
APPLICATIONES MATHEMATICAE
42,1 (2015), pp. 23–27

Qassem M. Al-Hassan and Mowaffaq Hajja (Irbid)

A SIMPLE DERIVATION OF THE EIGENVALUES OF A

TRIDIAGONAL MATRIX ARISING IN BIOGEOGRAPHY

Abstract. In investigating a certain optimization problem in biogeogra-
phy, Simon [IEEE Trans. Evolutionary Comput. 12 (2008), 702–713] encoun-
tered a certain specially structured tridiagonal matrix and made a conjecture
regarding its eigenvalues. A few years later, the validity of the conjecture
was established by Igelnik and Simon [Appl. Math. Comput. 218 (2011),
195–201]. In this paper, we give another proof of this conjecture that is
much shorter, almost computation-free, and does not resort to the eigenvec-
tors of the matrix.

1. Introduction. In [2], D. Simon conjectured that the eigenvalues of
the (n+ 1)× (n+ 1) tridiagonal matrix
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are given by

λ = −2k

n
, k = 0, 1, . . . , n.

In [1, Theorem 1], B. Igelnik and D. Simon proved the validity of the con-
jecture. The first part of their proof consists in finding a general form of
the eigenvectors of A for nonzero eigenvalues and for the zero eigenvalue.
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This is done by transforming the system AV (x) = xV (x) into an equiva-
lent system. This new system is obtained by adding the first equation in
the original system to the second equation, giving a new second equation,
then adding this second equation to the third equation in the original sys-
tem, thus obtaining a new third equation, and so on. The last equation
in the new system has the form x

∑n
i=0 vi(x) = 0. This implies that ei-

ther x = 0 or
∑n

i=0 vi(x) = 0. In both cases, a general form of V (x) is
derived.

The second part of the proof of [1, Theorem 1] uses induction to show
that the eigenvectors obtained in the first part must be the eigenvectors of
the conjectured eigenvalues. The basic induction step starts with n = 6,
although the conjecture is set for n ≥ 4. It is mentioned that when n < 6,
not enough structure is provided to complete the inductive proof.

In contrast, our proof, which we give in Theorem 2 of Section 2, is quite
short and does not involve any heavy computations. It is also direct, in the
sense that it does not refer in any way to the eigenvectors.

2. The main result. In this section, we give in Theorem 2 a proof of
the conjecture mentioned in the introduction.

We start by defining a matrix T (c, n + 1), where n is a nonnegative
integer, and where c can stand for any polynomial, and in particular any
number, or indeed any element in any commutative ring with 1. The ma-
trix T (c, n + 1) is defined to be the (n + 1) × (n + 1) tridiagonal matrix
whose main diagonal is the (n + 1) vector [c, . . . , c], whose lower diago-
nal is the n-vector [1, . . . , n], and whose upper diagonal is the n-vector
[n, n − 1, . . . , 1]. Formally, the entries tij , 1 ≤ i, j ≤ n + 1, of T (c, n + 1)
are defined by

(2) tij =


c if i = j,

n+ 1− i if j = i+ 1,

i− 1 if j = i− 1,

0 otherwise.
For example, if λ is an indeterminate, then

T (2− λ, 5) =


2− λ 4 0 0 0

1 2− λ 3 0 0

0 2 2− λ 2 0

0 0 3 2− λ 1

0 0 0 4 2− λ

 .

The following lemma will be used in the proof of Theorem 1, which in
turn will be used in proving the main theorem, i.e., Theorem 2.
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Lemma 1. For the matrix T (c, n+ 1) defined above, and for all positive
integers n, we have

det[T (c, n+ 1)] = (c+ n) det[T (c− 1, n)].

Proof. Apply the sequence ρ1, . . . , ρn+1 of column operations, defined by

ρi : Ci 7→ Ci + Ci+1 + · · ·+ Cn+1,

and follow this by the sequence τn+1, τn, . . . , τ2 of row operations defined by

τi : Ri 7→ Ri −Ri−1.

Thus the operation ρi consists in adding to the i-th column all the columns
that follow it, and the operation τi consists in subtracting from the i-th row
the (i− 1)-th row. Let the matrix resulting from applying these operations
to T (c, n+ 1) be denoted by B, and let the entries of B be denoted by bi,j ,
1 ≤ i, j ≤ n+ 1. Then it is easy to see that

bi,j = (ti,j + ti,j+1 + · · ·+ ti,n+1)− (ti−1,j + ti−1,j+1 + · · ·+ ti−1,n+1)

for 1 < i, j ≤ n+ 1. Using the definition of ti,j given in (2) above, we obtain

bi,j =



c+ n if i = j = 1,

c− 1 if i = j ≥ 2,

n+ 1− i if j = i+ 1 and i ≥ 1,

i− 2 if j = i− 1 and i > 1,

0 otherwise.

Therefore, the matrix B has the form

B =



c+ n n− 1 0 0 · · · 0

0 c− 1 n− 2 0
. . . 0

0 1 c− 1 n− 3 0 0

0 0 2
. . .

. . . 0
...

. . .
. . .

. . . c− 1 1

0 · · · · · · 0 n− 1 c− 1


.

Thus, det(B) = (c+n) det(B1), where B1 is the matrix obtained from B by
deleting the first row and the first column. However, B1 is nothing but the
matrix T (c− 1, n). Thus det(B) = (c+ n) det[T (c− 1, n)], as claimed.

Theorem 1. For the matrix T (c, n+ 1) defined above, and for all non-
negative integers n, we have

det[T (c, n+ 1)] =

n∏
k=0

[c− (−n+ 2k)].
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Proof. The proof is by induction on n. Obviously the conclusion holds
true for n = 0 and n = 1. Suppose that it is true for n = r for some r > 1.
Then

det[T (c, r + 2)] = (c+ r + 1) det[T (c− 1, r + 1)] by Lemma 1

= (c+ r + 1)
r∏

k=0

[(c− 1)− (−r + 2k)]

by the induction hypothesis

= (c+ r + 1)

r∏
k=0

[c− (−r + 1 + 2k)]

=
r∏

k=−1

[c− (−r + 1 + 2k)]

=
r+1∏
k=0

[c− (−r − 1 + 2k)].

Thus the conclusion holds for n = r + 1, and the proof is complete.

Theorem 2. Let A be the (n + 1) × (n + 1) matrix given in (1). Then
the eigenvalues of A are given by

(3) − 2k

n
, k = 0, 1, . . . , n.

Proof. The eigenvalues of A are the zeros of det(A−λI), or equivalently,
the zeros of det[n(A− λI)]. But n(A− λI) is nothing but the transpose of
T (n(−1− λ), n+ 1). Therefore

det[n(A− λI)] = det[T (n(−1− λ), n+ 1)]

=

n∏
k=0

[n(−1− λ)− (−n+ 2k)] by Theorem 2

=

n∏
k=0

[−nλ− 2k].

Hence the eigenvalues are the solutions of the equations

−nλ− 2k = 0, 0 ≤ k ≤ n,
which are nothing but the numbers given in (3).
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