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CONVERGENCE DOMAINS UNDER
ZABREJKO–ZINČENKO CONDITIONS

USING RECURRENT FUNCTIONS

Abstract. We provide a semilocal convergence analysis for Newton-type
methods using our idea of recurrent functions in a Banach space setting. We
use Zabrejko–Zinčenko conditions. In particular, we show that the conver-
gence domains given before can be extended under the same computational
cost. Numerical examples are also provided to show that we can solve equa-
tions in cases not covered before.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x? of the equation

(1.1) F (x) +G(x) = 0,

where F is a Fréchet-differentiable operator defined on an open convex sub-
set D of a Banach space X with values in a Banach space Y, and G : D → Y
is a continuous operator.

A large number of problems in applied mathematics and also in
engineering are solved by finding solutions of equations in the form
(1.1) [4].

We shall use the Newton-type method (NTM)

(1.2)
yn+1 = yn −A(yn)−1P (yn) (n ≥ 0) (y0 ∈ D),
P (x) = F (x) +G(x) (x ∈ D),

where A ∈ L(X ,Y), to generate a sequence approximating x?.

2010 Mathematics Subject Classification: 65G99, 65H10, 65B05, 65N30, 47H17, 49M15.
Key words and phrases: Newton-type methods, recurrent functions, Banach space,
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(a) If

(1.3) A(x) = F ′(x) (x ∈ D),

we obtain the Zabrejko–Nguen iteration [26]:

(1.4) yn+1 = yn − F ′(yn)−1P (yn) (n ≥ 0), (y0 ∈ D).

(b) If

(1.5) A(x) = F ′(x) + [x, y;G] (x ∈ D),

where [x, y;F ] is a divided difference of order one for the opera-
tor G, then we obtain an iteration faster than (1.4), first considered
by Cătinaş [9]:

(1.6) yn+1 = yn− (F ′(yn)+ [yn, yn−1;G])−1P (yn) (n≥ 0) (y−1, y0 ∈D).

(c) If

(1.7) A(x) = F ′(x), G(x) = 0 (x ∈ D),

then (NTM) reduces to Newton’s method:

(1.8) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0), (x0 ∈ D).

Several other choices are possible [4]–[7].
A local as well as a semilocal convergence analysis for all these methods

has been provided by many authors under Lipschitz-type conditions [1]–[3],
[11]–[27].

A survey of such results can be found in [4], and the references there. We
also refer the reader to the elegant related works by Proinov [22], [23], and
Ezquerro–Hernández [15] whose results are also improved here in at least
the Newton’s method case (see Section 3).

Let x0 ∈ D and R > 0 be such that

(1.9) U(x0, R) = {x ∈ X : ‖x− x0‖ < R} ⊆ D.
Chen and Yamamoto [11] provided a semilocal convergence for (NTM) for
y0 ∈ U(x0, R) under the condition

(C) A(x0) exists, and for any x, y ∈ U(x0, R):

‖A(x0)−1(A(x)−A(x0))‖ ≤ ν0(‖x− x0‖) + a,

‖A(x0)−1 (F ′(x+ t (x− y))−A(x))‖
≤ ν(‖x− x0‖+ t ‖y − x‖)− ν0(‖x− x0‖) + b, t ∈ [0, 1],

‖A(x0)−1 (G(x)−G(y))‖ ≤ ω(r) ‖x− y‖,
where ν(r+t)−ν0(r), t ≥ 0, and ω(r) are non-decreasing, non-negative
functions with

ω(0) = ν0(0) = ν(0) = 0,
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ν0(r) is differentiable, ν0
′(r) > 0 at every point of [0, R], and the

constants a, b satisfy a, b ≥ 0, and a+ b < 1.

Set

‖A(x0)−1P (x0)‖ ≤ η,

φ(r) = η − r +
1�

0

ν(t) dt, ψ(r) = e

r�

0

ω(t) dt,

χ(r) = φ(r) + ψ(r) + (a+ b)r.

Further, assume
χ(R) ≤ 0,

and define a scalar sequence {sn} by

s0 ∈ [0, R], sn+1 = sn +
u(sn)
p(sn)

(n ≥ 0),

where
u(r) = χ(r)− χ?, p(r) = 1− ν0(r)− a,

χ? is the minimal value of χ(r) in [0, R], and s? denotes the minimal point.
Moreover, t? denotes the unique zero of χ in (0, s?].

Under these assumptions, there exists a unique solution x? ∈ U(x0, t?)
such that

‖yn+1 − yn‖ ≤ sn+1 − sn, ‖x? − yn‖ ≤ s? − sn.
We shall use the more general set of conditions (H) ≡ (H1)–(H4), where

(H1) A(x0) exists, and for any x, y ∈ U(x0, R) (0 < r ≤ R),

‖A(x0)−1(A(x)−A(x0))‖ ≤ ν0(‖x− x0‖) + a,

(H2) ‖A(x0)−1(F ′(x+ t (x− y))−A(x))‖
≤ ν(t‖y − x‖) + ω0(‖x− x0‖) + b, t ∈ [0, 1],

(H3) ‖A(x0)−1(G(x)−G(y))‖ ≤ ω(r)‖x− y‖,
(H4) U(x0, R) ⊆ D,
where ν0, ν, and ω0 are non-decreasing, non-negative functions on [0, R]
with

ν0(0) = ν(0) = ω0(0) = ω(0) = 0,

and a and b are non-negative constants. Some more hypotheses are given in
Lemma 2.2.

A semilocal convergence analysis is provided in Section 2 of this study
under the (H) conditions, whereas in Section 3 we compare the two sets of
hypotheses. Numerical examples are also provided in Section 3 to show how
we can solve equations in cases not covered before [1]–[27].
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2. Semilocal convergence analysis of (NTM). We need to define
some parameters, functions and sequences.

Definition 2.1. Let y0∈U(x0, r). Define parameters r0, r1, iteration{rn},
functions fn, hn, pn on [0, 1), and q on Iq = {(t, s, λ, β0, β, γ0) : 0 ≤ t, s < 1,
0 ≤ λ ≤ r1 − r0, r1 − r0 ≤ β0, β, γ0 ≤ r1−r0

1−s } by

r0 ≥ ‖y0 − x0‖, r1 > r0 + ‖A(y0)−1(F (y0) +G(y0))‖,

rn+1 = rn +

	1
0 ν(t(rn − rn−1)) dt+ ω0(rn) + ω(rn) + b

1− a− ν0(rn)
(rn − rn−1),(2.1)

fn(s) =
1�

0

ν(tsn−1(r1−r0)) dt+ ω1((1+s+ · · ·+ sn−1)(r1−r0))+ c,(2.2)

hn(s) =
1�

0

(ν(tsn(r1 − r0))− ν(tsn−1(r1 − r0)) dt(2.3)

+ ω1((1 + s+ · · ·+ sn)(r1 − r0))

− ω1((1 + s+ · · ·+ sn−1)(r1 − r0)),

where

c = b− α(1− a) for some α ∈ (0, 1),(2.4)
ω1(s) = ω0(s) + ω(s) + αν0(s),(2.5)

pn(s) =
1�

0

(ν(tsn+1(r1 − r0))(2.6)

+ ν(tsn−1(r1 − r0))− 2ν(tsn(r1 − r0))) dt

+ ω1((1 + s+ · · ·+ sn+1)(r1 − r0))

+ ω1((1 + s+ · · ·+ sn−1)(r1 − r0))
− 2ω1((1 + s+ · · ·+ sn)(r1 − r0)),

q(t, s, λ, β0, β, γ0) =
1�

0

(ν(tλs2) + ν(tλ)− 2ν(tλs)) dt(2.7)

+ ω1(β0 + β + γ0) + ω1(β)− 2ω1(β0 + β).

Define a function f∞ on [0, 1) by

(2.8) f∞(s) = lim
n→∞

fn(s).

It then follows from (2.2) and (2.8) that

(2.9) f∞(s) = ω1

(
r1 − r0
1− s

)
+ c.
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It can also be easily seen from (2.2), (2.3), (2.6), and (2.7) that

fn+1(s) = fn(s) + hn(s),(2.10)
hn+1(s) = hn(s) + pn(s),(2.11)

(2.12) q(t, s, sn−1(r1 − r0), sn(r1 − r0),
(1 + s+ · · ·+ sn−1)(r1 − r0), sn+1(r1 − r0)) = pn(s).

We need the following result on majorizing sequences for (NTM).

Lemma 2.2. Let constants a, b, parameters r0, r1, and functions ν0, ν,
ω0, ω be as in the Introduction, and let parameters α, c and functions ω1,
fn, hn, pn, q be as in Definition 2.1. Assume there exists α ∈ (0, 1) such
that

ν0(r1) + a < 1,(2.13)
	1
0 ν(t(r1 − r0)) dt+ ω0(r1) + ω(r1) + b

1− a− ν0(r1)
≤ α,(2.14)

c < 0,(2.15)
q(t, s, λ, β0, β, γ0) ≥ 0 on Iq,(2.16)

h1(α) ≥ 0,(2.17)
f∞(α) ≤ 0.(2.18)

Then the scalar sequence {rn} (n ≥ 0) given by (2.1) is non-decreasing,
bounded from above by

(2.19) r?? =
r1 − r0
1− α

,

and converges to its least upper bound r? satisfying r? ∈ [0, r??].
Moreover the following estimates hold for all n ≥ 0:

0 ≤ rn+1 − rn ≤ α(rn − rn−1) ≤ αn(r1 − r0),(2.20)

r? − rn ≤
r1 − r0
1− α

αn.(2.21)

Proof. Estimate (2.20) is true if

(2.22) 0 ≤
	1
0 ν(t(rn − rn−1)) dt+ ω0(rn) + ω(rn)

1− a− ν0(rn)
≤ α

for all n ≥ 1.
In view of (2.1), (2.13), (2.14), estimate (2.22) holds true for n = 1. Also

(2.22) implies 0 ≤ r2 − r1 ≤ α(r1 − r0).
Let us assume that (2.20) and (2.22) hold for all k ≤ n. Then

(2.23) rn ≤
1− αn

1− α
(r1 − r0).
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By the induction hypothesis, and (2.23), estimate (2.22) is true if

(2.24)
1�

0

ν(tαn−1(r1 − r0)) dt+ ω1

(
1− αn

1− α
(r1 − r0)

)
+ c ≤ 0,

where c and ω1 are given by (2.4) and (2.5), respectively. Estimate (2.24)
(for s = α) motivates us to introduce the function fn given by (2.2), and
show, instead of (2.24),

(2.25) fn(α) ≤ 0 (n ≥ 1).

By (2.10)–(2.12) (for s = α) and (2.17) we have

(2.26) fn+1(α) ≥ fn(α) (n ≥ 1).

In view of (2.8), (2.9), and (2.26), estimate (2.25) holds if (2.18) is true,
since

(2.27) fn(α) ≤ f∞(α) (n ≥ 1).

The induction is completed. It follows that the iteration {rn} is non-
decreasing, bounded above by r?? (given by (2.19)), and so converges to r?.
Finally, estimate (2.21) follows from (2.20) by using standard majorization
techniques [4], [17], [18].

That completes the proof of Lemma 2.2.

The hypotheses (H) and those of Lemma 2.2 will be called (A).
We can now show the main semilocal convergence result for (NTM).

Theorem 2.3. Assume hypotheses (A) hold. Then the sequence {yn}
(n≥0) generated by (NTM) is well defined, remains in U(x0, r?) for all n≥0,
and converges to a solution x?∈U(x0, r?) of the equation F (x) +G(x) = 0.

Moreover, the following estimates hold for all n ≥ 0:

‖yn+1 − yn‖ ≤ rn+1 − rn,(2.28)
‖yn − x?‖ ≤ r? − rn,(2.29)

where the sequence {rn} (n ≥ 0) and r? are given in Lemma 2.2.
Furthermore, if there exists

(2.30) R0 ∈ [r?, R]

such that

(2.31)
1�

0

ν(t(R0 + r0)) dt+ ω0(r?) + ω(R0) + ν0(r?) + a+ b ≤ 1,

then the solution x? of equation (1.1) is unique in U(x0, R0).

Proof. We shall show by induction that

‖yn − yn−1‖ ≤ rn − rn−1,(2.32)
‖yn − x0‖ ≤ rn.(2.33)
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Estimates (2.32) and (2.33) hold for n = 1, by (1.4) and (2.1). Assume they
hold for all n ≤ k. Using (H1) and (2.13), we get

(2.34) ‖A(x0)−1[A(y1)−A(x0)]‖ ≤ ν0(‖y1 − x0‖) + a ≤ ν0(r1) + a < 1.

It follows from (2.34) and the Banach lemma on invertible operators [4], [18]
that A(y1)−1 exists, and

(2.35) ‖A(y1)−1A(x0)‖ ≤ (1− a− ν0(r1))−1.

We also showed in Lemma 2.2 that

(2.36) ν0(rk) + a < 1.

It then follows as in (2.34) with rk, yk replacing r1, y1, respectively, that
A(yk)−1 exists, and

(2.37) ‖A(yk)−1A(x0)‖ ≤ (1− a− ν0(rk))−1.

Using (1.2), (H2), (H3), (2.1), (2.32), (2.33), and (2.37), we obtain in turn

‖yk+1−yk‖= ‖A(yk)−1(F (yk) +G(yk))‖(2.38)
≤ ‖A(yk)−1A(x0)‖

∥∥A(x0)−1
(
F (yk)

+G(yk)−A(yk−1)(yk−yk−1)−F (yk−1)−G(yk−1)
)∥∥

≤ (1−a−ν0(rk))−1
( 1�

0

‖A(x0)−1[F ′(yk−1+θ(yk−yk−1))

−A(yk−1)]‖ ‖yk − yk−1‖ dθ

+ ‖A(x0)−1(G(yk)−G(yk−1))‖
)

≤ (1−a−ν0(rk))−1
( 1�

0

ν(t‖yk−yk−1‖) dt

+ ω0(‖yk−x0‖)+ω(‖yk − x0‖) + b
)
‖yk − yk−1‖

≤ (1− a− ν0(rk))−1
( 1�

0

ν(t (rk − rk−1)) dt+ ω0(rk)

+ ω(rk) + b
)

(rk − rk−1) = rk+1 − rk.

Moreover, we have

‖yk+1 − x0‖ ≤ ‖yk+1 − yk‖+ ‖yk − x0‖(2.39)
≤ (rk+1 − rk) + rk = rk+1 ≤ r?.

The induction for (2.32) and (2.33) is completed.
In view of Lemma 2.2, (2.32), and (2.33), the sequence {yn} (n ≥ 0) is

Cauchy in the Banach space X , and so it converges to some x? ∈ U(x0, r?)
(since U(x0, r?) is a closed set).
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Estimate (2.29) follows from (2.28) by using standard majorization tech-
niques [4], [17], [18].

Using (2.38), we obtain

(2.40) ‖A(x0)−1 (F (xk) +G(xk))‖

≤
( 1�

0

ν(t (rk − rk−1)) dt+ ω0(rk) + ω(rk) + b
)

(rk − rk−1).

By letting k → ∞ in (2.40), we obtain F (x?) + G(x?) = 0. Finally to
show that x? is the unique solution of equation (1.1) in U(x0, R0), let y? ∈
U(x0, R0), with F (y?) +G(y?) = 0.

Using the approximation

(2.41) y? − yk+1

= y? − yk +A(yk)−1(F (yk) +G(yk))−A(yk)−1(F (y?) +G(y?)),

as in (2.38), we obtain in turn

(2.42) ‖y? − yk+1‖

≤ (1− a− ν0(rk))−1
( 1�

0

‖A(x0)−1[F ′(yk + θ(y? − yk))

−A(yk)]‖ ‖y? − yk‖ dθ + ‖A(x0)−1(G(y?)−G(yk))‖
)

≤ (1− a− ν0(rk))−1
( 1�

0

ν(t‖y? − yk‖) dt+ ω0(‖yk − x0‖)

+ ω(‖yk − x0‖) + b
)
‖y? − yk‖

< (1− a− ν0(r?))−1
( 1�

0

ν(t(R0 + r0)) dt+ ω0(r?) + ω(R0) + b
)
‖yk − y?‖

≤ ‖yk − y?‖ (by (2.31)).

It follows from (2.42) that limk→∞ yk = y?. But we showed limk→∞ yk = x?.
Hence, x? = y?.

That completes the proof of Theorem 2.3.

3. Special cases and applications

Application 3.1 (Newton’s method). Let A(x) = F ′(x) and G(x) = 0
(x ∈ D). Then, in the case of the (C) conditions, we have

y0 = x0 = x0, s0 = 0, s1 = η, a = b = 0,
ν0(r) = L0r, ν(r) = Lr, ω(r) = 0,
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χ(r) = φ(r) =
L

2
r2 − r + η, χ? =

2Lη − 1
2L

,

s? =
1
L
, t? =

1−
√

1− 2Lη
L

, R ∈ [t?, s?],

u(r) =
1

2L
(Lr − 1)2, p(r) = 1− L0, r,

hCY = Lη ≤ 1/2,(3.1)

and

(3.2)
s0 = 0, s1 = η,

sn+1 = sn +
(Lsn − 1)2

2L(1− L0sn)
= sn +

L(sn − sn−1)2

2(1− L0sn)
(n ≥ 1),

Moreover, in the case of the (A) conditions, we have:

y0 = x0 = x0, r0 = 0, r1 = η, a = b = 0,
ν0(r) = L0r, ν(r) = Lr, ω(r) = ω0(r) = 0,

α =
2L

L+
√
L2 + 8L0L

,

hAH = Lη ≤ 1/2,(3.3)

where

L =
1
8

(L+ 4L0 +
√
L2 + 8L0L),

and

(3.4)
s0 = 0, s1 = η,

sn+1 = sn +
L(sn − sn−1)2

2(1− L0sn)
(n ≥ 1).

Note that

(3.5) L0 ≤ L

in general, and L/L0 can be arbitrarily large [4]–[7].
Let us now compare the results. It follows from (3.1), (3.3), and (3.5)

that

(3.6) hCY ≤ 1/2 ⇒ hAH ≤ 1/2,

but not necessarily vice versa unless L0 = L.

Hence the convergence domains approach in [11] does not necessarily
produce the weakest sufficient convergence conditions, even in the simplest
possible case of a Newton-like method which is Newton’s method (1.8). The
recurrent functions approach produces sufficient convergence (3.3) that can
always replace (3.1).
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Hence, the applicability of Newton’s method has been extended, under
the same hypotheses and computational cost as in [11], [18]. Note that the
results in [15], [22], [23] are also improved in at least the Newton’s method
case, since their conditions also lead to (3.1) instead of (3.3).

In the Newton’s method case, although the majorizing sequences {sn}
and {rn} coincide, the convergence domains approach fails to take advantage
of the relationship between L0 and L, since L0 does not appear in (3.1).
The same is happening in the general case, since the function χ does not
depend on ν0. However, our approach depends on ν0 for the derivation of
the sufficient convergence conditions. Under our method the ratio “α” of
convergence for {sn} is known, but this is not true for the iteration {rn}.

Next, we provide three examples where L0 < L. Moreover, in the first
example, (3.3) is satisfied but (3.1) is not.

Example 3.2.

Case 1: A(x) = F ′(x) and G(x) = 0 (x ∈ D). Let X = Y = R2, equipped
with the max-norm, x0 = (1, 1)T , and

D = U0 = {x : |x− x0| ≤ 1− δ}, δ ∈ [0, 1/2).

Define a function F on U0 by

(3.7) F (x) = (ξ31 − δ, ξ32 − δ), x = (ξ1, ξ2)T .

The Fréchet derivative of F is given by

F ′(x) =
[

3ξ21 0
0 3ξ22

]
.

Using the hypotheses of Theorem 2.3, we get

η =
1
3

(1− δ), L = 3− δ, K = 2(2− δ).

The Newton–Kantorovich condition (3.1) is violated, since
4
3

(1− δ)(2− δ) > 1 for all δ ∈ [0, 1/2).

Hence, there is no guarantee that Newton’s method (1.2) converges to x? =
( 3
√
δ, 3
√
δ)T , starting at x0.

However, our condition (3.3) is true for all δ ∈ I = [.450339002, 1/2).
Hence, the conclusions of our Theorem 2.3 can be applied to solve equation
(3.7) for all δ ∈ I.

Case 2: A(x) = F ′(x) and G(x) = (ε|ξ1 − 1|, ε|ξ2 − 1|) (x ∈ D). Let us
choose ε = .1, δ = .49, y0 = x0. Using the (C) conditions, we have

r0 = 0, ν0(r) = ν(r) = `r, ω(r) = |ε|, r ≥ 0, a = b = 0,
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and

χ(r) =
`

2
r2 − (1− |ε|)r + η.

However, the discriminant of the function χ is negative, since
4
3

(1− δ)(2− δ) > (1− |ε|)2 for all δ ∈ [0, 1/2).

Hence, the (C) conditions do not hold. That is, there is no guarantee that
the iteration (1.2) converges to a solution x? of equation (1.1).

We shall now check condition (A). We have

ν0(r) = `0r, `0 = 2.51, ω0(r) = 0,
ν(r) = `r, ` = 3.02, ω(r) = `1 = |ε| = .1.

Choose r1 = .118. Then (2.13)–(2.18) hold, since by Maple we have

.118 <
1
`0
' .398406374,

	1
0 `tr1 dt+ .1

1− `0r1
≤ α,

or
α ≥ .395243102,

so we choose

α = .40353, c = −α < 0, ω1(r) = .1 + α`0r,

Then

f∞(α) = .1 +
α `0 r1
1− α

− α = −.1031552697 < 0,

h1(r) =
((

`

2
+ α`0

)
r + α`0 −

`

2

)
r1,

so
h1(α) = .06146739381 ≥ 0, R = r?? = .1978305699,

and
U(x0, R) ⊆ U(x0, 1− δ) = U(x0, .51).

Hence, all hypotheses of Theorem 2.3 are satisfied. That is, the iteration
(NTM) starting from x0 converges to x? = (.788373516, .788373516)T .

Example 3.3. Let X = Y = C[0, 1] be the space of real-valued continu-
ous functions defined on the interval [0, 1] with the norm

‖x‖ = max
0≤s≤1

|x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the “cubic” integral equation

(3.8) u(s) = u3(s) + λu(s)
1�

0

q(s, t)u(t) dt+ y(s)− θ.
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Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1] × [0, 1]; λ is a real number called the “albedo” for scattering; y(s)
is a given continuous function defined on [0, 1]; and x(s) is the unknown
function sought in C[0, 1]. Equations of the form (3.8) arise in the kinetic
theory of gasses [4], [10]. For simplicity, we choose u0(s) = y(s) = 1, and
q(s, t) = s/(s+ t) for all s ∈ [0, 1] and t ∈ [0, 1] with s + t 6= 0. If we let
D = U(u0, 1− θ), and define the operator F on D by

(3.9) F (x)(s) = x3(s)− x(s) + λx(s)
1�

0

q(s, t)x(t) dt+ y(s)− θ

for all s ∈ [0, 1], then every zero of F satisfies equation (3.8). We have the
estimate

max
0≤s≤1

∣∣∣∣ 1�
0

s

s+ t
dt

∣∣∣∣ = ln 2.

Therefore, if we set ξ = ‖F ′(u0)−1‖, then it follows from the hypotheses of
Theorem 2.3 that

η = ξ(|λ| ln 2 + 1− θ),
L = 2ξ(|λ| ln 2 + 3(2− θ)) and L0 = ξ(2|λ| ln 2 + 3(3− θ)).

It follows from Theorem 2.3 that if condition (3.3) holds, then problem (3.8)
has a unique solution near u0. This assumption is weaker than the one given
before using the Newton–Kantorovich hypothesis (3.1).

Note also that L0 < L for all θ ∈ [0, 1].

Example 3.4. Consider the following nonlinear boundary value prob-
lem [4]: {

u′′ = −u3 − ρu2,

u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

(3.10) u(s) = s+
1�

0

Q(s, t)(u3(t) + ρu2(t)) dt

where Q is the Green function

Q(s, t) =

{
t(1− s), t ≤ s,
s(1− t), s < t.

We observe that

max
0≤s≤1

1�

0

|Q(s, t)| = 1
8
.
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Let X = Y = C[0, 1] with the norm

‖x‖ = max
0≤s≤1

|x(s)|.

Then problem (3.10) is in the form (1.1), where F : D → Y is defined as

[F (x)](s) = x(s)− s−
1�

0

Q(s, t)(x3(t) + ρx2(t)) dt,

and
G(x)(s) = 0.

It is easy to verify that the Fréchet derivative of F is

[F ′(x)v](s) = v(s)−
1�

0

Q(s, t)(3x2(t) + 2ρx(t))v(t) dt.

If we set u0(s) = s and D = U(u0, R), then since ‖u0‖ = 1, it is easy to
verify that U(u0, R) ⊂ U(0, R+ 1). It follows that if 2ρ < 5, then

‖I − F ′(u0)‖ ≤ 3‖u0‖2 + 2ρ‖u0‖
8

=
3 + 2ρ

8
,

‖F ′(u0)−1‖ ≤ 1
1− 3+2ρ

8

=
8

5− 2ρ
,

‖F (u0)‖ ≤ ‖u0‖3 + ρ‖u0‖2

8
=

1 + ρ

8
,

‖F (u0)−1F (u0)‖ ≤ 1 + ρ

5− 2ρ
.

On the other hand, for x, y ∈ D, we have

[(F ′(x)− F ′(y))v](s) = −
1�

0

Q(s, t)(3x2(t)− 3y2(t) + 2ρ(x(t)− y(t)))v(t) dt.

Consequently,

‖F ′(x)− F ′(y)‖ ≤ ‖x− y‖(2ρ+ 3(‖x‖+ ‖y‖))
8

≤ ‖x− y‖(2ρ+ 6R+ 6‖u0‖)
8

=
ρ+ 6R+ 3

4
‖x− y‖,

‖F ′(x)− F ′(u0)‖ ≤ ‖x− u0‖(2ρ+ 3(‖x‖+ ‖u0‖))
8

≤ ‖x− u0‖(2ρ+ 3R+ 6‖u0‖)
8

=
2ρ+ 3R+ 6

8
‖x− u0‖.
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Therefore, the conditions of Theorem 2.3 hold with

η =
1 + ρ

5− 2ρ
, L =

ρ+ 6R+ 3
4

, L0 =
2ρ+ 3R+ 6

8
.

Note also that L0 < L.

Finally, we provide an example to show that method (1.6) is faster than
method (1.4).

Example 3.5 ([9]). Let X = Y = (R2, ‖ · ‖∞). Consider the system

(3.11)
3x2y + y2 − 1 + |x− 1| = 0,

x4 + xy3 − 1 + |y| = 0.

For v = (v1, v2) set

‖v‖∞ = ‖(v1, v2)‖∞ = max{|v1|, |v2|}, F = (F1, F2), G = (G1, G2),

where

F1(v) = 3v2
1v2 + v2

2 − 1, F2(v) = v4
1 + v1v

3
2 − 1,

G1(v) = |v1 − 1|, G2(v) = |v2|.

The divided differences of order one [x, y;F ], [x, y;G] ∈ M2×2(R) are for
w = (w1, w2),

[v, w, F ]i,1 =
Fi(w1, w2)− Fi(v1, w2)

w1 − v1
, [v, w, F ]i,2 =

Fi(v1, w2)− Fi(v1, v2)
w2 − v2

provided that w1 6= v1 and w2 6= v2. If w1 = v1 or w2 = v2, replace [x, y;F ]
by F ′. Similarly we define

[v, w;G]i,1 =
Gi(w1, w2)−Gi(v1, w2)

w1 − v1
, [v, w;G]i,2 =

Gi(v1, w2)−Gi(v1, v2)
w2 − v2

for w1 6= v1 and w2 6= v2. If w1 = v1 or w2 = v2, replace [x, y;G] by the zero
2× 2 matrix in M2×2(R).

We consider three interesting choices for the operator A:

A(v, w) = F (v) +G(v) + F ′(v)(w − v),(3.12)
A(u, v, w) = F (v) +G(v) + ([u, v;F ] + [u, v;G])(w − v),(3.13)
A(u, v, w) = F (v) +G(v) + (F ′(v) + [u, v;G])(w − v).(3.14)

Using the method (1.4), based on the operator (3.12) for y0 = (1, 0)T , and
the methods based on the operators (3.13) and (3.14) (the latter is (1.6)) for
y−1 = (5, 5)T , y0 = (1, 0)T , we obtain the following three tables respectively:
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n y
(1)
n y

(2)
n ‖yn − yn−1‖

0 1 0

1 1 0.333333333333333 3.333E–1

2 0.906550218340611 0.354002911208151 9.344E–2

3 0.885328400663412 0.338027276361322 2.122E–2

4 0.891329556832800 0.326613976593566 1.141E–2

5 0.895238815463844 0.326406852843625 3.909E–3

6 0.895154671372635 0.327730334045043 1.323E–3

7 0.894673743471137 0.327979154372032 4.809E–4

8 0.894598908977448 0.327865059348755 1.140E–4

9 0.894643228355865 0.327815039208286 5.002E–5

10 0.894659993615645 0.327819889264891 1.676E–5

11 0.894657640195329 0.327826728208560 6.838E–6

12 0.894655219565091 0.327827351826856 2.420E–6

13 0.894655074977661 0.327826643198819 7.086E–7

· · ·
39 0.894655373334687 0.327826521746298 5.149E–19

n y
(1)
n y

(2)
n ‖yn − yn−1‖

−1 5 5

0 1 0 5.000E+00

1 0.989800874210782 0.012627489072365 1.262E–02

2 0.921814765493287 0.307939916152262 2.953E–01

3 0.900073765669214 0.325927010697792 2.174E–02

4 0.894939851625105 0.327725437396226 5.133E–03

5 0.894658420586013 0.327825363500783 2.814E–04

6 0.894655375077418 0.327826521051833 3.045E–04

7 0.894655373334698 0.327826521746293 1.742E–09

8 0.894655373334687 0.327826521746298 1.076E–14

9 0.894655373334687 0.327826521746298 5.421E–20

n y
(1)
n y

(2)
n ‖yn − yn−1‖

−1 5 5

0 1 0 5

1 0.909090909090909 0.363636363636364 3.636E–01

2 0.894886945874111 0.329098638203090 3.453E–02

3 0.894655531991499 0.327827544745569 1.271E–03

4 0.894655373334793 0.327826521746906 1.022E–06

5 0.894655373334687 0.327826521746298 6.089E–13

6 0.894655373334687 0.327826521746298 2.710E–20



208 I. K. Argyros and S. Hilout

We have not verified the hypotheses of Theorem 2.3 for the above starting
points. However, it is clear that the hypotheses of Theorem 2.3 are satisfied
for all three methods for starting points closer to the solution

x? = (.894655373334687, .327826521746298)T

chosen from the lists of the tables displayed above.
Hence method (1.6) for choice (3.14) converges faster than (1.4) sug-

gested in Chen and Yamamoto [11], Zabrejko and Nguen [26] in this case
and the method of chord [4], [6], [27].

Conclusion. Using our new idea of recurrent functions, and Zabrejko–
Zinčenko-type conditions, we provided a semilocal convergence analysis for
(NTM) in order to approximate a locally unique solution of an equation in
a Banach space. Our analysis has the following advantages over the work
in [11]: weaker sufficient convergence conditions and larger convergence do-
main. Note that in the case of Newton’s method, these advantages are ob-
tained under the same computational cost, since in practice the computation
of the Lipschitz constant L requires the computation of L0. Numerical ex-
amples further validating the results are also provided in this study.
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86962 Futuroscope Chasseneuil Cedex, France
E-mail: said.hilout@math.univ-poitiers.fr

Received on 26.1.2010;
revised version on 23.6.2010 (2030)

http://dx.doi.org/10.1137/0716001
http://dx.doi.org/10.1093/imanum/22.2.187
http://dx.doi.org/10.1016/0377-0427(93)90004-U
http://dx.doi.org/10.1016/j.jco.2008.05.006
http://dx.doi.org/10.1016/j.jco.2009.05.001
http://dx.doi.org/10.1137/0705003
http://dx.doi.org/10.1007/BF01400355
http://dx.doi.org/10.1080/01630568708816254



	Introduction
	Semilocal convergence analysis of (NTM)
	Special cases and applications

