t. Following the algorithm of Section 3
with data taken from Table 1 we can use formula (4) to obtain the needed
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volatility σ̂. We get
σ̂ = 0.04205.

Basing on the estimated volatility and the yield curve, Figure 2 shows the
simulated process of the rate of return for a 13-week T-bill over the entire
period from the day of emission to maturity (dotted line). The solid lines
(quantile lines) determine the range which the rate of return is expected to
be in with probability 0.9 during the next 13 weeks.
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Fig. 2. The simulated process of the rate of return (dotted line) for a 13-week T-bill with
maturity in 91 days and two quantile lines (solid lines)

Now we will show how to apply the presented results to hedging. Recall
that in the HJM model, the price Ct at time t of a European call option on
a zero-coupon bond struck at K with maturity u (see [3]) is given by

(7) Ct = P (t, T )Φ(h)−KP (t, u)Φ(h− σ(T − u)
√
u− t),

where

h =
log(P (t, T )/KP (t, u)) + 1

2σ
2(T − u)2(u− t)

σ(T − u)
√
u− t .

Assume that an investor intends to buy a 13-week T-bill on the next
Monday with a fixed striking price K. He wants to protect his position from
a possible fall in rates of return. Denote by u the date of the future auction
of 13-week T-bills. Consider another investor with an investment horizon T ,
who possesses T-bills with maturity T in his portfolio, but needs to have
cash at time s for a given period after which he again wants to invest in
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T-bills (at time u > s). Therefore at time s he has to close his position, i.e.
sell the T-bills, and at a later time u he has to buy them back. He wants to
hedge his position against a possible fall of the rate of return over the period
(s, u). He decides to protect himself from a more than 100 · I% increase of
the T-bill price.

Fig. 3. Linearly interpolated yield curve constructed for the rates of return of Polish T-bills

To be more precise: let t = 0 correspond to the 24th August 1998. The
current yield curve is given in Fig. 3. Quoted rates are linearly interpolated.
Our goal is to price both options for any Monday auction. Such a date is
denoted in the model by u. Then for 13-week T-bills we have T = u+91/365.

We choose s = u− 91/365 in order to match the price of 13-week T-bills
with the price of 26-week bills in the forward-start option. The given I% is
related to the rate R appearing in (3) through the formula R = log(1 + I).
Now, having estimated the volatility σ from the data, we can evaluate the
value of a European call option and a forward-start option directly from (3)
and (7), respectively.

Figure 4 shows the prices for both derivatives with various expiry dates
corresponding to expected Monday auctions (for different times u). In the
case of a European call option, the longer the maturity, the higher the price.
It should be pointed out that the price of a forward-start option does not
behave in the same manner. The reason is that the entire uncertainty of
evolution of the price of this derivative is “cut off” by the striking price
P (s, T ). For this reason a buyer of a forward-start option pays only for
the risk from the interval (s, u), in contrast to the case of a European call
option. The price of a forward-start option considered as a function of the
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Fig. 4. European call options and forward-start options priced for 28.04.97

time to maturity may not only be increasing in time but decreasing as well. It
depends on the shape of the initial yield curve. Finally, the pay-off function
of forward-start options which have been priced above is given in Fig. 5.

Fig. 5. Pay-off function of the forward start options
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