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APPROXIMATION BY PERTURBED

NEURAL NETWORK OPERATORS

Abstract. This article deals with the determination of the rate of conver-
gence to the unit of each of three newly introduced perturbed normalized
neural network operators of one hidden layer. These are given through the
modulus of continuity of the function involved or its high order derivative
that appears in the right-hand side of the associated Jackson type inequali-
ties. The activation function is very general, in particular it can derive from
any sigmoid or bell-shaped function. The right-hand sides of our convergence
inequalities do not depend on the activation function. The sample function-
als are of Stancu, Kantorovich or quadrature types. We give applications for
the first derivative of the function involved.

1. Introduction. Feed-forward neural networks (FNNs) with one hid-
den layer, the type of networks we deal with in this article, are mathemati-
cally expressed as

Nn(x) =
n∑
j=0

cjσ(〈aj · x〉+ bj), x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connec-
tion weights, cj ∈ R are the coefficients, 〈aj · x〉 is the inner product of aj
and x, and σ is the activation function of the network. In many fundamental
network models, the activation function is the sigmoidal function of logistic
type or other sigmoidal function or bell-shaped function.

It is well known that FNNs are universal approximators. Theoretically,
any continuous function defined on a compact set can be approximated to
any desired degree of accuracy by increasing the number of hidden neurons.
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It was proved by Cybenko [14] and Funahashi [16] that any continuous func-
tion can be approximated on a compact set in the uniform topology by a
network of the form Nn(x), using any continuous, sigmoidal activation func-
tion. Hornik et al. [19] have shown that any measurable function can be
approached with such a network. Furthermore, these authors proved in [20]
that any function in the Sobolev spaces can be approached with all deriva-
tives. A variety of density results on FNN approximations to multivariate
functions were later established by many authors using different methods,
for more or less general situations: Leshno et al. [21], Mhaskar and Mic-
chelli [25], Chui and Li [11], Chen and Chen [10], Hahm and Hong [17],
etc.

Usually these results only give theorems about the existence of an ap-
proximation. A related and important problem is that of complexity: de-
termining the number of neurons required to guarantee that all functions
belonging to a space can be approximated to the prescribed degree of accu-
racy ε.

Barron [6] showed that if the function is supposed to satisfy certain
conditions expressed in terms of its Fourier transform, and if each of the
neurons evaluates a sigmoidal activation function, then at most O(ε−2)
neurons are needed to achieve the order of approximation ε. Some other
authors have published similar results on the complexity of FNN approx-
imations: Mhaskar and Micchelli [26], Suzuki [29], Maiorov and Meir [22],
Makovoz [23], Ferrari and Stengel [15], Xu and Cao [30], Cao et al. [7], etc.

P. Cardaliaguet and G. Euvrard [8] were the first to describe precisely
and study neural network approximation operators to the unit operator.
Namely they proved: given a continuous bounded function f : R→ R and a
centered bell-shaped function b, the functions

Fn(x) =
n2∑

k=−n2

f(k/n)

Inα
b

(
n1−α

(
x− k

n

))
,

where I :=
	T
−T b(t) dt, 0 < α < 1, converge uniformly on compacta to f .

We see that the weights f(k/n)
Inα are explicitly given. Still [8] is qualitative

and not quantitative.
The author [1], [2], [3, Chap. 2–5] was the first to establish neural net-

work approximations to continuous functions with rates, by very specifically
defined neural network operators of Cardaliaguet–Euvrard and “squashing”
types, by employing the modulus of continuity of the function or its high
order derivative, and producing very tight Jackson type inequalities. He
treated both the univariate and multivariate cases. The “bell-shaped” and
“squashing” functions defining these operators were assumed to be of com-
pact support. Also in [3, Chap. 3–5] he gave the Nth order asymptotic
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expansion for the error of weak approximation of these two operators for a
special natural class of smooth functions.

Though the work in [1]–[3] was quantitative, the rates of convergence
were not precisely determined.

Finally in [4], [5], by normalizing his operators the author determined
the exact rates of convergence.

In this article the author continues and completes this work, by introduc-
ing three new perturbed neural network operators of Cardaliaguet–Euvrard
type.

The sample coefficients f(k/n) are replaced by three suitable natural
perturbations; that is what actually happens in reality of a neural network
operation.

The calculation of f(k/n) at the neurons is often not performed as such,
but rather in a distorted way.

Next we justify why we take here the activation function to be of compact
support, which of course helps us to conduct our study.

The activation function, also called the transfer function or learning rule,
is connected to firing of neurons. Firing, which sends electric pulses or an
output signal to other neurons, occurs when the activation level is above the
threshold level set by the learning rule.

Each neural network firing is essentially of finite time duration. Essen-
tially the firing decays in time, but in practice it sends positive energy over
a finite time interval.

Thus by using an activation function of compact support, in practice we
do not alter much the good results of our approximation.

To be more precise, we may take the compact support to be a large
interval symmetric about the origin. This is what happens in real time with
the firing of neurons.

For more about neural networks in general we refer to [9], [12], [13], [18],
[24], [27].

2. Basics. Here the activation function b : R→ R+ is of compact sup-
port [−T, T ], T > 0. That is, b(x) > 0 for any x ∈ [−T, T ], and clearly b
may have jump discontinuities. Also the shape of the graph of b could be ar-
bitrary. Typically in neural network approximation we take b as a sigmoidal
function or bell-shaped function, of course here of compact support [−T, T ],
T > 0.

Example 1. Here are some examples of activation functions.

(i) The characteristic function of [−1, 1].
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(ii) The hat function over [−1, 1], i.e.,

b(x) =


1 + x, −1 ≤ x ≤ 0,

1− x, 0 < x ≤ 1,

0, elsewhere.

(iii) The truncated sigmoidals

b(x) =

{ 1
1+e−x or tanhx or erf(x), x ∈ [−T, T ], with large T > 0,

0, x ∈ R− [−T, T ].

(iv) The truncated Gompertz function

b(x) =

{
e−αe

−βx
, x ∈ [−T, T ], α, β > 0, large T > 0,

0, x ∈ R− [−T, T ].

The Gompertz functions are also sigmoidal functions, with wide applica-
tions to many applied fields, e.g. demography and tumor growth modeling.

So the general function b we will be using here covers all kinds of acti-
vation functions in neural network approximations.

Here we consider functions f : R → R that are either continuous and
bounded, or uniformly continuous.

Let the parameters be µ, ν ≥ 0; µi, νi ≥ 0, i = 1, . . . , r ∈ N; wi ≥ 0,∑r
i=1wi = 1; 0 < α < 1, x ∈ R, n ∈ N.
We use the first modulus of continuity

ω1(f, δ) := sup
x,y∈R
|x−y|≤δ

|f(x)− f(y)|,

and given that f is uniformly continuous we get limδ→0 ω1(f, δ) = 0.

In this article we mainly study the pointwise convergence with rates
over R, to the unit operator, of the following one hidden layer normalized
neural network perturbed operators

(1) H∗n(f)(x) =

∑n2

k=−n2

(∑r
i=1wif

(k+µi
n+νi

))
b
(
n1−α

(
x− k

n

))∑n2

k=−n2 b
(
n1−α

(
x− k

n

)) ,

Kantorovich type operators

(2) K∗n(f)(x) =

∑n2

k=−n2

(∑r
i=1wi(n+ νi)

	 k+µi+1

n+νi
k+µi
n+νi

f(t) dt
)
b
(
n1−α

(
x− k

n

))
∑n2

k=−n2 b
(
n1−α

(
x− k

n

)) ,

and quadrature type operators

(3) M∗n(f)(x) =

∑n2

k=−n2

(∑r
i=1wif

(
k
n + i

nr

))
b
(
n1−α

(
x− k

n

))∑n2

k=−n2 b
(
n1−α

(
x− k

n

)) .
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Similar operators defined for bell-shaped functions and sample coefficients
f(k/n) were studied initially in [8], [1]–[5], etc.

Here we study the generalized perturbed cases of these operators.

The operator K∗n, in the corresponding signal processing context, repre-
sents the natural “time-jitter” error, where the sample information is cal-
culated in a perturbed neighborhood of k+µ

n+ν rather than exactly at the
node k/n.

The perturbed sample coefficients f
(k+µ
n+ν

)
with 0 ≤ µ ≤ ν were first

used by D. Stancu [28], in a totally different context, generalizing Bernstein
operator approximation on C([0, 1]).

The terms in the ratio of sums (1)–(3) are nonzero iff

(4)

∣∣∣∣n1−α(x− k

n

)∣∣∣∣ ≤ T, i.e.

∣∣∣∣x− k

n

∣∣∣∣ ≤ T

n1−α

iff

(5) nx− Tnα ≤ k ≤ nx+ Tnα.

In order to have the desired order of the numbers

(6) − n2 ≤ nx− Tnα ≤ nx+ Tnα ≤ n2,

it is enough to assume that

n ≥ T + |x|.

When x ∈ [−T, T ] it is enough to assume n ≥ 2T, which implies (6).

Remark 2 ([1]). Let a ≤ b, a, b ∈ R. Let card (≥ 0) be the maximum
number of integers contained in [a, b]. Then

max(0, (b− a)− 1) ≤ card ≤ (b− a) + 1.

Note 3. We would like to establish a lower bound on card over the
interval [nx− Tnα, nx+ Tnα]. From Remark 2 we get

card ≥ max(2Tnα − 1, 0).

We obtain card ≥ 1 if

(7) 2Tnα − 1 ≥ 1 iff n ≥ T−1/α.

So to have the desired order (6) and card ≥ 1 over [nx − Tnα, nx + Tnα],
we need to consider

(8) n ≥ max(T + |x|, T−1/α).

Also notice that card →∞ as n→∞.

Denote by [·] the integral part of a number and by d·e its ceiling.
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Under assumption (8), the operators H∗n, K∗n, M∗n become

(9) H∗n(f)(x) =

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wif

(k+µi
n+νi

))
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) ,

(10) K∗n(f)(x)

=

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wi(n+ νi)

	 k+µi+1

n+νi
k+µi
n+νi

f(t) dt
)
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) ,

(11) M∗n(f)(x) =

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wif

(
k
n + i

nr

))
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) .

Remark 4. Let k be as in (5). We observe that∣∣∣∣k + µ

n+ ν
− x
∣∣∣∣ ≤ ∣∣∣∣ k

n+ ν
− x
∣∣∣∣+

µ

n+ ν
.

Next we see that∣∣∣∣ k

n+ ν
− x
∣∣∣∣ ≤ ∣∣∣∣ k

n+ ν
− k

n

∣∣∣∣+

∣∣∣∣kn − x
∣∣∣∣ (4)≤ ν|k|

n(n+ ν)
+

T

n1−α

(as |k| ≤ max(|nx− Tnα|, |nx+ Tnα|) ≤ n|x|+ Tnα)

≤ ν

n+ ν

(
|x|+ T

n1−α

)
+

T

n1−α
.

Consequently,∣∣∣∣k + µ

n+ ν
− x
∣∣∣∣ ≤ ν

n+ ν

(
|x|+ T

n1−α

)
+

T

n1−α
+

µ

n+ ν
(12)

=
ν|x|+ µ

n+ ν
+

(
1 +

ν

n+ ν

)
T

n1−α
.

Hence we obtain

(13) ω1

(
f,

∣∣∣∣k + µ

n+ ν
− x
∣∣∣∣) (12)

≤ ω1

(
f,
ν|x|+ µ

n+ ν
+

(
1 +

ν

n+ ν

)
T

n1−α

)
,

where µ, ν ≥ 0, 0 < α < 1, so that the dominant speed above is 1/n1−α.

Also, by a change of variable, the operator K∗n can be conveniently writ-
ten as
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(14) K∗n(f)(x)

=

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wi(n+ νi)

	 1
n+νi
0 f

(
t+ k+µi

n+νi

)
dt
)
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) .

3. Main results. We present our first approximation result.

Theorem 5. Let x ∈ R, T > 0 and n ∈ N be such that n ≥ max(T + |x|,
T−1/α). Then

(15) |H∗n(f)(x)− f(x)|

≤
r∑
i=1

wiω1

(
f,
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
≤ max

i∈{1,...,r}
ω1

(
f,
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
.

Proof. We notice that

H∗n(f)(x)− f(x)

=

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wif(k+µin+νi

)
)
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) − f(x)

=

∑[nx+Tnα]
k=dnx−Tnαe(

∑r
i=1 wif(k+µin+νi

))b(n1−α(x− k
n ))−f(x)

∑[nx+Tnα]
k=dnx−Tnαeb(n

1−α(x− k
n ))∑[nx+Tnα]

k=dnx−Tnαe b(n
1−α(x− k

n ))

=

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wif

(k+µi
n+νi

)
− f(x)

)
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
=

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wi

(
f
(k+µi
n+νi

)
− f(x)

))
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) .

Hence

|H∗n(f)(x)− f(x)|

≤
∑[nx+Tnα]

k=dnx−Tnαe
(∑r

i=1wi
∣∣f(k+µin+νi

)
− f(x)

∣∣)b(n1−α(x− k
n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
≤
∑[nx+Tnα]

k=dnx−Tnαe
(∑r

i=1wiω1

(
f,
∣∣k+µi
n+νi

− x
∣∣))b(n1−α(x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
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(13)

≤
∑[nx+Tnα]

k=dnx−Tnαe
(∑r

i=1wiω1

(
f, νi|x|+µin+νi

+
(
1 + νi

n+νi

)
T

n1−α

))
b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
=

[∑r
i=1wiω1

(
f, νi|x|+µin+νi

+
(
1 + νi

n+νi

)
T

n1−α

)](∑[nx+Tnα]
k=dnx−Tnαeb

(
n1−α

(
x− k

n

)))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
=

r∑
i=1

wiω1

(
f,
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
≤ max

i∈{1,...,r}
ω1

(
f,
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
,

proving the claim.

Corollary 6. Let x ∈ [−T ∗, T ∗], T ∗ > 0, n ∈ N, n ≥ max(T + T ∗,
T−1/α), T > 0. Then

(16) ‖H∗n(f)− f‖∞,[−T ∗,T ∗]

≤
r∑
i=1

wiω1

(
f,
νiT
∗ + µi

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
≤ max

i∈{1,...,r}
ω1

(
f,
νiT
∗ + µi

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
.

Proof. By (15).

Theorem 7. Let x ∈ R, T > 0 and n ∈ N be such that n ≥ max(T + |x|,
T−1/α). Then

(17) |K∗n(f)(x)− f(x)|

≤ max
i∈{1,...,r}

ω1

(
f,
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
.

Proof. Set

(18) δn,k(f) =
r∑
i=1

wi(n+ νi)

1
n+νi�

0

f

(
t+

k + µi
n+ νi

)
dt.

We observe that

δn,k(f)− f(x) =
r∑
i=1

wi(n+ νi)

1
n+νi�

0

f

(
t+

k + µi
n+ νi

)
dt− f(x)

=

r∑
i=1

wi(n+ νi)

1
n+νi�

0

(
f

(
t+

k + µi
n+ νi

)
− f(x)

)
dt.
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Hence

(19) |δn,k(f)− f(x)| ≤
r∑
i=1

wi(n+ νi)

1
n+νi�

0

∣∣∣∣f(t+
k + µi
n+ νi

)
− f(x)

∣∣∣∣ dt
≤

r∑
i=1

wi(n+ νi)

1
n+νi�

0

ω1

(
f, |t|+

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣) dt

≤
r∑
i=1

wiω1

(
f,

1

n+ νi
+

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣)

(12)

≤
r∑
i=1

wiω1

(
f,
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
≤ max

i∈{1,...,r}
ω1

(
f,
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
.

Therefore by (14) and (18) we get

K∗n(f)(x)− f(x) =

∑[nx+Tnα]
k=dnx−Tnαe δn,k(f)b

(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) − f(x)

=

∑[nx+Tnα]
k=dnx−Tnαe δn,k(f)b

(
n1−α

(
x− k

n

))
−f(x)

∑[nx+Tnα]
k=dnx−Tnαe b

(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
=

∑[nx+Tnα]
k=dnx−Tnαe(δn,k(f)− f(x))b

(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) .

Consequently, we obtain

|K∗n(f)(x)− f(x)|

≤
∑[nx+Tnα]

k=dnx−Tnαe |δn,k(f)− f(x)|b
(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
(19)

≤
( [nx+Tnα]∑
k=dnx−Tnαe

b

(
n1−α

(
x− k

n

)))

·
maxi∈{1,...,r} ω1

(
f, νi|x|+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

))
= max

i∈{1,...,r}
ω1

(
f,
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
,

proving the claim.
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Corollary 8. Let x ∈ [−T ∗, T ∗], T ∗ > 0, n ∈ N, n ≥ max(T + T ∗,
T−1/α), T > 0. Then

(20) ‖K∗n(f)− f‖∞,[−T ∗,T ∗]

≤ max
i∈{1,...,r}

ω1

(
f,
νiT
∗ + µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
.

Proof. By (17).

Theorem 9. Let x ∈ R, T > 0 and n ∈ N, n ≥ max(T + |x|, T−1/α).
Then

(21) |M∗n(f)(x)− f(x)| ≤ ω1

(
f,

1

n
+

T

n1−α

)
.

Proof. Let k be as in (5). Set

λnk(f) =
r∑
i=1

wif

(
k

n
+

i

nr

)
,

so

λnk(f)− f(x) =
r∑
i=1

wi

(
f

(
k

n
+

i

nr

)
− f(x)

)
.

Then

|λnk(f)− f(x)| ≤
r∑
i=1

wi

∣∣∣∣f(kn +
i

nr

)
− f(x)

∣∣∣∣(22)

≤
r∑
i=1

wiω1

(
f,

∣∣∣∣kn − x
∣∣∣∣+

i

nr

)

≤
r∑
i=1

wiω1

(
f,

T

n1−α
+

1

n

)
= ω1

(
f,

1

n
+

T

n1−α

)
.

By (11) we can write

M∗n(f)(x) =

∑[nx+Tnα]
k=dnx−Tnαe λnk(f)b

(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) .

That is, we have

M∗n(f)(x)− f(x) =

∑[nx+Tnα]
k=dnx−Tnαe(λnk(f)− f(x))b

(
n1−α

(
x− k

n

))
∑[nx+Tnα]

k=dnx−Tnαe b
(
n1−α

(
x− k

n

)) .

Hence we easily derive by (22), as before, that

|M∗n(f)(x)− f(x)| ≤ ω1

(
f,

1

n
+

T

n1−α

)
,

proving the claim.
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Corollary 10. Let x ∈ [−T ∗, T ∗], T ∗ > 0, n ∈ N, n ≥ max(T + T ∗,
T−1/α), T > 0. Then

(23) ‖M∗n(f)− f‖∞,[−T ∗,T ∗] ≤ ω1

(
f,

1

n
+

T

n1−α

)
.

Proof. By (21).

Theorems 5, 7, 9 and Corollaries 6, 8, 10, given that f is uniformly
continuous, produce the pointwise and uniform convergences with speed
1/n1−α of the neural network operators H∗n, K∗n, M∗n to the unit operator.
Notice that the right-hand sides of inequalities (15)–(17), (20), (21) and (23)
do not depend on b.

We proceed to the following results where we use the smoothness of a
derivative of f .

Theorem 11. Let x ∈ R, T > 0 and n ∈ N, n ≥ max(T + |x|, T−1/α).
Let f ∈ CN (R), N ∈ N, be such that f (N) is uniformly continuous or is
continuous and bounded. Then

(24) |H∗n(f)(x)− f(x)|

≤
N∑
j=1

|f (j)(x)|
j!

{ r∑
i=1

wi

[
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

]j}

+
r∑
i=1

wiω1

(
f (N),

νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νi|x|+µi

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Inequality (24) implies the pointwise convergence of H∗n(f)(x) to f(x) as
n→∞ with speed 1/n1−α.

Proof. Let k be as in (5). We observe that

wif

(
k + µi
n+ νi

)
=

N∑
j=0

f (j)(x)

j!
wi

(
k + µi
n+ νi

− x
)j

+ wi

k+µi
n+νi�

x

(f (N)(t)− f (N)(x))

(k+µi
n+νi

− t
)N−1

(N − 1)!
dt, i = 1, . . . , r.

Set

V (x) =

[nx+Tnα]∑
k=dnx−Tnαe

b

(
n1−α

(
x− k

n

))
.
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Hence(∑r
i=1wif

(k+µi
n+νi

))
b
(
n1−α

(
x− k

n

))
V (x)

=

N∑
j=0

f (j)(x)

j!

( r∑
i=1

wi

(
k + µi
n+ νi

− x
)j)b(n1−α(x− k

n

))
V (x)

+
b
(
n1−α

(
x− k

n

))
V (x)

( r∑
i=1

wi

k+µi
n+νi�

x

(f (N)(t)− f (N)(x))

(k+µi
n+νi

− t
)N−1

(N − 1)!
dt

)
.

Therefore (see (9))

(25) H∗n(f)(x)− f(x)

=
N∑
j=1

f (j)(x)

j!

[nx+Tnα]∑
k=dnx−Tnαe

r∑
i=1

wi

(
k + µi
n+ νi

− x
)j b(n1−α(x− k

n

))
V (x)

+R,

where

(26) R =

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

k+µi
n+νi�

x

(f (N)(t)− f (N)(x))

(k+µi
n+νi

− t
)N−1

(N − 1)!
dt.

Hence

|H∗n(f)(x)− f(x)|

≤
N∑
j=1

|f (j)(x)|
j!

[nx+Tnα]∑
k=dnx−Tnαe

r∑
i=1

wi

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣j b
(
n1−α

(
x− k

n

))
V (x)

+ |R|

≤
N∑
j=1

|f (j)(x)|
j!

[nx+Tnα]∑
k=dnx−Tnαe

r∑
i=1

wi

[
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

]j

·
b
(
n1−α

(
x− k

n

))
V (x)

+ |R|

=

N∑
j=0

|f (j)(x)|
j!

r∑
i=1

wi

[
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

]j
+ |R|.
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Furthermore we see that

|R| ≤
[nx+Tnα]∑

k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

∣∣∣∣
k+µi
n+νi�

x

(f (N)(t)− f (N)(x))

(k+µi
n+νi

− t
)N−1

(N − 1)!
dt

∣∣∣∣
≤

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

γ,

where

γ :=

r∑
i=1

wi

∣∣∣∣
k+µi
n+νi�

x

|f (N)(t)− f (N)(x)|
∣∣k+µi
n+νi

− t
∣∣N−1

(N − 1)!
dt

∣∣∣∣.
Let first x ≤ k+µi

n+νi
. Then

εi :=

k+µi
n+νi�

x

|f (N)(t)− f (N)(x)|
∣∣k+µi
n+νi

− t
∣∣N−1

(N − 1)!
dt(27)

≤ ω1

(
f (N),

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣)

k+µi
n+νi�

x

(k+µi
n+νi

− t
)N−1

(N − 1)!
dt

= ω1

(
f (N),

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣)
∣∣k+µi
n+νi

− t
∣∣N

N !

(12)

≤ ω1

(
f (N),

νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
·
[νi|x|+µi

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

]N
N !

.

Let now x > k+µi
n+νi

. Then

ρi :=

x�

k+µi
n+νi

|f (N)(t)− f (N)(x)|
(
t− k+µi

n+νi

)N−1
(N − 1)!

dt(28)

≤ ω1

(
f (N),

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣)
(
x− k+µi

n+νi

)N
N !

= ω1

(
f (N),

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣)
∣∣k+µi
n+νi

− x
∣∣N

N !
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≤ ω1

(
f (N),

νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
·
(νi|x|+µi

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Notice that in (27) and (28) we obtained the same upper bound. Hence

(29) γ ≤
r∑
i=1

wiω1

(
f (N),

νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νi|x|+µi

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

=: E.

Thus

(30) |R| ≤ E,
proving the claim.

Corollary 12. Under the assumptions of Theorem 11, plus f (j)(x)
= 0, j = 1, . . . , N, we have

(31) |H∗n(f)(x)− f(x)|

≤
r∑
i=1

wiω1

(
f (N),

νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νi|x|+µi

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Proof. By (25), (26), (29) and (30).

In (31) notice the extremely high speed of convergence, 1/n(1−α)(N+1).
Uniform convergence with rates follows from

Corollary 13. Let x ∈ [−T ∗, T ∗], T ∗ > 0, T > 0 and n ∈ N be such
that n ≥ max(T + T ∗, T−1/α). Let f ∈ CN (R), N ∈ N, be such that f (N) is
uniformly continuous or is continuous and bounded. Then

(32) ‖H∗n(f)− f‖∞,[−T ∗,T ∗]

≤
N∑
j=1

‖f (j)‖∞,[−T ∗,T ∗]

j!

r∑
i=1

wi

[
νiT
∗ + µi

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

]j
+

r∑
i=1

wiω1

(
f (N),

νiT
∗ + µi

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νiT ∗+µi

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.
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Proof. By (24).

Corollary 14. Under the assumptions of Theorem 11 with N = 1 we
have

(33) |H∗n(f)(x)− f(x)|

≤ |f ′(x)|
r∑
i=1

wi

[
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

]
+

r∑
i=1

wiω1

(
f ′,

νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
·
(
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)
.

Theorem 15. Suppose the assumptions of Theorem 11 hold, but now
with 0 < α < 1/2. Then

(34) |K∗n(f)(x)− f(x)| ≤ 2
N∑
j=1

|f (j)(x)|
(j + 1)!

·
r∑
i=1

wi(n+ νi)

[(
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)j+1]
+

r∑
i=1

wiω1

(
f (N),

νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νi|x|+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Inequality (34) implies the pointwise convergence of K∗n(f)(x) to f(x) as
n→∞ with speed 1/n1−2α.

Proof. Let k be as in (5). We observe that

1
n+νi�

0

f

(
t+

k + µi
n+ νi

)
dt

=

N∑
j=0

f (j)(x)

j!

1
n+νi�

0

(
t+

k + µi
n+ νi

− x
)j
dt

+

1
n+νi�

0

(t+ k+µi
n+νi�

x

(f (N)(z)− f (N)(x))

(
t+ k+µi

n+νi
− z
)N−1

(N − 1)!
dz

)
dt
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for i = 1, . . . , r. That is,

1
n+νi�

0

f

(
t+

k + µi
n+ νi

)
dt

=
N∑
j=0

f (j)(x)

(j + 1)!

[(
k + µi + 1

n+ νi
− x
)j+1

−
(
k + µi
n+ νi

− x
)j+1]

+

1
n+νi�

0

(t+ k+µi
n+νi�

x

(f (N)(z)− f (N)(x))

(
t+ k+µi

n+νi
− z
)N−1

(N − 1)!
dz

)
dt

for i = 1, . . . , r. Furthermore we have

r∑
i=1

wi(n+ νi)

1
n+νi�

0

f

(
t+

k + µi
n+ νi

)
dt

=
N∑
j=0

f (j)(x)

(j + 1)!

r∑
i=1

wi(n+ νi)

[(
k + µi + 1

n+ νi
− x
)j+1

−
(
k + µi
n+ νi

− x
)j+1]

+

r∑
i=1

wi(n+ νi)

1
n+νi�

0

(t+ k+µi
n+νi�

x

(f (N)(z)−f (N)(x))

(
t+ k+µi

n+νi
−z
)N−1

(N − 1)!
dz

)
dt.

Set

V (x) =

[nx+Tnα]∑
k=dnx−Tnαe

b

(
n1−α

(
x− k

n

))
.

Consequently, we get

K∗n(f)(x)

=

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wi(n+ νi)

	 1
n+νi
0 f

(
t+ k+µi

n+νi

)
dt
)
b
(
n1−α

(
x− k

n

))
V (x)

=
N∑
j=0

f (j)(x)

(j + 1)!

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi(n+ νi)

[(
k + µi + 1

n+ νi
− x
)j+1

−
(
k + µi
n+ νi

− x
)j+1]
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+

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

r∑
i=1

wi(n+ νi)

·

1
n+νi�

0

(t+ k+µi
n+νi�

x

(f (N)(z)− f (N)(x))

(
t+ k+µi

n+νi
− z
)N−1

(N − 1)!
dz

)
dt.

Therefore

(35) K∗n(f)(x)− f(x) =

N∑
j=0

f (j)(x)

(j + 1)!

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi(n+ νi)

[(
k + µi + 1

n+ νi
− x
)j+1

−
(
k + µi
n+ νi

− x
)j+1]

+R,

where

(36) R =

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

r∑
i=1

wi(n+ νi)

·

1
n+νi�

0

(t+ k+µi
n+νi�

x

(f (N)(z)− f (N)(x))

(
t+ k+µi

n+νi
− z
)N−1

(N − 1)!
dz

)
dt.

We derive that

|K∗n(f)(x)− f(x)| ≤
N∑
j=1

f (j)(x)

(j + 1)!

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi(n+ νi)

[∣∣∣∣k + µi + 1

n+ νi
− x
∣∣∣∣j+1

−
∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣j+1]

+ |R|

(12)

≤
N∑
j=1

|f (j)(x)|
(j + 1)!

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi(n+ νi)

[(
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)j+1

+

(
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)j+1]
+ |R|

=
N∑
j=1

|f (j)(x)|
(j + 1)!

r∑
i=1

wi(n+ νi)

[(
νi|x|+ µi + 1

n+ νi
+

(
1+

νi
n+ νi

)
T

n1−α

)j+1

+

(
νi|x|+ µi
n+ νi

+

(
1 +

νi
n+ νi

)
T

n1−α

)j+1]
+ |R|.
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Consequently,

(37) |K∗n(f)(x)− f(x)| ≤ 2
N∑
j=1

|f (j)(x)|
(j + 1)!

·
r∑
i=1

wi(n+ νi)

[
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

]j+1

+ |R|.

Clearly the sum in (37) converges to zero with speed 1/n1−2α as n → ∞
given that 0 < α < 1/2.

We notice that

(38) |R|
(36)

≤
[nx+Tnα]∑

k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

r∑
i=1

wi(n+ νi)

·

1
n+νi�

0

∣∣∣∣
t+

k+µi
n+νi�

x

|f (N)(z)− f (N)(x)|
∣∣t+ k+µi

n+νi
− z
∣∣N−1

(N − 1)!
dz

∣∣∣∣ dt =: (ξ).

We distinguish two cases. If t+ k+µi
n+νi

≥ x, then

θi :=

∣∣∣∣
t+

k+µi
n+νi�

x

|f (N)(t)− f (N)(x)|
∣∣t+ k+µi

n+νi
− z
∣∣N−1

(N − 1)!
dz

∣∣∣∣(39)

=

t+
k+µi
n+νi�

x

|f (N)(t)− f (N)(x)|
(
t+ k+µi

n+νi
− z
)N−1

(N − 1)!
dz

≤ ω1

(
f (N), |t|+

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣)
(
|t|+

∣∣k+µi
n+νi

− x
∣∣)N

N !

(12)

≤ ω1

(
f (N),

νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
·
(νi|x|+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

If t+ k+µi
n+νi

< x, then

θi :=

x�

t+
k+µi
n+νi

|f (N)(z)− f (N)(x)|
(
z −

(
t+ k+µi

n+νi

))N−1
(N − 1)!

dz

≤ ω1

(
f (N), |t|+

∣∣∣∣k + µi
n+ νi

− x
∣∣∣∣)
(
|t|+

∣∣k+µi
n+νi

− x
∣∣)N

N !
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(12)

≤ ω1

(
f (N),

νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
·
(νi|x|+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

,

the same estimate as in (39).

Therefore we derive (see (38))

(ξ) ≤
[nx+Tnα]∑

k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wiω1

(
f (N),

νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νi|x|+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Finally, we have found the estimate

(40) |R| ≤
r∑
i=1

wiω1

(
f (N),

νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νi|x|+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Based on (37), (38) and (40) we derive (34).

Corollary 16. Under the assumptions of Theorem 15, plus f (j)(x)=0,
j = 1, . . . , N , 0 < α < 1, we have

(41) |K∗n(f)(x)− f(x)|

≤
r∑
i=1

wiω1

(
f (N),

νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νi|x|+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Proof. By (35), (36) and (40).

In (41) notice the extremely high speed of convergence, 1/n(1−α)(N+1).

Uniform convergence with rates follows from

Corollary 17. Let x ∈ [−T ∗, T ∗], T ∗ > 0, T > 0 and n ∈ N with
n ≥ max(T + T ∗, T−1/α), 0 < α < 1/2. Let f ∈ CN (R), N ∈ N, be such
that f (N) is uniformly continuous or is continuous and bounded. Then
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(42) ‖K∗n(f)− f‖∞,[−T ∗,T ∗] ≤ 2

N∑
j=1

‖f (j)‖∞,[−T ∗,T ∗]

(j + 1)!

·
r∑
i=1

wi(n+ νi)

[
νiT
∗ + µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

]j+1

+
r∑
i=1

wiω1

(
f (N),

νiT
∗ + µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)

·
(νiT ∗+µi+1

n+νi
+
(
1 + νi

n+νi

)
T

n1−α

)N
N !

.

Proof. By (34).

Corollary 18. Under the assumptions of Theorem 15 with N = 1, we
have

(43) |K∗n(f)(x)− f(x)|

≤ |f ′(x)|
r∑
i=1

wi(n+ νi)

[
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

]2
+

r∑
i=1

wiω1

(
f ′,

νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
·
(
νi|x|+ µi + 1

n+ νi
+

(
1 +

νi
n+ νi

)
T

n1−α

)
.

Proof. By (34).

Theorem 19. Suppose the assumptions of Theorem 11 hold. Then

|M∗n(f)(x)− f(x)| ≤
N∑
j=1

|f (j)(x)|
j!

[
T

n1−α
+

1

n

]j
(44)

+ ω1

(
f (N),

T

n1−α
+

1

n

)( T
n1−α + 1

n

)N
N !

.

Inequality (44) implies the pointwise convergence of M∗n(f)(x) to f(x), as
n→∞, with speed 1/n1−α.

Proof. Let k be as in (5). Again by Taylor’s formula we have

r∑
i=1

wif

(
k

n
+

i

nr

)
=

N∑
j=0

f (j)(x)

j!

r∑
i=1

wi

(
k

n
+

i

nr
− x
)j

+

r∑
i=1

wi

k
n
+ i
nr�

x

(f (N)(t)− f (N)(x))

(
k
n + i

nr − t
)N−1

(N − 1)!
dt.
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Set

V (x) =

[nx+Tnα]∑
k=dnx−Tnαe

b

(
n1−α

(
x− k

n

))
.

Then

M∗n(f)(x) =

∑[nx+Tnα]
k=dnx−Tnαe

(∑r
i=1wif

(
k
n + i

nr

))
b
(
n1−α

(
x− k

n

))
V (x)

=
N∑
j=0

f (j)(x)

j!

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

(
k

n
+

i

nr
− x
)j

+

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

k
n
+ i
nr�

x

(f (N)(t)− f (N)(x))

(
k
n + i

nr − t
)N−1

(N − 1)!
dt.

Therefore we get

M∗n(f)(x)− f(x) =
N∑
j=1

f (j)(x)

j!

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

(
k

n
+

i

nr
− x
)j

+R,

where

R =

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

k
n
+ i
nr�

x

(f (N)(t)− f (N)(x))

(
k
n + i

nr − t
)N−1

(N − 1)!
dt.

Hence

|M∗n(f)(x)− f(x)| ≤
N∑
j=1

f (j)(x)

j!

[nx+Tnα]∑
k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

[∣∣∣∣kn − x
∣∣∣∣+

i

nr

]j
+ |R|
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≤
N∑
j=1

|f (j)(x)|
j!

∑[nx+Tnα]
k=dnx−Tnαe b

(
n1−α

(
x− k

n

))
V (x)

r∑
i=1

wi

[
T

n1−α
+

1

n

]j
+ |R|

=

N∑
j=1

|f (j)(x)|
j!

[
T

n1−α
+

1

n

]j
+ |R|.

Next we observe

(45) |R| ≤
[nx+Tnα]∑

k=dnx−Tnαe

b
(
n1−α

(
x− k

n

))
V (x)

·
r∑
i=1

wi

∣∣∣∣
k
n
+ i
nr�

x

|f (N)(t)− f (N)(x)|
∣∣ k
n + i

nr − t
∣∣N−1

(N − 1)!
dt

∣∣∣∣.
Set

εi :=

∣∣∣∣
k
n
+ i
nr�

x

|f (N)(t)− f (N)(x)|
∣∣ k
n + i

nr − t
∣∣N−1

(N − 1)!
dt

∣∣∣∣.
We distinguish two cases. If k

n + i
nr ≥ x, then

εi :=

k
n
+ i
nr�

x

|f (N)(t)− f (N)(x)|
(
k
n + i

nr − t
)N−1

(N − 1)!
dt(46)

≤ ω1

(
f (N),

∣∣∣∣kn − x
∣∣∣∣+

1

n

)( k
n + i

nr − x
)N

N !

≤ ω1

(
f (N),

T

n1−α
+

1

n

)( T
n1−α + 1

n

)N
N !

.

If k
n + i

nr < x, then

εi :=

x�

k
n
+ i
nr

|f (N)(t)− f (N)(x)|
(
t−

(
k
n + i

nr

))N−1
(N − 1)!

dt

≤ ω1

(
f (N), x−

(
k

n
+

i

nr

))(
x−

(
k
n + i

nr

))N
N !

≤ ω1

(
f (N),

T

n1−α
+

1

n

)( T
n1−α + 1

n

)N
N !

.

So we obtain (46) again.
Clearly now by (45) we derive that

|R| ≤ ω1

(
f (N),

T

n1−α
+

1

n

)( T
n1−α + 1

n

)N
N !

,

proving the claim.
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Corollary 20. Under the assumptions of Theorem 19, plus f (j)(x)
= 0, j = 1, . . . , N, we have

(47) |M∗n(f)(x)− f(x)| ≤ ω1

(
f (N),

T

n1−α
+

1

n

)( T
n1−α + 1

n

)N
N !

.

Proof. By (44).

In (47) notice the extremely high speed of convergence, 1/n(1−α)(N+1).
The uniform convergence estimate follows:

Corollary 21. Under the assumptions of Corollary 13,

‖M∗n(f)− f‖∞,[−T ∗,T ∗] ≤
N∑
j=1

‖f (j)‖∞,[−T ∗,T ∗]

j!

(
T

n1−α
+

1

n

)j
(48)

+ ω1

(
f (N),

T

n1−α
+

1

n

)( T
n1−α + 1

n

)N
N !

.

Proof. By (44).

Corollary 22. Under the assumptions of Theorem 19 with N = 1, we
have

(49) |M∗n(f)(x)− f(x)| ≤
[
|f ′(x)|+ ω1

(
f ′,

T

n1−α
+

1

n

)](
T

n1−α
+

1

n

)
.

Proof. By (44).

Note 23. We also observe that all the right-hand sides of convergence
inequalities (24), (31)–(34), (41)–(44), (47–(49) are independent of b.

Note 24. We observe that

H∗n(1) = K∗n(1) = M∗n(1) = 1,

thus they are unitary operators.
Also, given that f is bounded, we get

‖H∗n(f)‖∞,R ≤ ‖f‖∞,R,(50)

‖K∗n(f)‖∞,R ≤ ‖f‖∞,R,(51)

‖M∗n(f)‖∞,R ≤ ‖f‖∞,R.(52)

The operators H∗n, K
∗
n, M∗n are positive linear operators, and of course

bounded, by (50)–(52).
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