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LOCAL ANALYSIS OF A CUBICALLY CONVERGENT
METHOD FOR VARIATIONAL INCLUSIONS

Abstract. This paper deals with variational inclusions of the form 0 ∈
ϕ(x) + F (x) where ϕ is a single-valued function admitting a second order
Fréchet derivative and F is a set-valued map from Rq to the closed subsets
of Rq. When a solution z̄ of the previous inclusion satisfies some semistability
properties, we obtain local superquadratic or cubic convergent sequences.

1. Introduction. The inspiration for this study goes back to the work of
Bonnans [3] concerning variational inequalities. Let ϕ be a twice continuously
Fréchet differentiable function from Rq into Rq. Given a closed convex subset
K of Rq, we consider the variational inequality

(1) 〈ϕ(z), y − z〉 ≥ 0, ∀y ∈ K, z ∈ K.

We may define the (closed convex) cone of outward normals to K at a
point z ∈ K,

N(z) := {x ∈ Rq; 〈x, y − z〉 ≤ 0, ∀y ∈ K},
and if z 6∈ K,N(z) := ∅.

It is easy to observe that (1) is equivalent to the relation

0 ∈ ϕ(z) +N(z).

In the rest of the paper, we consider more general inclusions of the form

(2) 0 ∈ ϕ(z) + F (z),

where F is a multifunction from Rq to the closed subsets of Rq.
One can notice that when F = {0} we recover the equation ϕ(z) = 0 and

if F is the positive orthant of Rq we get a system of inequalities.

2010 Mathematics Subject Classification: 49J53, 47H04, 65K10.
Key words and phrases: set-valued mapping, generalized equations, semistability, pseudo-
Lipschitz maps.

DOI: 10.4064/am38-2-4 [183] c© Instytut Matematyczny PAN, 2011



184 S. Burnet and A. Pietrus

Inclusions such as (2), known more specifically as generalized equations,
were introduced by Robinson in the 1970’s and serve as a general tool for
describing and solving different problems in a unified manner. Most of the
algorithms for solving (2) generate a sequence (xn) of iterates obtained by
subsequently solving implicit subproblems of the form 0 ∈ A(xn, xn+1) +
F (xn+1) where A denotes some approximation of the mapping ϕ.

When the function ϕ is such that ϕ′ is locally Lipschitz, Dontchev [4, 5]
associated to (2) a Newton-type method based on a partial linearization
which is locally quadratically convergent. Using a second-degree Taylor poly-
nomial expansion of ϕ at xk, Geoffroy et al. [8, 9] considered the iteration

(3) 0 ∈ ϕ(xk) + ϕ′(xk)(xk+1 − xk) + 1
2ϕ
′′(xk)(xk+1 − xk)2 + F (xk+1),

where ϕ′(x) and ϕ′′(x) denote respectively the first and the second Fréchet
derivative of ϕ at x. They proved the cubic convergence of this iterative
procedure whenever ϕ′ and ϕ′′ are Lipschitz continuous and the set-valued
map ϕ+F is metrically regular. Moreover, they showed that the method (3)
enjoys nice stability properties.

The method introduced in the present paper can be described as follows.
We start with a point z0 ∈ Rn and if the current point zk is not a solution
of the variational inclusion (2), we obtain zk+1 by solving

(4) 0 ∈ ϕ(zk) + ϕ′(zk)(zk+1 − zk) +Mk(zk+1 − zk)2 + F (zk+1)

where Mk is a q × q matrix. When Mk = 1
2ϕ
′′(zk) we recover the method

introduced by Geoffroy et al.
Our purpose is to study the local behavior of the iterative method (4)

when the solution z̄ enjoys some stability properties.
The rest of this paper is organized as follows. In Section 2, we give some

notation and collect some definitions regarding semistability of solutions and
regularity for set-valued maps. Section 3 is devoted to convergence results
for the sequence defined by (4). It is proved that we can obtain cubic con-
vergence when the matrix Mk or the function ϕ′′ has some properties. The
final section is concerned with some relations between semistability and reg-
ularity. Moreover, it is proved that semistability of a solution implies local
superquadratic or cubic convergence of a sequence defined by (4).

2. Notation and preliminaries. Let us recall some notation. We define
the graph of a set-valued map Γ : X ⇒ Y by

gphΓ := {(x, y) ∈ X × Y ; y ∈ Γ (x)}

and its inverse at a point y by

Γ−1(y) := {x ∈ X; y ∈ Γ (x)}.
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B(x, r) is the closed ball with center x and radius r, and B stands for the
closed unit ball. Moreover, we set B?(x, r) := B(x, r) \ {x}.

Norms in Banach spaces are denoted by ‖ · ‖.
We also recall the following definition concerning rates of convergence.

Definition 1. Let (zn) be a sequence which converges towards z̄ in a
normed space. If Kp := lim ‖zn+1 − z̄‖/‖zn − z̄‖p exists and Kp > 0, then
(zn) is said to be convergent of order p towards z̄.

• When p = 1, (zn) is said to be linearly convergent.
• When p = 2, (zn) is said to be quadratically convergent.
• When p = 3, (zn) is said to be cubically convergent.

If K1 = 0, then (zn) is said to be superlinearly convergent, and if K2 = 0,
then (zn) is said to be superquadratically convergent.

We will deal with the concept of semistability, introduced by J.-F. Bon-
nans [3].

Definition 2. A solution z̄ of (2) is said to be semistable if there exist
c1, c2 > 0 such that, for all (z, δ) ∈ Rq × Rq, if

δ ∈ ϕ(z) + F (z)

and ‖z − z̄‖ ≤ c1, then ‖z − z̄‖ ≤ c2‖δ‖.

Note that a sufficient condition for semistability is the strong regularity
of Robinson [15]. Recently, A. F. Izmailov and M. V. Solodov [10] used the
concept of semistability to study the convergence of the Inexact Josephy
Newton Method for solving generalized equations.

For more details on this subject, the reader is referred to [3].
We will also need some notions related to set-valued maps.

Definition 3. Let (X, d) and (Y, ρ) be metric spaces. Let F : X ⇒ Y
be a set-valued map and let (x̄, ȳ) ∈ X × Y . Then F is said to be metrically
regular at x̄ for ȳ with modulus k ≥ 0 if (x̄, ȳ) ∈ gphF and there are
neighborhoods U of x̄ and V of ȳ such that

(5) d(x, F−1(y)) ≤ kρ(y, F (x)), ∀(x, y) ∈ U × V.
The infimum of k ≥ 0 over all (k, U, V ) for which (5) is satisfied is called the
exact regularity bound of F around (x̄, ȳ) and is denoted by regF (x̄, ȳ).

Definition 4. Let X and Y be Banach spaces. A map S : Y ⇒ X
is said to be pseudo-Lipschitz (or to be Lipschitz-like or to have the Aubin
property) with modulus k ≥ 0 at ȳ ∈ Y for x̄ ∈ X if (ȳ, x̄) ∈ gphS and there
are neighborhoods U of x̄ and V of ȳ such that

(6) S(y′) ∩ U ⊂ S(y) + k‖y′ − y‖B, ∀y′, y ∈ V.
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The infimum of k ≥ 0 over all (k, U, V ) for which (6) holds is called the exact
Lipschitzian bound of S around (ȳ, x̄) and is denoted by lipS(ȳ, x̄).

Definition 5. Let (X, d) be a metric space and let A and B be two
subsets of X. The excess from A to B is defined by

e(A,B) = sup
x∈A

d(x,B),

where it is understood that e(∅, B) = 0 for B 6= ∅ and e(∅, B) = +∞ if
B = ∅.

We obtain an equivalent definition of a pseudo-Lipschitz map by replacing
(6) in Definition 4 by

(7) e(S(y′) ∩ U, S(y)) ≤ k‖y′ − y‖, ∀y′, y ∈ V.
The pseudo-Lipschitz property has been introduced by J.-P. Aubin and

he was the first to define this concept as a continuity property. Sometimes
this property is called “Aubin continuity”. Characterizations of the pseudo-
Lipschitz property have also been obtained by Rockafellar [17, 16] using the
Lipschitz continuity of the distance function dist(y, S(x)) around (x0, y0)
and by Mordukhovich [11, 12] using the concept of coderivative of a multi-
function. Dontchev, Quincampoix and Zlateva [7] gave a derivative criterion
of metric regularity of set-valued mappings based on the work of Aubin and
co-authors. Relationships between metric regularity and pseudo-Lipschitz
property can be found in [13].

Proposition 1. Let S : Rn ⇒ Rm be a set-valued map, and let (x̄, ȳ) ∈
gphS. Then S is metrically regular around (x̄, ȳ) if and only if its inverse
S−1 : Rm ⇒ Rn is pseudo-Lipschitz around (ȳ, x̄). Furthermore,

regS(x̄, ȳ) = lipS−1(ȳ, x̄).

For more details and applications of this property, the reader is referred
to [2, 1, 6].

The following two definitions will be useful. More details can be found
in [7].

Definition 6. A single-valued function f from a normed linear space
X into a normed linear space Y is strictly differentiable at x0 ∈ X if there
exists a continuous linear operator from X to Y , denoted f ′(x0), with the
property that for every ε > 0 there exists δ > 0 such that

‖f(x1)− f(x2)− f ′(x0)(x1 − x2)‖ ≤ ε‖x1 − x2‖
whenever ‖xi − x0‖ ≤ δ, i = 1, 2.

A strictly differentiable function is obviously Fréchet differentiable, but
the converse is not true. One has however the equivalence of “strict differen-
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tiability” and being of “differentiability class C1”. For more information on
this topic, the reader is referred to [14].

Definition 7. A single-valued function f from a metric space (X, ρ)
into a metric space (Y, d) is strictly stationary at x0 ∈ X if for every ε > 0
there exists δ > 0 such that

d(f(x1), f(x2)) ≤ ερ(x1, x2)

whenever ρ(xi, x0) ≤ δ, i = 1, 2.

3. Convergence properties

Theorem 2. Let z̄ be a semistable solution of (2), and let (zk) generated
by (4) converge toward z̄. Then:

(i) If
(

1
2ϕ
′′(z̄)−Mk

)
(zk+1− zk)2 = o(‖zk+1− zk‖2), then (zk) converges

superquadratically.
(ii) If

(
1
2ϕ
′′(z̄) −Mk

)
(zk+1 − zk)2 = O(‖zk+1 − zk‖3) and ϕ′′ is locally

Lipschitz, then (zk) converges cubically.

Proof. We write (4) as

(8) rk := Θk + Φ(zk+1, zk, z̄) ∈ ϕ(zk+1) + F (zk+1),

where

Θk :=
(

1
2ϕ
′′(z̄)−Mk

)
(zk+1 − zk)2,

Φ(zk+1, zk, z̄) := ϕ(zk+1)− ϕ(zk)− ϕ′(zk)(zk+1 − zk)− 1
2ϕ
′′(z̄)(zk+1 − zk)2.

We have

ϕ(zk+1) = ϕ(zk) +ϕ′(zk)(zk+1− zk) + 1
2ϕ
′′(zk)(zk+1− zk)2 +o((zk+1− zk)2).

Hence

Φ(zk+1, zk, z̄) = 1
2(ϕ′′(zk)− ϕ′′(z̄))(zk+1 − zk)2 + o((zk+1 − zk)2).

Since ϕ′′ is continuous and zk → z̄, we get

Φ(zk+1, zk, z̄) = o((zk+1 − zk)2).

Thus
‖rk‖ = o(‖zk+1 − zk‖2).

From the semistability of z̄ we get

‖zk+1 − z̄‖ = O(‖rk‖).

Consequently,

‖zk+1−z̄‖ = o(‖zk+1−zk‖2) = o(‖zk+1−z̄‖2+‖zk+1−z̄‖ ‖zk−z̄‖+‖zk−z̄‖2),
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i.e.

0 = lim
‖zk+1 − z̄‖

‖zk+1 − z̄‖2 + ‖zk+1 − z̄‖ ‖zk − z̄‖+ ‖zk − z̄‖2

= lim
1

‖zk+1 − z̄‖+ ‖zk − z̄‖+ ‖zk−z̄‖2
‖zk+1−z̄‖

.

Since zk → z̄, the last relation implies that
‖zk − z̄‖2

‖zk+1 − z̄‖
→ ∞ as k →∞,

i.e.
‖zk+1 − z̄‖ = o(‖zk − z̄‖2).

This proves (i).
We have

‖Φ(zk+1, zk, z̄)‖ = ‖Φ(zk+1, zk, zk) + Φ(zk+1, zk, z̄)− Φ(zk+1, zk, zk)‖
≤ ‖Φ(zk+1, zk, zk)‖+ ‖Φ(zk+1, zk, z̄)− Φ(zk+1, zk, zk)‖
≤ ‖Φ(zk+1, zk, zk)‖+ 1

2‖ϕ
′′(zk)− ϕ′′(z̄)‖ ‖zk+1 − zk‖2.

Since ϕ′′ is locally Lipschitz, we let l be its constant and get

‖Φ(zk+1, zk, z̄)‖ ≤
l

6
‖zk+1 − zk‖3 +

l

2
‖zk − z̄‖ ‖zk+1 − zk‖2.

Since (zk) converges superquadratically, we obtain ‖zk+1 − zk‖/‖zk − z̄‖
→ 1 and this implies that

‖Φ(zk+1, zk, z̄)‖ = O(‖zk+1 − zk‖3).

Hence

‖zk+1 − z̄‖ = O(‖rk‖) = O(‖zk+1 − zk‖3) = O(‖zk − z̄‖3).

Corollary 3. Let z̄ be a semistable solution of (2), and let (zk) gener-
ated by (4) converge to z̄.

(i) If Mk → 1
2ϕ
′′(z̄) then (zk) converges superquadratically.

(ii) If ϕ′′ is locally Lipschitz and Mk = 1
2ϕ
′′(z̄) +O(‖zk − z̄‖2), then (zk)

converges cubically.

4. Semistability and regularity

Proposition 4. If z̄ is a semistable solution of (2) and int(ϕ(z̄) +
F (z̄)) 6= ∅ then the set-valued map Γ : Rq ⇒ Rq defined by Γ (z) :=
ϕ(z) + F (z) is metrically regular around (z̄, 0).

Proof. Since z̄ is a semistable solution of (2), we have

∀z ∈ B?(z̄, c1), ∀δ ∈ Γ (z), d(z, z̄) < cd(0, δ), with c > c2,
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and thus there exists ε1 > 0 such that d(z, z̄)+cε1 ≤ cd(0, δ). Hence d(z, z̄) ≤
c(d(0, δ)− ε1), which implies d(z, z̄) ≤ cd(y, δ) for all y ∈ B(0, ε1).

Let ε2 > 0 be such that B(0, ε2) ⊂ Γ (z̄) and let y ∈ B(0, ε), where
ε = min(ε1, ε2). As z̄ ∈ Γ−1(y), we have d(z, Γ−1(y)) ≤ cd(y, δ). We finally
get

∀z ∈ B(z̄, c1), ∀δ ∈ Γ (z), ∀y ∈ B(0, ε), d(z, Γ−1(y)) ≤ cd(y, δ),

i.e.
∀z ∈ B?(z̄, c1), ∀y ∈ B(0, ε), d(z, Γ−1(y)) ≤ cd(y, Γ (z)).

If z = z̄, the inequality still holds since d(z̄, Γ−1(y)) = 0 for all y ∈ B(0, ε).
Thus,

∀z ∈ B(z̄, c1), ∀y ∈ B(0, ε), d(z, Γ−1(y)) ≤ cd(y, Γ (z)).

Theorem 5 (Cubic convergence). Let z̄ be a semistable solution of (2)
such that int(ϕ(z̄) + F (z̄)) 6= ∅. If F has a closed graph and ϕ′′ is Lipschitz
with constant L on B(z̄, c1), then there exists M > 0 such that for all C >
ML/6, one can find η > 0 such that for all initial points x0 ∈ Bη(z̄), there
exists a sequence (zk) generated by

(9) 0 ∈ ϕ(zk) + ϕ′(zk)(zk+1 − zk) + 1
2ϕ
′′(zk)(zk+1 − zk)2 + F (zk+1)

which satisfies

(10) ‖zk+1 − z̄‖ ≤ C‖zk − z̄‖3.

Proof. By Proposition 4, the map

(ϕ(·) + F (·))−1

is pseudo-Lipschitz around (0, z̄); denote by M its modulus. Let us consider
the map f defined by

f(z) = ϕ(z)− ϕ(z̄)− ϕ′(z̄)(z − z̄)− 1
2ϕ
′′(z̄)(z − z̄)2.

Let ε > 0. As ϕ is of differentiability class C1 and hence strictly differentiable,
there exists δ > 0 such that

‖ϕ(z1)− ϕ(z2)− ϕ′(z̄)(z1 − z2)‖ ≤ 1
2ε‖z1 − z2‖

whenever ‖zi − z̄‖ ≤ δ, i = 1, 2. Then, for all z1, z2 such that ‖zi − z̄‖ ≤ δ,
i = 1, 2, we have

‖f(z1)− f(z2)‖
=

∥∥ϕ(z1)− ϕ(z2)− ϕ′(z̄)(z1 − z2) + 1
2(ϕ′′(z̄)(z2 − z̄)2 − ϕ′′(z̄)(z1 − z̄)2)

∥∥
≤ 1

2ε‖z1 − z2‖+ 1
2‖ϕ

′′(z̄)(z1 − z2)(z1 + z2 − 2z̄)‖.
The inequality ‖z1 + z2 − 2z̄‖ ≤ ‖z1 − z̄‖+ ‖z2 − z̄‖ ≤ 2δ implies

‖f(z1)− f(z2)‖ ≤ (ε/2 + δ‖ϕ′′(z̄)‖)‖z1 − z2‖,



190 S. Burnet and A. Pietrus

We can choose δ such that 2δ‖ϕ′′(z̄)‖ ≤ ε, which implies that f is strictly
stationary at z̄.

By [6], the map(
ϕ(z̄) + ϕ′(z̄)(· − z̄) + 1

2ϕ
′′(z̄)(· − z̄)2 + F (·)

)−1

is M -pseudo-Lipschitz around (0, z̄).
The rest of the statement is a consequence of the main theorem given

in [8].
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