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A UNIFYING CONVERGENCE ANALYSIS OF NEWTON’S
METHOD FOR TWICE FRÉCHET-DIFFERENTIABLE

OPERATORS

Abstract. We provide a local as well as a semilocal convergence analysis
for Newton’s method using unifying hypotheses on twice Fréchet-differen-
tiable operators in a Banach space setting. Our approach extends the appli-
cability of Newton’s method. Numerical examples are also provided.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x? of the equation
(1.1) F (x) = 0,

where F is a twice Fréchet-differentiable operator defined on a non-empty
convex subset D of a Banach space X with values in a Banach space Y.

Many problems from computational sciences, physics and other disci-
plines can be brought into a form similar to equation (1.1) using mathe-
matical modeling [9, 11, 13, 36–38, 47, 48, 50]. Solutions of these equations
can rarely be found in closed form. That is why most solution methods for
these equations are iterative. The study of convergence of iterative proce-
dures is usually of two types: semilocal and local convergence analysis. The
semilocal convergence analysis is, based on the information around an initial
point, to give conditions ensuring the convergence of the iterative procedure;
while the local convergence analysis is, based on the information around a
solution, to find estimates of the radii of convergence balls. Note that in
computational science, the practice of numerical analysis for finding such
solutions is essentially connected to Newton’s method. The basic idea of
Newton’s method is linearization. Suppose F : R → R is a differentiable
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function, and we would like to solve equation (1.1). Starting from an initial
guess, we can have the linear approximation of F (x) in the neighborhood
of x0: F (x0 + q) ≈ F (x0) + F ′(x0)q, and solve the resulting linear equation
F (x0) + F ′(x0)q = 0, leading to the recurrent Newton method (NM)

(1.2) xn+1 = xn − [F ′(xn−1)]
−1F (xn) for n = 0, 1, . . . , x0 ∈ D.

Method (1.2) is undoubtedly the most popular one for generating a sequence
{xn} quadratically (under certain hypotheses [11, 36, 37, 48]) converging
to x?. Here, [F ′(x)]−1 ∈ L(Y,X ), the space of bounded linear operators
from Y into X . There is an extensive literature on local as well as semilocal
convergence for (NM) under Lipschitz-type conditions. A survey of such
results can be found in [11] (see also [2, 3, 5–13, 17, 19, 20, 23, 25, 27, 29,
30, 33, 34, 36–39, 41–48, 50–52] and the references therein).

In this study we provide sufficient convergence conditions under more
general conditions than before. This way we expand the applicability of (NM)
and also provide a tighter error analysis.

Semilocal case. We assume that there exist a non-decreasing continu-
ous functions ω0, ω : [0,∞) → [0,∞) (or ω1 : [0,∞) → [0,∞)) with ω1(0)
= 0 and x0 ∈ D such that

(1.3) ‖[F ′(x0)]−1F ′′(x0 + θ(x− x0))‖ ≤ ω0(θ‖x− x0‖)

and either

(1.4) ‖[F ′(x0)]−1F ′′(x+ θ(y − x))‖ ≤ ω(‖x− x0‖+ θ‖y − x0‖)

or

(1.5) ‖[F ′(x0)]−1(F ′(x)− F ′(x0)‖ ≤ ω1(θ‖x− x0‖)

for all x, y ∈ D, θ ∈ [0, 1]. Our results are obtained using (1.3) and (1.4) (see
Theorem 3.1) or (1.4) and (1.5) (see Theorem 3.3).

Note that condition (1.4) always implies (1.3). That is, (1.3) is not an
additional (to (1.4)) hypothesis. Moreover, in general

(1.6) ω0(t) ≤ ω(t)

and ω/ω0 can be arbitrarily large [5–9, 11–13]. Similarly, we may have

(1.7) ω1(t) ≤ t
1�

0

ω(θt) dt,

or even

(1.8) ω1(t) ≤ t
1�

0

ω0(θt) dt.



A unifying convergence analysis of Newton’s method 31

Estimate (1.4) is used to obtain upper bounds on ‖[F ′(xn)]−1F (x0)‖
[3, 17, 19, 20, 23, 25, 27, 29, 30, 33, 34, 36–39, 41–48, 50–52]. However,
conditions (1.3) and (1.5) are used, since they are more precise or cheaper,
respectively, than condition (1.4). This modification generates tighter ma-
jorizing sequences, which in turn lead to weaker sufficient more precise (1.3)
or the cheaper (1.5) are really needed. This modification generates tighter
majorizing sequences which in turn lead to weaker sufficient convergence con-
ditions under less computational cost since the computation of ω requires
that of ω0 (or since (1.5) is cheaper than (1.4)).

Note that L. V. Kantorovich first provided sufficient convergence condi-
tions in a Banach space setting using only (1.4) in the special case when ω
is a constant [36], that is, when

(1.9) ‖[F ′(x0)]−1F ′′(x)‖ ≤ L, L > 0.

However, the number of equations that can be solved using (1.9) and (NM)
is limited, since it is not easy to see that F ′′ is bounded on D. Moreover, it
is not easy either to find a domain containing x? where F ′′ is bounded.

Our approach provides more information about the operator F , not just
that F ′′ is bounded.

Local case. We assume there exist non-decreasing continuous functions
ν0, ν : [0,∞)→ [0,∞) (or ν1 : [0,∞)→ [0,∞)) with ν1(0) = 0, and x? ∈ D
such that [F ′(x?)]−1 ∈ L(Y,X ), F (x?) = 0,

(1.10) ‖[F ′(x?)]−1F ′′(x? + θ(x− x?))‖ ≤ ν0(θ‖x− x?‖),

and either

(1.11) ‖[F ′(x?)]−1F ′′(x+ θ(x? − x))‖ ≤ ν((1 + θ)‖x? − x‖)

or

(1.12) ‖[F ′(x?)]−1(F ′(x)− F ′(x?))‖ ≤ ν1(‖x− x?‖)

for all x ∈ D, θ ∈ [0, 1] with benefits similar to the semilocal case (see
Section 4). The results immediately extend to the case when the continuity
of ω, ν is dropped and is replaced by limt→∞ ω(t) = 0 [3, 7, 10, 11, 48].

The paper is organized as follows. Majorizing sequences for (NM) are
studied in Section 2. The semilocal convergence of (NM) is given in Sec-
tion 3. The local convergence of (NM) is provided in Section 4, whereas the
applications can be found in the concluding Section 5.

2. Majorizing sequences for (NM). We need a result on majorizing
sequences for (NM) using the functions ω and ω0.
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Lemma 2.1. Let η ≥ 0 and let non-decreasing functions ω0, ω :
[0,∞)→ [0,∞) be given. Define a scalar sequence {tn} by

t0 = 0, t1 = η,

tn+2 = tn+1 +

	1
0 ω(tn + θ(tn+1 − tn))(1− θ)(tn+1 − tn)2 dθ

1−
	1
0 ω0(θtn+1)tn+1 dθ

,
(2.1)

define sequences of functions {fn}, {gn} on (0, 1) by

fn(t) = tnη

1�

0

ω
(
(1 + t+ · · ·+ tn−1)η + θtnη

)
(1− θ) dθ(2.2)

+ t(1 + t+ · · ·+ tn)η

1�

0

ω0(θ(1 + t+ · · ·+ tn)η) dθ − t,

gn(t) = fn+1(t)− fn(t)(2.3)

= tn+1η

1�

0

ω
(
(1 + t+ · · ·+ tn)η + θtn+1η

)
(1− θ) dθ

− tnη
1�

0

ω
(
(1 + t+ · · ·+ tn−1)η + θtnη

)
(1− θ) dθ

+ t(1 + t+ · · ·+ tn+1)η

1�

0

ω0(θ(1 + t+ · · ·+ tn+1)η) dθ

− t(1 + t+ · · ·+ tn)η

1�

0

ω0(θ(1 + t+ · · ·+ tn)η) dθ

and define a function f∞ on (0, 1) by

(2.4) f∞(t) = t

[
η

1− t

1�

0

ω0

(
θη

1− t

)
dθ − 1

]
.

Assume that either (I) or (II) below holds:

(I) there exists α ∈ (0, 1) such that

(2.5) 0 ≤
	1
0 ω(θη)(1− θ)η dθ
1−

	1
0 ω0(θη)η dθ

≤ α,

(2.6)
η

1− α

1�

0

ω0

(
θη

1− α

)
dθ ≤ 1,

(2.7) gn(α) ≥ 0 for all n,
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(II) there exists α ∈ (0, 1) such that

(2.8) f1(α) ≤ 0,

0 ≤
	1
0 ω(θη)(1− θ)η dθ
1−

	1
0 ω0(θη)η dθ

≤ α,

(2.9) gn(α) ≤ 0 for all n.

Then the sequence {tn} is well defined, non-decreasing, bounded from above
by

(2.10) t?? =
η

1− α
and converges to its unique least upper bound t? satisfying

(2.11) η ≤ t? ≤ t??.

Moreover,

0 ≤ tn+1 − tn ≤ αnη,(2.12)

0 ≤ t? − tn ≤
αnη

1− α
.(2.13)

Proof. (I) We shall show by induction that

(2.14) 0 ≤
	1
0 ω(tn + θ(tn+1 − tn))(1− θ)(tn+1 − tn) dθ

1−
	1
0 ω0(θtn+1)tn+1 dθ

≤ α.

Estimate (2.14) holds for n = 0 by the initial conditions and (2.5). It then
follows from (2.1) that

0 ≤ t2 − t1 ≤ α(t1 − t0) = αη.

Assume that (2.14) holds for all n ≤ k. Then by the induction hypothesis,

0 ≤ tk+1 − tk ≤ αkη and tk+1 ≤
1− αk+1

1− α
η ≤ t??.

Estimate (2.14) can be rewritten as

(2.15)
1�

0

ω

(
1− αk

1− α
η + αkθη

)
(1− θ)αkη dθ

+ α

1�

0

ω0

(
θ
1− αk+1

1− α
η

)
1− αk+1

1− α
η dθ − α ≤ 0.

Estimate (2.15) motivates defining recurrent functions fk given by (2.2) and
showing instead of (2.15) that

(2.16) fk(α) ≤ 0.
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We need a relationship between two consecutive functions fk. By (2.2) and
(2.3) we have

(2.17) fk+1(α) = fk(α) + gk(α).

Moreover, by hypothesis (2.7),

(2.18) fk(α) ≤ fk+1(α).

Furthermore, define a function f∞ on [0, 1) by

(2.19) f∞(α) = lim
k→∞

fk(α).

Then by (2.3) we obtain

(2.20) f∞(α) = α

[
η

1− α

1�

0

ω0

(
θη

1− α

)
dθ − 1

]
.

In view of (2.16)–(2.20) instead of (2.16) we can show that

(2.21) f∞(α) ≤ 0,

which is true by (2.6).
The induction for (2.14) is thus completed. It follows that the sequence

{tn} is non-decreasing and bounded above by t??, and as such it converges
to t?. Estimate (2.13) follows from (2.12) (which is implied by (2.14) and
(2.1)). That completes the proof of part (I).

(II) In this case, by (2.9), (2.16) and (2.17) we can show instead of (2.16)
that f1(α) ≤ 0, which is true by (2.8). The rest of the proof follows as in
part (I).

Remark 2.2. Define a scalar sequence {tn} by

t0 = 0, t1 = η,

t2 = t1 +

	1
0 ω0(t0 + θ(t1 − t0))(1− θ)(t1 − t0)2 dθ

1−
	1
0 ω0(θt1)t1 dθ

,

tn+2 = tn+1 +

	1
0 ω(tn + θ(tn+1 − tn))(1− θ)(tn+1 − tn)2 dθ

1−
	1
0 ω0(θtn+1)tn+1 dθ

.

(2.22)

The sequence {tn} is finer than {tn} and clearly converges under the hy-
potheses of Lemma 2.1. Moreover, a simple induction argument shows that

tn ≤ tn, n ≥ 2,(2.23)
tn+1 − tn ≤ tn+1 − tn, n ≥ 2,(2.24)

t
? ≤ t?,(2.25)

t
?
= lim

n→∞
tn.(2.26)

Furthermore, if ω0 < ω then strict inequality holds in (2.23) and (2.24).



A unifying convergence analysis of Newton’s method 35

Later we shall show that {tn}, {tn} are majorizing sequences for {xn}.
However, before doing that let us show that these sequences are finer than
other majorizing sequences already in the literature.

Under (1.4), the majorizing iteration {un} given by

(2.27)


u0 = 0, u1 = η,

un+2 = un+1 +

	1
0 ω(un + θ(un+1 − un))(1− θ)(un+1 − un)2 dt

1−
	1
0 ω(θun+1)un+1 dθ

= un+1 − f(un)/f ′(un)

was essentially used in [23] (see also [11]) where

(2.28) f(t) =

t�

0

θ�

0

ω(ξ) dξ dt− t+ η.

If there exists β > 0 such that

(2.29) f(β) ≤ 0

then {un} is non-decreasing and converges to some

(2.30) u? ≤ β.

Note that hypothesis (2.29) is different from the corresponding ones of Lem-
ma 2.1. However, in view of (1.6) we have, for n ≥ 2,

tn ≤ un,(2.31)
tn+1 − tn ≤ un+1 − un,(2.32)

t? ≤ u?.(2.33)

Moreover, in case strict inequality holds in (1.6), then (2.31) and (2.32) also
hold as strict inequalities.

Let us now provide another majorizing sequence for (NM) using the func-
tions ω and ω1. The proof is omitted since it can be obtained from Lemma 2.1
by exchanging the roles of ω0 and ω1.

Lemma 2.3. Let η ≥ 0 and let ω1, ω : [0,∞)→ [0,∞) be non-decreasing
functions with ω1(0) = 0. Define a scalar sequence {rn} by

(2.34)


r0 = 0, r1 = η,

rn+2 = rn+1 +

	1
0 ω(rn + θ(rn+1 − rn))(1− θ)(rn+1 − rn)2 dt

1− ω1(rn+1)
,
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define sequences of functions {f1n}, {g1n} on (0, 1) by

f1n(t) = tnη

1�

0

ω
(
(1 + t+ · · ·+ tn−1)η + θtnη

)
(1− θ) dθ(2.35)

+ tω1((1 + t+ · · ·+ tn)η)− t,
g1n(t) = f1n+1(t)− f1n(t)(2.36)

= tn+1η

1�

0

ω
(
(1 + t+ · · ·+ tn)η + θtn+1η

)
(1− θ) dθ

− tnθ
1�

0

ω
(
(1 + t+ · · ·+ tn−1)η + θtnη

)
(1− θ) dθ

+ t
(
ω1((1 + t+ · · ·+ tn+1)η)− ω1((1 + t+ · · ·+ tn)η)

)
,

and define a function f1∞ on (0, 1) by

(2.37) f1∞(t) = t

(
ω1

(
η

1− t

)
− 1

)
.

Assume that either (I) or (II) below holds:

(I) there exists γ ∈ (0, 1) such that

0 ≤
	1
0 ω(θη)(1− θ)η dθ

1− ω1(η)
≤ γ,(2.38)

ω1

(
η

1− γ

)
≤ 1,(2.39)

g1n(γ) ≥ 0 for all n,(2.40)

(II) there exists γ ∈ (0, 1) such that

f11 (γ) ≤ 0,(2.41)

0 ≤
	1
0 ω(θη)(1− θ)η dθ

1− ω1(η)
≤ γ,

g1n(γ) ≤ 0 for all n.(2.42)

Then the sequence {rn} is well defined, non-decreasing, bounded from above
by

(2.43) r?? =
η

1− γ
and converges to its unique least upper bound r? satisfying

(2.44) η ≤ r? ≤ r??.
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Moreover,

0 ≤ rn+1 − rn ≤ γnη,(2.45)

0 ≤ r? − rn ≤
γnη

1− γ
.(2.46)

Remark 2.4. Define a scalar sequence {rn} by

(2.47)



r0 = 0, r1 = η,

r2 = r1 +

	1
0 ω1(r1 + θ(r1 − r0))(1− θ)(r1 − r0)2 dt

1− ω1(r1)
,

rn+2 = rn+1 +

	1
0 ω(rn + θ(rn+1 − rn))(1− θ)(rn+1 − rn)2 dt

1− ω1(rn+1)
.

It follows from (1.7), (2.1) and (2.47) that {rn} is a finer sequence than {rn}
(see also Remark 2.2).

In the next section we provide sufficient convergence conditions for (NM).

3. Semilocal convergence for (NM). Next, the semilocal convergence
of (NM) is shown using functions ω and ω0.

Theorem 3.1. Let F : D ⊆ X → Y be twice Fréchet-differentiable.
Assume there exist x0 ∈ D, η ≥ 0, and non-decreasing continuous functions
ω0, ω : [0,∞)→ [0,∞) such that

[F ′(x0)]
−1 ∈ L(Y,X ),(3.1)

‖[F ′(x0)]−1F (x0)‖ ≤ η,(3.2)

‖[F ′(x0)]−1F ′′(x0 + θ(x− x0))‖ ≤ ω0(θ‖x− x0‖),
‖[F ′(x0)]−1F ′′(x+ θ(y − x))‖ ≤ ω(‖x− x0‖+ θ‖y − x‖)

for all x, y ∈ D, θ ∈ [0, 1]. Moreover, assume that the hypotheses of Lemma
2.1 hold and

(3.3) U(x0, t
?) = {x ∈ X : ‖x− x0‖ ≤ t?} ⊆ D.

Then the sequence {xn} generated by (NM) is well defined, remains in
U(x0, t

?) for all n ≥ 0 and converges to a solution x? ∈ U(x0, t
?) of the

equation F (x) = 0.
Moreover,

‖xn+1 − xn‖ ≤ tn+1 − tn,(3.4)
‖xn − x?‖ ≤ t? − tn.(3.5)
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Furthermore, if there exists R ≥ t? such that

U(x0, R) ⊆ D,(3.6)
1�

0

1�

0

ω0(θ(λR+ (1− λ)t?))(λR+ (1− λ)t?) dλ dθ < 1,(3.7)

then x? is a unique solution of the equation F (x) = 0 in U(x0, R).

Proof. By induction we shall show that

‖xk+1 − xk‖ ≤ tk+1 − tk,(3.8)

U(xk+1, t
? − tk+1) ⊆ U(xk, t

? − tk).(3.9)

For every z ∈ U(x1, t
? − t1),

‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖ ≤ t? − t1 + t1 − t0 = t? − t0

implies z ∈ U(x0, t
? − t0).

By (2.1) and (3.2) we have

‖x1 − x0‖ = ‖[F ′(x0)]−1F (x0)‖ ≤ η = t1 − t0.

Hence, estimates (3.8) and (3.9) hold for k = 0. Assume they hold for n ≤ k.
Then

‖xk+1 − x0‖ ≤
k+1∑
i=1

‖xi − xi−1‖ ≤
k+1∑
i=1

(ti − ti−1) = tk+1 − t0 = tk+1 ≤ t??

and

‖xk + θ(xk+1 − xk)− x0‖ ≤ tk + θ(tk+1 − tk) ≤ t?? for all θ ∈ [0, 1].

Using (3.3) and the induction hypotheses, we get

(3.10) ‖[F ′(x0)]−1(F ′(x0)− F ′(xk+1))‖

=
∥∥∥1�
0

F ′′(x0 + θ(xk+1 − x0))(xk+1 − x0) dθ
∥∥∥

≤
1�

0

ω0(θ‖xk+1 − x0‖) dθ ‖xk+1 − x0‖ ≤
1�

0

ω0(θtk+1)tk+1 dθ < 1.

It follows from (3.10) and the Banach lemma on invertible operators [7, 36]
that [F ′(xk+1)]

−1 ∈ L(Y,X ) and

(3.11) ‖[F ′(xk+1)]
−1F ′(x0)‖ ≤

1

1−
	1
0 ω0(θtk+1)tk+1 dθ

·
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Using (1.2) we obtain the approximation

F (xk+1) = F (xk+1)− F (xk)− F ′(xk)(xk+1 − xk)(3.12)

=

1�

0

F ′′(xk + θ(xk+1 − xk))(1− θ)(xk+1 − xk)2 dθ.

By (3.3), (3.12), (2.1) and the induction hypotheses we in turn get

(3.13) ‖[F ′(x0)]−1F (x1)‖

=
∥∥∥[F ′(x0)]−1 1�

0

F ′′(x0 + θ(x1 − x0))(1− θ)(x1 − x0)2 dθ
∥∥∥

≤
1�

0

ω0(θ‖x1 − x0‖)(1− θ)‖x1 − x0‖2 dθ

≤
1�

0

ω0(θt1)(1− θ)t21 dθ ≤
1�

0

ω(θt1)(1− θ)t21 dθ,

and for k ≥ 1,

(3.14) ‖[F ′(x0)]−1F (xk+1)‖

=
∥∥∥1�
0

[F ′(x0)]
−1F ′′(xk + θ(xk+1 − xk))(1− θ)(xk+1 − xk)2 dθ

∥∥∥
≤

1�

0

ω
(
‖xk − x0‖+ θ‖xk+1 − xk‖

)
(1− θ)‖xk+1 − xk‖2 dθ

≤
1�

0

ω(tk + θ(tk+1 − tk))(1− θ)(tk+1 − tk)2 dθ.

Then, in view of (2.1), (3.11)–(3.14), we get

(3.15) ‖xk+2 − xk+1‖ ≤ ‖[F ′(xk+1)]
−1F ′(x0)‖ ‖[F ′(x0)]−1F (xk+1)‖

≤
	1
0 ω(tk + θ(tk+1 − tk))(1− θ)(tk+1 − tk)2 dθ

1−
	1
0 ω0(θtk+1)tk+1 dθ

= tk+2 − tk+1,

with completes the induction for (3.8). Moreover, for every z ∈ U(xk+2,
t? − tk+2), we obtain

‖z − xk+1‖ ≤ ‖z − xk+2‖+ ‖xk+2 − xk+1‖ ≤ t? − tk+2 + tk+2 − tk+1,

so z ∈ U(xk+1, t
? − tk+1), which completes the induction for (3.9). Lem-

ma 2.1 implies that {tn} is a Cauchy sequence. It follows from (3.8) and
(3.9) that {xn} is a Cauchy sequence too in the Banach space X , and as
such it converges to some x? ∈ U(x0, t

?). By letting k →∞ in (3.14) we get
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F (x?) = 0. Estimate (3.5) follows from (3.4) by using standard majorization
techniques [7, 11, 36–38].

Finally, to show the uniqueness part, let y? ∈ U(x0, R) be a solution of
the equation F (x) = 0. Set xλ = x? + λ(y? − x?) for λ ∈ [0, 1]. Define an
operator M by

(3.16) M =

1�

0

F ′(xλ) dxλ.

Then, using (3.3), (3.7) and (3.16) we get

(3.17) ‖[F ′(x0)]−1(F ′(x0)−M)‖

=

∥∥∥∥ 1�

0

1�

0

[F ′(x0)]
−1F ′′(x0 + θ(xλ − x0))(xλ − x0) dxλ dθ

∥∥∥∥
≤

1�

0

1�

0

ω0(θ‖xλ − x0‖)‖xλ − x0‖ dxλ dθ

≤
1�

0

1�

0

ω0

(
θ(λR+ (1− λ)t?)

)
(λR+ (1− λ)t?) dλ dθ < 1.

Then it follows from (3.17) and the Banach lemma on invertible operators
that M−1 ∈ L(Y,X ). Moreover, using the identity

(3.18) F (y?)− F (x?) =M(y? − x?),

we obtain x? = y?.

Remark 3.2. (a) It follows from the proof of Theorem 3.1 (see (3.13))
that {tn} given by (2.22) is also a majorizing sequence for {xn}.

(b) The point t?? given in closed form by (2.10) can replace t? in Theo-
rem 3.1.

We shall show a semilocal convergence result for (NM) using the functions
ω1 and ω. The proof is obtained from Theorem 3.1 by exchanging the roles
of ω0 and ω1.

Theorem 3.3. Let F : D ⊆ X → Y be twice Fréchet-differentiable.
Assume that there exist x0 ∈ D, η ≥ 0, and non-decreasing functions ω1, ω :
[0,∞)→ [0,∞) with ω1(0) = 0 such that

[F ′(x0)]
−1 ∈ L(Y,X ),

‖[F ′(x0)]−1F (x0)‖ ≤ η,
‖[F ′(x0)]−1(F ′(x)− F ′(x0))‖ ≤ ω1(‖x− x0‖),
‖[F ′(x0)]−1F ′′(x+ θ(y − x))‖ ≤ ω(‖x− x0‖+ θ‖y − x‖)
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for all x, y ∈ D and θ ∈ [0, 1]. Moreover, assume that the hypotheses of
Lemma 2.3 hold and U(x0, r

?) ⊆ D. Then the sequence {xn} generated by
(NM) is well defined, remains in U(x0, r

?) for all n ≥ 0 and converges to a
solution x? ∈ U(x0, r

?) of the equation F (x) = 0.
Moreover,

‖xn+1 − xn‖ ≤ rn+1 − rn, ‖xn − x?‖ ≤ r? − rn.

Furthermore, if there exists R1 ≥ r? such that
1�

0

ω1((1− θ)r? + θR1) dθ ≤ 1

then x? is a unique solution of the equation F (x) = 0 in U(x0, R1).

Proof. As noted above, the proof follows that of Theorem 3.1 apart from
the uniqueness part.

To show the uniqueness, let y? ∈ U(x0, R1) be such that F (y?) = 0.
Define an operator M by

M =

1�

0

F ′(x? + θ(y? − x?)) dθ.

Then using (1.5) we obtain

‖[F ′(x0)]−1(M − F ′(x0))‖ ≤
1�

0

ω1

(
‖x? + θ(y? − x?)− x0‖

)
dθ

≤
1�

0

ω1

(
(1− θ)‖x? − x0‖+ θ‖y? − x0‖

)
dθ

<

1�

0

ω1((1− θ)r? + θR1) dθ ≤ 1.

It follows that M−1 ∈ L(Y,X ). Using the identity

F (y?)− F (x?) =M(y? − x?),

we deduce x? = y?.

Remark 3.4. (a) The sequence {rn} can replace {rn} in Theorem 3.3
(see also Theorem 3.1 and (3.13)).

(b) The point r?? given in closed from by (2.43) can replace r? in Theo-
rem 3.3.

4. Local convergence of (NM). We provide a local convergence result
for (NM) using the functions ν0 and ν.
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Theorem 4.1. Let F : D ⊆ X → Y be twice Fréchet-differentiable.
Assume there exist x? ∈ D, δ > 0 and non-decreasing continuous functions
ν0, ν : [0,∞)→ [0,∞) such that

[F ′(x?)]−1 ∈ L(Y,X ), F (x?) = 0,(4.1)

‖[F ′(x?)]−1F ′′(x? + θ(x− x?))‖ ≤ ν0(θ‖x− x?‖),
‖[F ′(x?)]−1F ′′(x+ θ(x? − x))‖ ≤ ν(‖x− x?‖+ θ‖x? − x‖)

for all x ∈ D and θ ∈ [0, 1]. Moreover, assume that

1�

0

(
ν((1 + θ)δ)(1− θ) + ν0(θδ)

)
δ dθ < 1,(4.2)

U(x?, δ) ⊆ D.(4.3)

Then the sequence {xn} generated by (NM) is well defined, remains in
U(x?, δ) for all n ≥ 0 and converges to x? provided that x0 ∈ U(x?, δ) so
that

(4.4) ‖x1 − x?‖ ≤
	1
0 ν0((1 + θ)‖x0 − x?‖)(1− θ)‖x0 − x?‖2 dθ

1−
	1
0 ν0(θ‖x0 − x?‖)‖x0 − x?‖ dθ

,

and for n ≥ 1,

(4.5) ‖xn+1 − x?‖ ≤
	1
0 ν((1 + θ)‖xn − x?‖)(1− θ)‖xn − x?‖2 dθ

1−
	1
0 ν0(θ‖xn − x?‖)‖xn − x?‖ dθ

.

Proof. By hypothesis x0 ∈ U(x?, δ). Assume xk ∈ U(x?, δ). Then, using
(1.10) and (1.11), respectively, we obtain the estimates

(4.6) ‖[F ′(x?)]−1(F ′(x?)− F ′(xk))‖

=

∥∥∥∥ 1�

0

[F ′(x?)]−1F ′′(x? + θ(xk − x?))(xk − x?) dθ
∥∥∥∥

≤
1�

0

ν0(θ‖xk − x?‖)‖xk − x?‖ dθ

≤
1�

0

ν0(θδ)δ dθ < 1 (by (4.2))
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and

(4.7)
∥∥[F ′(x?)]−1(F (x?)− F (xk)− F ′(xk)(x? − xk))∥∥

=

∥∥∥∥F ′(x?) 1�
0

F ′′(xk + θ(x? − xk))(1− θ)(x? − xk)2 dθ
∥∥∥∥

≤
1�

0

ν((1 + θ)‖xk − x?‖)(1− θ)‖xk − x?‖2 dθ.

It follows from (4.6) that [F ′(xk)]−1 ∈ L(Y,X ) and

(4.8) ‖[F ′(xk)]−1F ′(x?)‖ ≤
1

1−
	1
0 ν0(θ‖xk − x?‖)‖xk − x?‖ dθ

·

Using the approximation

x? − xk+1 = ([F ′(xk)]
−1F ′(x?))[F ′(x?)]−1(4.9)

×
1�

0

F ′′
(
xk + θ(x? − xk)

)
(1− θ)(x? − xk)2 dθ

together with (4.7) and (4.8) we arrive at (4.4) and (4.5).
It then follows from (4.4), (4.5) and (4.2) that

(4.10) ‖xk+1 − x?‖ < ‖xk − x?‖,
which implies limk→∞ xk = x? and xk+1 ∈ U(x?, δ).

Finally, we provide a local convergence analysis for (NM) using the func-
tions ν1 and ν. The proof can be obtained from Theorem 4.1 by exchanging
the roles of ν0 and ν1.

Theorem 4.2. Let F : D ⊆ X → Y be twice Fréchet-differentiable.
Assume there exist x? ∈ D, δ1 > 0 and non-decreasing continuous functions
ν1, ν : [0,∞)→ [0,∞) with v1(0) = 0 such that

[F ′(x?)]−1 ∈ L(Y,X ), F (x?) = 0,

‖[F ′(x?)]−1(F ′(x)− F ′(x?))‖ ≤ ν1(‖x− x?‖),

‖[F ′(x?)]−1F ′′(x+ θ(x? − x))‖ ≤ ν(‖x− x?‖+ θ‖x? − x‖)
for all x ∈ D and θ ∈ [0, 1]. Assume also that

1�

0

ν((1 + θ)δ1)(1− θ)δ1 dθ + ν1(δ1) < 1,(4.11)

U(x?, δ1) ⊆ D.(4.12)

Then the sequence {xn} generated by (NM) is well defined, remains in
U(x?, δ1) for all n ≥ 0 and converges to x? provided that x0 ∈ U(x?, δ1).
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Moreover,

(4.13) ‖x1 − x?‖ ≤
	1
0 ν1((1 + θ)‖x0 − x?‖)(1− θ)‖x0 − x?‖2 dθ

1− ν1(‖x0 − x?‖)
,

and for n ≥ 1,

(4.14) ‖xn+1 − x?‖ ≤
	1
0 ν((1 + θ)‖xn − x?‖)(1− θ)‖xn − x?‖2 dθ

1− ν1(‖xn − x?‖)
.

5. Special cases and numerical examples

Semilocal case. Let ω(t) = L > 0 and ω1(t) = L0t. Then the sequences
{un} (used in [36–38, 45, 48]), {rn}, {rn} reduce tou0 = 0, u1 = η,

un+1 = un +
L(un − un−1)2

2(1− Lun)
for n = 1, 2, . . . , r0 = 0, r1 = η,

rn+1 = rn +
L(rn − rn−1)2

2(1− L0rn)
for n = 1, 2, . . .

and 
r0 = 0, r1 = η, r2 = r1 +

L0(r1 − r0)2

2(1− L0r1)
,

rn+1 = rn +
L(rn − rn−1)2

2(1− L0rn)
for n = 2, 3, . . . .

The sequence {un} converges provided that the famous Newton–Kantoro-
vich hypothesis

hk = 2Lη ≤ 1

is satisfied [36].
Let us now look at Lemma 2.3, case (I). It can easily be seen that

f1n(t) =
(
Ltn−1 + 2L0(1 + t+ · · ·+ tn)

)
η − 2,

g1n(t) =
1
2g(t)t

n−1η, g(t) = 2L0t
2 + Lt− L,

ω1(t) =
L0η

1− γ
, f1∞(t) = t

(
L0η

1− t
− 1

)
, γ =

2L

L+
√
L2 + 8L0L

.

Then hypotheses (2.38)–(2.40) are satisfied if

h1 = L1η ≤ 1,

where
L1 =

1
4

(
L+ 4L0 +

√
L2 + 8L0L

)
.
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For the sequence {rn} we have (see also [11, 13])

f1n(t) =
L

2
(r2 − r1)tn + tL0(1 + t+ · · ·+ tn)(r2 − r1)− (1− L0r1)t,

g1n(t) =
1
2g(t)t

n(r2 − r1),

f1∞(t) =

(
L0(r2 − r1)

1− α
+ L0r1 − 1

)
t.

Then hypotheses (2.38)–(2.40) are satisfied if

h2 = L2η ≤ 1,

where

L2 =
1
4

(
4L0 +

√
L0L+ 8L2

0 +
√
L0L

)
.

Note that
hk ≤ 1 ⇒ h1 ≤ 1 ⇒ h2 ≤ 1

but not necessarily vice versa unless L0 = L.
We also have

h2
hk
→ 1

4
,

h2
hk
→ 0,

h2
h1
→ 0 as

L0

L
→ 0.

Hence, the applicability of (NM) is extended under the same computational
cost as in the Kantorovich theorem, since in practice computing L requires
the same computation power as L0.

Local case. Let ν(t) = ` and ν1(t) = `1. Then the hypotheses of Theo-
rem 4.2 are satisfied provided that

δ1 =
2

2`1 + `
·

The hypotheses in the literature using only ν are satisfied provided that the
radius δ2 found by Traub [37, 50] is given by

δ2 =
2

3`
·

Note that if `1 ≤ `, then
δ2 ≤ δ1,

and if M1 < M , then
δ2 < δ1.

Moreover, the error bounds on the distances are also tighter in this case (see
(4.13), (4.14) and the numerical examples).
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5.1. Applications: semilocal case

Example 5.1. Let X = Y = R, x0 = 1 and D = U(1, 1−a) for a ∈ (0, 1).
Define a scalar function F on D by
(5.1) F (x) = x3 − a.
Then, using the Newton–Kantorovich method (1.2), we get η = 1

3(1− a),
L = 2(2 − a) and L0 = 3 − a. The convergence criterion for the Fréchet-
differentiable operator F ′ is given by hk, but is not satisfied if a = 0.49
because hk = 2Lη = 1.0268 > 1. Hence there is no guarantee that New-
ton’s method starting at x0 = 1 converges to x∗ = 3

√
0.49. Instead, we

see in Table 1 that the sequences rn and rn (for (2.34) and (2.47) respec-
tively) converge, and we find in Table 2 that |rn+1 − rn| < |rn+1 − rn| and
r∗ = 0.10379135 . . . < r∗ = 0.17312593 . . . . However, for a = 0.60, the con-
vergence criterion for F ′ given by hk is satisfied (hk = 0.746667 < 1) for
the method (1.2). Thus, the sequence {un} in (1.3) converges, and so do
the sequences for (2.34) and (2.47) (see Table 3). We have |rn+1 − rn| <
|rn+1 − rn| < |un+1 − un|, and with the sequence {rn} we obtain the best
a priori error bounds (see Table 4). In addition, r∗ = 0.10379135 . . . < r∗ =
0.17312593 . . . < u∗ = 0.17738489 . . . .

Table 1. The sequences rn and rn

Iteration rn rn

1 0.10378514 . . . 0.16993464 . . .

2 0.10379135 . . . 0.17310190 . . .

Table 2. A priori error bounds for rn and rn

Iteration |rn+1 − rn| |rn+1 − rn|
1 6.2052 . . .× 10−6 0.00316726 . . .

2 7.1790 . . .× 10−11 0.00002402 . . .

Table 3. The sequences rn, rn and un

Iteration rn rn un

1 0.10378514 . . . 0.16993464 . . . 0.17304964 . . .

2 0.10379135 . . . 0.17310190 . . . 0.17733384 . . .

Table 4. A priori error bounds for rn, rn and un

Iteration |rn+1 − rn| |rn+1 − rn| |un+1 − un|
1 6.2052 . . .× 10−6 0.00316726 . . . 0.00428420 . . .

2 7.1790 . . .× 10−11 0.00002402 . . . 0.00005103 . . .
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Example 5.2. Let X = Y = C([0, 1]) be equipped with the max-norm.
Consider the following nonlinear boundary value problem [11]:{

u′′ = −u3 − γu2,
u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(5.2) u(s) = s+

1�

0

Q(s, t)(u3(t) + γu2(t)) dt,

where Q is the Green function

Q(s, t) =
{
t(1− s), t ≤ s,
s(1− t), s < t.

We observe that

max
0≤s≤1

1�

0

|Q(s, t)| dt = 1

8
·

Thus, problem (5.2) is in the form (1.1), where F : D → Y is defined by

[F (x)](s) = x(s)− s−
1�

0

Q(s, t)(x3(t) + γx2(t)) dt.

Set u0(s) = s and D = U(u0, R0). It is easy to verify that U(u0, R0) ⊂
U(0, R0 + 1) since ‖u0‖ = 1. If 2γ < 5, the operator F ′ satisfies Lη ≤ 1 and
L0η ≤ 1 with

η =
1 + γ

5− 2γ
, L =

γ + 6R0 + 3

4
, L0 =

2γ + 3R0 + 6

8
·

Note that it is easy to see that L0 < L for all γ and R0 > 0.
For γ = 0.1 and R0 = 0.5 we obtain the corresponding sequences un,

rn and rn defined earlier and compare them. In Tables 5 and 6 we can see
that rn+2 < rn+2 < un+2, |rn+2 − rn+1| < |rn+2 − rn+1| < |un+2 − un+1|.
Moreover, r∗ = 0.19773026 . . . < r∗ = 0.28330864 . . . < u∗ = 0.29595236 . . . .

Table 5. The sequences rn, rn and un

Iteration rn+2 rn+2 un+2

1 0.19772934 . . . 0.28054349 . . . 0.29072424 . . .

2 0.19773026 . . . 0.28330067 . . . 0.29591492 . . .

Table 6. A priori error bounds for rn, rn and un

Iteration |rn+2 − rn+1| |rn+2 − rn+1| |un+2 − un+1|
1 9.2117 . . .× 10−7 0.00275718 . . . 0.00519067 . . .

2 7.9911 . . .× 10−13 7.9697 . . .× 10−6 0.00003743 . . .
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Example 5.3. In the Newton–Kantorovich theorem appearing in [36],
the most demanding condition on the operator F is ‖[F ′(x0)]−1F ′′(x)‖ ≤ L
for x, x0 ∈ D. There are operators that do not satisfy this condition, for
example the following nonlinear integral equation of the Hammerstein type:

(5.3) x(s) = u(s) + λ

b�

a

G(s, t)H(x(t)) dt, s ∈ [a, b], λ ∈ R,

where −∞ < a < b <∞, the function u(s) is continuous on [a, b], the kernel
G(s, t) is the Green function and H(ξ) is a polynomial function.

Hammerstein equations of the second kind [40] are a particular case of
(5.3). They have strong physical background and arise from the electro-
magnetic fluid dynamics [49]. These equations appeared in the 1930s as gen-
eral models for the study of semilinear boundary value problems, where the
kernel G(s, t) typically arises as the Green function of a differential opera-
tor [31]. So, this type of equations can be reformulated as a two-point bound-
ary value problem with a certain nonlinear boundary condition [15]. Also
multi-dimensional analogues of these equations appear as reformulations of
elliptic partial differential equations with nonlinear boundary conditions [14].
The Hammerstein equations appear very often in several applications to real
world problems [16]. For example, some problems in vehicular traffic theory,
biology and queuing theory lead to integral equations of this type [22]. These
equations are also applied in the theory of radiative transfer and the theory
of neutron transport as well in the kinetic theory of gases (see [35], among
others). They also play a significant role in several applications [21], for ex-
ample in the dynamic models of chemical reactors [18], which are governed
by control equations [32].

As Hammerstein equations of the form (5.3) cannot be solved exactly,
we can use iterative methods to solve them, as we can see in [1, 4]. In this
paper, we apply Newton’s method and use its theoretical properties to draw
conclusions about the convergence of the method. Solving equation (5.3) is
equivalent to solving the equation F (x) = 0, where F : C([a, b]) → C([a, b])
and

[F (x)](s) = x(s)− u(s)− λ
b�

a

G(s, t)H(x(t)) dt.

For this operator, we have

[F ′(x)y](s) = y(s)− λ
b�

a

G(s, t)H ′(x(t))y(t) dt,

[F ′′(x)(yz)](s) = −λ
b�

a

G(s, t)H ′′(x(t))z(t)y(t) dt.
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Observe that Kantorovich’s condition ‖[F ′(x0)]−1F ′′(x)‖ ≤ L is not satis-
fied in general because ‖F ′′(x)‖ is not bounded in C([a, b]) unless H(ξ) is a
polynomial of degree less than or equal to two. In other case, it is not easy
to find a domain Ω ⊆ C([a, b]) where ‖F ′′(x)‖ is bounded and contains a
solution of the equation that one tries to find.

To solve the last problem, a common option is to first locate a solution
x∗(s) of (5.3) in a domain Ω ⊆ C([a, b]) and look for a bound for ‖F ′′(x)‖
in Ω (see [28]). So, taking into account the max-norm, the solution x∗(s) of
(5.3) must satisfy

(5.4) ‖x∗(s)‖ −B − |λ|N‖H(x∗(s))‖ ≤ 0,

where B = ‖u(s)‖ and N = max[a,b]
	b
a |G(s, t)| dt. From (5.4), we try to

find a region Ω ⊆ C([a, b]) containing x∗(s). We find a solution x∗(s) such
that ‖x∗(s)‖ ∈ [0, ρ] where ρ is a positive real root of the scalar equation
ξ −B − |λ|N‖H(ξ)‖ = 0.

Now, we illustrate the study presented in the last section with a particular
integral equation of the form (5.3). Our study improves those of Kantorovich
under his conditions and the results appearing in [24]. We use the max-norm.

Consider

(5.5) x(s) =
1

2
+

1�

0

G(s, t)x(t)3 dt,

where x ∈ C([0, 1]), t ∈ [0, 1] and the kernel G is the Green function

(5.6) G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

Solving (5.5) is equivalent to solving F (x) = 0, where we have F :
Ω ⊆ C([0, 1])→ C([0, 1]),

[F (x)](s) = x(s)− 1

2
−

1�

0

G(s, t)x(t)3 dt, s ∈ [0, 1],

and Ω is a suitable non-empty open convex domain. Moreover,

[F ′(x)y](s) = y(s)− 3

1�

0

G(s, t)x(t)2y(t) dt,

[F ′′(x)(yz)](s) = −6
1�

0

G(s, t)x(t)z(t)y(t) dt,

[F ′′′(x)(yzw)](s) = −6
1�

0

G(s, t)w(t)z(t)y(t) dt.
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Observe that ‖F ′′(x)‖ is not bounded in a general domain Ω. Taking into
account that a solution x∗(s) of (5.5) in C([0, 1]) must satisfy

‖x∗‖ − 1

2
− 1

8
‖x∗‖3 ≤ 0,

it follows that ‖x∗‖ ≤ σ = 0.5173 . . . , where σ is the smallest real positive
root of t3/8−t+1/2 = 0. We see in this example that we improve the a priori
error bounds obtained by Kantorovich and the results appearing in [24].

We take for example σ = 2 and choose, as is usually done [26], the
starting point x0(s) = u(s) = 1/2. Since ‖I − F ′(x0)‖ ≤ 3/32 < 1, the
operator [F ′(x0)]−1 is well defined and ‖[F ′(x0)]−1F ′′(x)‖ is bounded. Hence,
Kantorovich’s theory [36] can be applied. Consequently, Newton’s method
can approximate a solution x? ∈ U(0, σ).

On the other hand, using [F ′(x0)]
−1 = 32/29 and conditions (1.3)–(1.5)

we obtain

ω(t) = ω0(t) =
36

29
, ω1(t) =

12

29
(1 + t)t,

and we can construct the sequences tn and rn corresponding to (2.1) and
(2.34). These sequences converge since the conditions of Theorems 3.1 and 3.3
hold as we can see in Table 7. Moreover, rn < tn and r? = 0.0174272591 . . . <
t? = 0.0174299467 . . . .

Table 7. The sequences rn and tn

Iteration rn tn

1 0.01724137 . . . 0.01724137 . . .

2 0.01742723 . . . 0.01742992 . . .

3 0.01742725 . . . 0.01742994 . . .

Next, we apply Newton’s method for approximating a solution with the
features mentioned above. For this, we use a discretization process. Thus, we
approximate the integral of (5.5) by the following Gauss–Legendre quadra-
ture formula with eight nodes:

1�

0

φ(t) dt '
8∑
j=1

ωjφ(tj),

where the nodes tj and the weights ωj are known. Moreover, we denote
x(ti) by xi, i = 1, . . . , 8, so that equation (5.5) is now transformed into the
following system of nonlinear equations:

xi =
1

2
+

8∑
j=1

aij x
3
j ,
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where

aij =

{
ωjtj(1− ti) if j ≤ i,
ωjti(1− tj) if j > i.

Then we write the above system in the following matrix form:

(5.7) F (x) = x− v −Aw = 0,

where x = (x1, . . . , x8)
T , v = (1/2, . . . , 1/2)T , A = (aij)

8
i,j=1 and w =

(x31, . . . , x
3
8)
T . We have

F ′(x) = I − 3A diag{x21, . . . , x28}.

Since x0(s) = 1/2 has been chosen as starting point for the theoretical
study, a reasonable choice of initial approximation for Newton’s method
seems to be the vector x0 = (1/2, . . . , 1/2)T . After four iterations we obtain
the numerical approximation to the solution x∗ = (x∗1, . . . , x

∗
8)
T which is

given in Table 8. Observe that ‖x∗‖ = 0.5168 . . . ≤ σ = 0.5173 . . . .

Table 8. Numerical solution of (5.5)

i x∗i i x∗i

1 0.501329 . . . 5 0.516824 . . .

2 0.506285 . . . 6 0.512542 . . .

3 0.512542 . . . 7 0.506285 . . .

4 0.516824 . . . 8 0.501329 . . .

Next, we see in Table 9 that

|rn+1 − rn| < |tn+1 − tn| < |zn+1 − zn| < |qn+1 − qn|

where the sequence qn is for the Kantorovich conditions [36], zn corresponds
to the new majorizing sequence appearing in [24], and the sequences rn and
tn are for the new sequences (2.34) and (2.1) of the last section respectively.
The majorizing sequence rn provides better a priori error estimates than the
others.

Table 9. A priori error estimates for rn, tn, zn and qn

n |rn+1 − rn| |tn+1 − tn| |zn+1 − zn| |qn+1 − qn|
1 2.1599 . . .× 10−8 2.2552 . . .× 10−8 0.00006266 . . . 0.00025323 . . .

2 2.9143 . . .× 10−16 3.2265 . . .× 10−16 8.4667 . . .× 10−10 5.4655 . . .× 10−8

By interpolating the values of Table 8 and taking into account that the
solutions of (5.5) satisfy x(0) = x(1) = 1/2, we obtain the solution denoted
by x̃ and drawn in Figure 1.
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0.2 0.4 0.6 0.8 1.0

0.505

0.510

0.515

x̃

s

x(s)

Fig. 1. Approximate solution of (5.5)

5.2. Applications: local case

Example 5.4. Let X = Y = R, D = U(0, 1), x∗ = 0 and define a
function f on D by

(5.8) f(x) = ex − 1.

Through Theorems 4.1 and 4.2 we see that since f ′(x∗)−1 = 1, we can define
functions

ν(t) = e = ν0(t) and ν1(t) = (e− 1)t.

Using (4.2) and (4.11) we find that

δ = 0.24525296 . . . < δ1 = 0.32494723 . . . ,

where δ is the radius of convergence obtained in [50]. Thus, the new radius,
δ1, is bigger.

Furthermore, with the starting point x0 = 0.2 we obtain better a priori
error bounds by using (4.13) and (4.14) for βδ1n than (4.4) and (4.5) for βδn,
as we can see in Table 10.

Table 10. A priori error bounds for βδ1n and βδn

n βδ1n βδn

1 0.01396245 . . . 0.11913311 . . .

2 0.00027147 . . . 0.02852845 . . .

3 1.0021 . . .× 10−7 0.00119916 . . .

Example 5.5. Let X = Y = C([0, 1]) and D = U(0, 1). Define a function
F on D by

(5.9) F (h)(x) = h(x)− 5

1�

0

xθh(θ)3 dθ.
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Then

F ′(h[u])(x) = u(x)− 15

1�

0

xθh(θ)2u(θ) dθ for all u ∈ D.

Using (5.9) we see that the hypotheses of Theorems 4.1 and 4.2 hold for
x?(x) = 0, where x ∈ [0, 1],

ν(t) = ν0(t) = 15 and ν1(t) = 7.5t.

Moreover, we have δ′ = 0.04444445 . . . < δ′1 = 0.06666667 . . . from (4.2) and
(4.11). For x0 = 0.02 as starting point, in Table 11 we can see again that the
a priori error bounds for this case are better when using (4.13) and (4.14)
for ζδ

′
1
n than when using (4.4) and (4.5) for ζδ′n .

Table 11. A priori error bounds for ζδ
′
1
n and ζδ

′
n

n ζ
δ′1
n ζδ

′
n

1 0.00004705 . . . 0.00428571 . . .

2 1.66149 . . .× 10−8 0.00014721 . . .

3 2.0704 . . .× 10−15 1.6291 . . .× 10−7
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