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THERMAL ABLATION MODELING
VIA THE BIOHEAT EQUATION

AND ITS NUMERICAL TREATMENT

Abstract. The phenomenon of thermal ablation is described by Pennes’
bioheat equation. This model is based on Newton’s law of cooling. Many
approximate methods have been considered because of the importance of this
issue. We propose an implicit numerical scheme which has better stability
properties than other approaches.

1. Introduction. Thermal ablation is a low invasive technique which
eliminates cancerous tissue using high temperature. To this end, an elec-
trode tip is inserted into the cancerous tissue and radio-frequency energy is
supplied. This results in a local temperature increase and the destruction of
the tumor tissue. The problem is to control the area that is damaged. For
this purpose, it is helpful to construct a model which takes into account mod-
ification of thermal parameters of the tissue, and effects of cooling, either
by blood or saline introduced into a heated area. The model must give a
possibility to destroy tissue depending on the position of the electrodes and
the time of treatment. The maximal temperature must be less than 92◦C
to avoid vaporization, whereas it must be less than 43◦C in large vessels in
order to prevent cell death. The main goal is to optimize the power input
which destroys cancerous tissues.

The model is well described mathematically in [2]. In [7] the authors dis-
cuss an analytical approach under the assumption of sinusoidal heat flux on
the skin. In [3] there are exact solutions for a fairly general class of Pennes-
type problems. In [8] the authors approximate a bioheat equation by means of
a second-order finite difference scheme which is a combination of the explicit
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and implicit Euler schemes. In [1] we consider the one-dimensional case, while
this article is devoted to a three-dimensional model. The boundary conditions
in [1] are of the first order, so error estimates are still quite weak. Moreover,
the explicit Euler method component makes solutions more sensitive to any
initial-data perturbations. We propose an implicit scheme, which by its na-
ture is of the first order but has much better properties. What is more, we are
convinced that our scheme gives an opportunity to perform reliable computa-
tions even though the coefficients k, Qb, Qm, and Qz are discontinuous. This
improvement significantly increases the possibility of practical applications.

The paper is organized as follows. We first formulate an implicit dif-
ference scheme for Pennes’ equation. Next, we study the properties of this
scheme, in particular its stability, which clearly implies convergence. Finally,
we give some numerical examples and conclude with several remarks on mul-
tidimensional generalizations.

2. Formulation of the problem. Newton’s law of cooling states that
the rate of change of the temperature of an object is proportional to the
difference between its own temperature and the ambient temperature. More
specifically: The rate of heat loss of a body is proportional to the difference
in temperatures between the body and its surroundings. In symbols, the rate
of change of the temperature dT/dt is proportional to the difference between
the object temperature T = T (t) and the ambient temperature Ta:

dT

dt
= −r(T − Ta).

Then one can consider Pennes’ equation, i.e. the law of cooling with
diffusion. In the one-dimensional case it has the form

cρ
∂T

∂t
= k

∂2T

∂x2
+Qb +Qm +Qz.

The biological interpretation of the coefficients of this equation is as follows:
c [J/kgK] is the specific heat of tissue, ρ [kg/m3] the tissue density, T [K] the
tissue temperature, k [W/mK] the thermal conductivity of tissue, Qb [W/m3]
a term which accounts for the effects of perfusion, Qm [W/m3] the metabolic
heat generation term, and Qz [W/m3] the power density delivered by an
external source.

The coefficients c, ρ, k, Qb, Qm, and Qz may depend on x and T, which
is coherent with experimental data. The Qz may also depend on time (for
example during the heating interval). We restrict our attention to a simplified
case Qb = −r(T − Ta) and consider the three-dimensional problem

(2.1) c(x, T )ρ(x, T )
∂T

∂t
= ∇ · (k(x, T )∇T ) +Qm(x, T ) +Qz(t, x, T )− r(T − Ta) on Ω,
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where x = (x1, x2, x3) ∈ Ω ⊂ R3 . The respective initial-boundary conditions
depend on the region Ω, the electrode and the surrounding tissue. We have

(2.2) T (0, x) = ω0(x), where 0 < Ta ≤ ω0(x) ≤ T0,

and

(2.3) T (t, 0) = T0,
∂T

∂n
= 0 on ∂Ω,

where n is the unit normal vector to the boundary, ω0(0) = T0.

From the mathematical point of view the functions Qm(x, T ) and
Qz(t, x, T ) can be grouped into one functionQ(t, x, T ). Denote c(x, T )ρ(x, T )
by ρ̂(x, T ). Thus we consider

ρ̂(x, T )
∂T

∂t
= ∇ · (k(x, T )∇T ) +Q(t, x, T )− r(T − Ta).

We discretize the problem on a regular mesh. Assume that ∆t > 0, ∆xl > 0
for l = 1, 2, 3. Denote the nodes value by tn = n∆t, n ∈ Z, and xj =
(x1
j , x

2
j , x

3
j ) = (j1∆x1, j2∆x2, j3∆x3) for j = (j1, j2, j3) ∈ Z3 . The set of all

nodes is denoted by Zh = {(tn, xj) : (n, j) ∈ Z1+3}. Denote Eh = Ω̄ ∩ Zh,
E∗
h = Ω̄c ∩ Zh, where Ω̄c is the complement of Ω̄. Assume that k(x, T ) is a

3× 3 diagonal matrix. Then the respective scheme looks as follows:

(2.4) ρ̂(xj , T
n−1
j )

Tnj − T
n−1
j

∆t

=

3∑
l=1

(
kl(xj , T

n−1
j )

Tnj+el − 2Tnj + Tnj−el
∆x2

l

+
∂kl(xj , T

n−1
j )

∂xl
Tnj+el − T

n
j−el

2∆xl

+
∂kl(xj , T

n−1
j )

∂T

(
Tnj+el − T

n
j−el

2∆xl

)2)
+Q(tn−1, xj , T

n−1
j )− r(Tnj − Ta),

where Tnj = T (tn, xj), j = (j1, j2, j3), xj = (x1
j , x

2
j , x

3
j ) and e1 = (1, 0, 0),

e2 = (0, 1, 0), e3 = (0, 0, 1). The respective boundary conditions depend on
the region, the electrode and the surrounding tissue:

(2.5) T 0
j = ω0(xj)

and

(2.6) Tn0 = T0, Tnj = (IhT )(tn, R(xj)) on E∗
h,

where Ih is the interpolation operator (see [4]) andR is the reflection operator
(reflection with respect to the boundary). Define a difference operator Lh
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on Eh as follows:

LhTnj = ρ̂(xj , T
n−1
j )

Tnj − T
n−1
j

∆t

−
3∑
l=1

(
kl(xj , T

n−1
j )

Tnj+el − 2Tnj + Tnj−el
∆x2

l

+
∂kl(xj , T

n−1
j )

∂xl
Tnj+el − T

n
j−el

2∆xl

+
∂kl(xj , T

n−1
j )

∂T

(
Tnj+el − T

n
j−el

2∆xl

)2)
−Q(tn−1, xj , T

n−1
j ) + r(Tnj − Ta).

Then equation (2.4) is equivalent to LhTnj = 0. Assume that 0 < k0 ≤
kl(x, T ) ≤ k1 for l = 1, 2, 3, 0 < ρ0 ≤ ρ̂(x, T ) ≤ ρ1, 0 ≤ Q(t, x, T ) ≤ Q1 and
the Lipschitz conditions

|ρ̂(x, T )− ρ̂(x, T̃ )| ≤ Lρ̂|T − T̃ |,
|k(x, T )− k(x, T̃ )| ≤ Lk|T − T̃ |,∣∣∣∣∂kl(xj , Tn−1

j )

∂xl
−
∂kl(xj , T̃

n−1
j )

∂xl

∣∣∣∣, ∣∣∣∣∂k(x, T )

∂T
− ∂k(x, T̃ )

∂T

∣∣∣∣ ≤ L̄k|T − T̃ |,
|Q(t, x, T )−Q(t, x, T̃ )| ≤ LQ|T − T̃ |

hold for some Lρ̂ > 0, Lk > 0, L̄k > 0 and LQ > 0. It is obvious that the
following lemma requires only a few of the above assumptions.

Lemma 2.1 (Estimate). Under the above assumptions the solution of
(2.4)–(2.6), for a sufficiently small discretization parameter ∆x, satisfies the
estimate

Ta ≤ Tnj ≤ Q1
ρ1 + r∆t

rρ0

[
1− 1(

1 + r∆t
ρ1

)n]+
T0 − Ta(
1 + r∆t

ρ1

)n
in a class of functions with first order difference quotients with respect to x
bounded by a constant M1 independent of ∆x.

Proof. It is convenient to simplify the notation as follows:

(2.7)

kn−1
l,j (T ) = kl(xj , T

n−1
j ), kn−1

l,l,j (T ) =
∂kl(xj , T

n−1
j )

∂xl
,

kn−1
T,l,j(T ) =

∂kl(xj , T
n−1
j )

∂T
,

ρ̂n−1
j (T ) = ρ̂(xj , T

n−1
j ), Qn−1

j (T ) = Q(xn−1
j , Tn−1

j ).

In this proof we skip T, e.g. we write kn−1
l,j insead of kn−1

l,j (T ). From the initial
condition we have T 0

j ≥ Ta (cf. (2.2)). We will prove by induction on n that
Tnj ≥ Ta. Assume that this holds for n−1 and suppose, on the contrary, that
there exists j such that Tnj < Ta. We choose j such that Tnj = mini T

n
i and

j is the least in the lexicographical order. Since Qn−1
j ≥ 0, Tn−1

j − Ta ≥ 0
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and LhTnj = 0, it follows that

(Tnj − Ta)ρ̂n−1
j

1

∆t
−

3∑
l=1

{
kn−1
l,j

Tnj+el − 2Tnj + Tnj−el
∆x2

l

+
Tnj+el − T

n
j−el

2∆xl

(
kn−1
l,l,j + kn−1

T,l,j

Tnj+el − T
n
j−el

2∆xl

)}
+ r(Tnj − Ta) ≥ 0

for sufficiently small ∆xl, because kn−1
l,l,j + kn−1

T,l,j

Tnj+el
−Tnj−el

2∆xl
is bounded by

Lk(1 +M1). This contradicts Tnj − Ta < 0.
Now we will prove the upper bound. Rewrite the equation LhTnj = 0 as

(Tnj − Ta)
(
ρ̂n−1
j

1

∆t
+ r + 2

3∑
l=1

kn−1
l,j

∆x2
l

)

=
3∑
l=1

(
kn−1
l,j

Tnj+el − Ta
∆x2

l

+ kn−1
l,j

Tnj−el − Ta
∆x2

l

+
Tnj+el − T

n
j−el

2∆xl

(
kn−1
l,l,j + kn−1

T,l,j

Tnj+el − T
n
j−el

2∆xl

))
+Qn−1

j + (Tn−1
j − Ta)ρ̂n−1

j

1

∆t
.

Since this holds for all j, we can consider j for which Tnj = maxi T
n
i . Once

again using the boundedness of first order difference quotients, we obtain

(Tnj − Ta)
(
ρ̂n−1
j

1

∆t
+ r +

3∑
l=1

2kn−1
l,j

∆x2
l

)

≤
3∑
l=1

(
2kn−1

l,j

Tnj − Ta
∆x2

l

)
+Qn−1

j + (Tn−1
j − Ta)ρ̂n−1

j

1

∆t

for k0 ≥ ∆xlLk(1 +M1)/2, which simplifies to

(Tnj − Ta)
(
ρ̂n−1
j

1

∆t
+ r

)
≤ Qn−1

j + (Tn−1
j − Ta)ρ̂n−1

j

1

∆t
.

Thus

Tnj − Ta ≤
Qn−1
j

ρ̂n−1
j

1
∆t + r

+ (Tn−1
j − Ta)

ρ̂n−1
j

1
∆t

ρ̂n−1
j

1
∆t + r

,

hence

Tnj − Ta ≤
Q1

ρ0
1

∆t + r
+ (Tn−1

j − Ta)
ρ1

1
∆t

ρ1
1

∆t + r

≤ Q1

ρ0
1

∆t

+ (Tn−1
j − Ta)

1

1 + ∆t rρ1
.
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Thus

Tnj − Ta ≤ Q1
∆t

ρ0

n∑
i=1

1(
1 + r∆t

ρ1

)i−1
+ (T 0

j − Ta)
1(

1 + r∆t
ρ1

)n
≤ Q1

ρ1 + r∆t

rρ0

[
1− 1(

1 + r∆t
ρ1

)n]+
T0 − Ta(
1 + r∆t

ρ1

)n .
Observe that the boundary values are interpolated from internal ones, so the
inequalities are also satisfied.

Remark 2.2. Observe that Tnj − Ta can be approximately estimated by

Q1
ρ1

rρ0
(1− e−tr/ρ1) + (T0 − Ta)e−tr/ρ1 , t = tn.

We formulate a stability theorem. Note that it implies convergence.

Theorem 2.3 (Stability). Under the above assumptions, if ω0 ∈ C2 and
k ∈ C1,2, then the scheme (2.4)–(2.6) is stable in any class of solutions with
bounded first order difference quotients with respect to t and x, and bounded
second order difference quotients with respect to x.

Proof. Suppose that Tnj is a solution of (2.4)–(2.6) with the first and sec-
ond order difference quotients bounded byM1 andM2 respectively. Consider
the perturbed scheme (2.4)–(2.6), i.e.

LhT̃nj = ξnj

with perturbations ξnj such that

max
j,n
|ξnj | := ‖ξ‖ → 0 as h→ 0.

Suppose that the difference quotients of T̃ have the same estimates M1, M2.
Denote εnj = T̃nj − Tnj . We use the same notation (2.7) as in the proof of
Lemma 2.1. Then we have the error equation

LhT̃nj − LhTnj = ρ̂n−1
j (T̃ )

εnj − ε
n−1
j

∆t
+
Tnj − T

n−1
j

∆t
(ρ̂n−1
j (T̃ )− ρ̂n−1

j (T ))

−
3∑
l=1

{
εnj+el

[
kn−1
l,j (T̃ )

∆x2
l

+
kn−1
l,l,j (T̃ )

2∆xl
+
kn−1
T,l,j(T̃ )

2∆xl

(
T̃nj+el−T̃

n
j−el

2∆xl
+
Tnj+el−T

n
j−el

2∆xl

)]
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+ εnj−el

[
kn−1
l,j (T̃ )

∆x2
l

−
kn−1
l,l,j (T̃ )

2∆xl
+
kn−1
T,l,j(T̃ )

2∆xl

(
T̃nj+el − T̃

n
j−el

2∆xl
+
Tnj+el − T

n
j−el

2∆xl

)]
− 2εnj

kn−1
l,j (T̃ )

∆x2
l

}
−

3∑
l=1

{
(kn−1
l,j (T̃ )− kn−1

l,j (T ))
Tnj+el − 2Tnj + Tnj−el

∆x2
l

+ (kn−1
l,l,j (T̃ )− kn−1

l,l,j (T ))
Tnj+el − T

n
j−el

2∆xl

+ (kn−1
T,l,j(T̃ )− kn−1

T,l,j(T ))

(
Tnj+el − T

n
j−el

2∆xl

)2}
−Qn−1

j (T̃ ) +Qn−1
j (T ) + rεnj + ξnj .

Hence we get the estimate

|εnj |
(
ρ̂n−1
j (T̃ )

∆t
+

3∑
l=1

(
kn−1
l,j (T̃ )

2

∆x2
l

)
+ r

)

≤ |εn−1
j |

ρ̂n−1
j (T̃ )

∆t
+

3∑
l=1

(
|εnj+el |

(
kn−1
l,j (T̃ )

∆x2
l

+
|kn−1
l,l,j (T̃ )|
2∆xl

+
|kn−1
T,l,j(T̃ )|
∆xl

M1

)

+ |εnj−el |
(
kn−1
l,j (T̃ )

∆x2
l

−
|kn−1
l,l,j (T̃ )|
2∆xl

+
|kn−1
T,l,j(T̃ )|
∆xl

M1

))
+

3∑
l=1

(
|kn−1
l,j (T̃ )− kn−1

l,j (T )|M2 + |kn−1
l,l,j (T̃ )− kn−1

l,l,j (T )|M1

+ |kn−1
T,l,j(T̃ )− kn−1

T,l,j(T )|M2
1

)
+ |Qn−1

j (T̃ )−Qn−1
j (T )|+M1|ρ̂n−1

j (T̃ )− ρ̂n−1
j (T )|+ |ξnj |.

If ∆xl are small enough, we have

|εnj |
(
ρ̂n−1
j

∆t
+ r

)
≤ |εn−1

j |
(
ρ̂n−1
j

∆t
+

3∑
l=1

(LkM2 + L̄kM1 + L̄kM
2
1 ) + LQ +M1Lρ̂

)
+ |ξnj |.

Thus

‖εn‖
(
ρ̂n−1
j

∆t
+ r

)
≤ ‖εn−1‖

(
ρ̂n−1
j

∆t
+ 3LkM2 + 3L̄kM1 + 3L̄kM

2
1 + LQ +M1Lρ̂

)
+ ‖ξ‖.
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Therefore we obtain

‖εn‖ ≤ ‖εn−1‖
ρ̂n−1
j

∆t + 3LkM2 + 3L̄kM1 + 3L̄kM
2
1 + LQ +M1Lρ̂

ρ̂n−1
j

∆t + r
+

‖ξ‖
ρ̂n−1
j

∆t + r
.

If we add appropriate perturbed boundary conditions, in the simplest case
we obtain the estimate

‖εn‖ ≤ ‖ε0‖ 1(
1 +

∆t(r−(3LkM2+3L̄kM1+3L̄kM
2
1 +LQ+M1Lρ̂))

ρ1+∆t(3LkM2+3L̄kM1+LQ+M1Lρ̂)

)n
+
‖ξ‖
ρ0
∆t + r

(
1− 1(

1 +
∆t(r−(3LkM2+3L̄kM1+3L̄kM

2
1 +LQ+M1Lρ̂))

ρ1+∆t(3LkM2+3L̄kM1+LQ+M1Lρ̂)

)n
)

× ρ1 + r∆t

∆t(r − (3LkM2 + 3L̄kM1 + 3L̄kM
2
1 + LQ +M1Lρ̂))

.

This yields the desired assertion.

3. Numerical simulations. The numerical simulations are performed
using the proposed scheme. The model assumptions are as follows: the time
of simulations is 600 [s], T0 = 363 [K], ω0(x) is assumed to change linearly
from T0 at x = 0 to Ta at the distance equal to 0.005 [m]. The time step
is ∆t = 6 [s], while the space step is ∆xl = 0.0005 [m] for l = 1, 2. The
region consists of the rectangle [−0.01, 0]× [−0.01, 0.01] with two semicircles
of radius 0.01 attached at the points (x, y) = (−0.01, 0) and (x, y) = (0, 0).
The material parameters are taken from [6], so cρ = 3.9 · 106 [J/m3K], while
two cases of the parameter k(x, T ) are considered. In the first case kl(x, T ) =
0.55 [W/mK], l = 1, 2, so it is constant (independent of x and T ), while in
the other case

kl(x, T ) =


0.55 [W/mK] for T < 322 [K],

0.55− 0.13(T − 322)/11 [W/mK] for 322 [K] ≤ T ≤ 333 [K],

0.42 [W/mK] for T > 333 [K],

for l = 1, 2. Based on [2] the value of Ta is equal to 310 [K], while r = 0.1 [1/s].
The results of numerical simulations are presented in the following figures.

Figure 1 shows the initial distribution of the temperature for both models.
Figure 2 shows the temperature distribution for t = 600 [s] for the case of

constant value of k(x, T ), while Figure 3 shows the temperature distribution
for t = 600 [s] for k(x, T ) variable. Figure 4 shows the difference between the
temperature distribution for t = 600 [s] obtained for both cases of k(x, T ).

4. Conclusions. (1) Our boundary condition (2.6) is very stable with
respect to nonconstant perturbations of the boundary heat flux. This prop-
erty fails for the discrete boundary condition in [8].
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Fig. 1. The initial temperature distribution

Fig. 2. The temperature distribution for t = 600 [s] for k(x, T ) constant

(2) The assumption concerning bounded first and second order difference
quotients in Theorem 2.3 is reasonable, because the parabolic operator has
strongly dissipative and smoothing properties. In practice this numerical
method behaves very well, even in the case of irregular data.
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Fig. 3. The temperature distribution for t = 600 [s] for k(x, T ) varying

Fig. 4. The difference between the temperature distributions for t = 600 [s] obtained for
the two cases of k(x, T )

(3) In [1] we considered a simplified one-dimensional model, which as-
sumes the radial symmetry of the three-dimensional model. In this paper
we allow the full three-dimensional model with general geometry, other than
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Fig. 5. The difference between the temperature distributions for t = 600 [s] obtained for
the two cases of k(x, T ) for (4.1)

radially (spherically) symmetric. This leads to strong nonlinearities compa-
rable with ‖∇T‖2, which makes the approximation problem more difficult.

(4) Observe that one can allow a full diffusion coefficient matrix k(x, T ),
which permits considering different thermal properties in different directions.

(5) We have also tested FDM’s based on the divergence form (2.1), where
∇ · (k(x, T )∇T ) is approximated by

(4.1)
3∑
l=1

1

∆xl

(
k(xj+.5el , T

n−1
j+.5el

)
Tnj+el − T

n
j

∆xl
− k(xj−.5el , T

n−1
j−.5el)

Tnj − Tnj−el
∆xl

)
;

see Figure 5. Such schemes behave very well in all numerical experiments,
but it turned out that their theoretical treatment is rather technical. Similar
difference schemes describing the host–parasite dynamics were considered
in [5].
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