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HURWICZ’S ESTIMATOR OF THE AUTOREGRESSIVE
MODEL WITH NON-NORMAL INNOVATIONS

Abstract. Using the Bahadur representation of a sample quantile for m-
dependent and strong mixing random variables, we establish the asymptotic
distribution of the Hurwicz estimator for the coefficient of autoregression in
a linear process with innovations belonging to the domain of attraction of
an α-stable law (1 < α < 2). The present paper extends Hurwicz’s result to
the autoregressive model.

1. Introduction. Let (Xt, t ∈ Z), be a stationary linear process defined
on a probability space (Ω,A, P ) of the form

(1.1) Xt =
∑
i≥0

ρiεt−i, t ∈ Z,

where 0 ≤ |ρ| < 1 and (εt)t is a sequence of i.i.d. symmetric random variables
in the domain of attraction of an α-stable law, 1 < α < 2, i.e. P (|εt| > x) ∼
x−αL(x) where L is a slowly varying function at infinity in the sense that
L(tx)/L(x)→ 1 as x→∞ for all t > 0, and with the tails balance

P (εt > x)
P (|εt| > x)

→ p1 and
P (εt < −x)
P (|εt| > x)

→ q1 as x→∞

with
p1 + q1 = 1, 0 < p1 < 1.

The assumption that the εt’s are in the domain of attraction of an α-stable
law is more general than assuming that they are α-stable distributed.

Time series with infinite variance innovations are very useful in appli-
cations in diverse areas such as hydrology, finance, telecommunication and
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others. This comes from the fact that the observed data cannot be accu-
rately modeled by a probability distribution with finite variance, but are
better described by heavy tailed distributions.

In what follows, we are interested in testing H0 : ρ = 0 against the
alternative H1 : ρ 6= 0 with signifiance level γ.

In the literature, there are many different tests of the hypothesis of in-
dependence. For background on these tests see Berkoun et al. (2003). Here,
we restrict ourselves to the statistical test based on the Hurwicz (1950)
estimator

(1.2) Tρ = Med
(
X2

X1
,
X3

X2
, . . . ,

Xn+1

Xn

)
where Med(·, ·) is the sample median. Zieliński (1999) proved that the Hur-
wicz estimator is median-unbiased for every distribution of innovations sym-
metric around zero. Notice that

E(|εt|ϑ <∞) ∀ϑ < α and E(εt) = 0,(1.3) �

R
|fε(x+ y)− fε(x)| dx ≤ c|y| ∀y,(1.4)

where c is a positive constant and fε is the probability density function
of εt. One can remark that, according to (1.3), each quotient Xt/Xt−1 is an
unbiased estimator of ρ. We reject the null hypothesis if T 2

ρ ≥ c, where c is
the constant given by P (Tρ ≥

√
c) = γ/2.

The restriction to Hurwicz’s estimator is motivated by the fact that,
among several other estimators of the autoregression coefficient, the test in
question has a normal asymptotic distribution.

For a linear process with infinite variance innovations, most estimators
(as the least square estimator) for the autoregression coefficient suffer from
complex asymptotic distribution. This makes statistical inference for such
models difficult.

To perform the test, we need to derive the asymptotic distribution of
the test under study. The key tool is the Bahadur representation of sample
quantiles obtained in a certain dependence framework.

The paper is organized as follows. Section 2 contains some definitions
and notations. In Section 3, we present our main results. Section 4 should
be viewed as an appendix, and contains most of the results used in this
paper.

2. Definitions and notation. Set Zi = Xi+1/Xi, i = 1, . . . , n, and
let F be their common distribution function, with density function f . Let
Z(1), . . . , Z(n) be the corresponding ordered random variables. Let zp be the
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pth quantile of F defined by

zp = F−1(p) = inf{z : F (z) ≥ p}.
We define the pth sample quantile by F−1

n (p) = inf{z : Fn(z) ≥ p}. We have

F−1
n (p) = Ẑ(np) =

{
Z(np) if np is an integer,
Z([np]+1) if not,

where [np] denotes the integer part of np and Fn is the empirical distribution
of the random variables Z1, . . . , Zn. In particular, Tρ = F−1

n (1/2), which we
denote simply by Ẑ(np).

Definition 2.1. The sequence (Zn)n of random variables is said to be
m-dependent if (Zi, Zi+1, . . . , Zr) and (Zs, Zs+1, . . .) are independent when-
ever s− r > m.

For example, let (Zt)t be a sequence of i.i.d. random variables. Define
Yn = f(Zn, Zn+1, . . . , Zn+m) for a real Borel measurable function on Rm+1;
then (Yn)n are stationary and m-dependent.

Definition 2.2. Let (Zt)t be a strictly stationary process defined on
the probability space (Ω,A, P ). Let Fa+ba denote the σ-algebra generated
by Za, Za+1, . . . , Za+b where −∞ ≤ a ≤ b ≤ +∞. For n ≥ 1, we define

α(n) = sup
m∈Z

sup
A∈Fm

−∞, B∈F
n+m
−∞

|P (A ∩B)− P (A)P (B)|.

The process (Zt)t is said to be strong mixing or α-mixing if α(n) → 0 as
n→∞.

For example, a finite-state, irreducible, aperiodic Markov chain is α-
mixing. The strong mixing condition introduced by Rosenblatt (1956) is a
tool of great interest to derive the asymptotic limit for dependent random
variables. The dependence described by α-mixing is the weakest, as it is
implied by other types of mixing. There are many results on the central
limit theorem in the context of random variables satisfying strong mixing
conditions; see, e.g., Doukhan (1994).

Remark 2.1. Let Yt = g(Xt, Xt−1, . . . , Xt−k) be a measurable function
for finite k. If (Xt)t is α-mixing, then (Yt)t is also α-mixing. Moreover,
if (Xt)t is O(n−k) then (Yt)t is also O(n−k). Note that stationarity, m-
dependence and mixing properties are preserved by any Borel measurable
transformation.

3. Main results

3.1. Asymptotic distribution of Hurwicz’s estimator under the
null hypothesis. Under the null hypothesis, set Zi = εi+1/εi, i = 1, . . . , n,
and p = P (Zi ≤ zp) = F (zp). Let Yi = p − I(Zi≤zp), Sn =

∑n
i=1 Yi and
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σ2
n = V (n−1/2Sn). Let f be the distribution function of the Zi’s. We will

assume that

(A)


f = dF is bounded in some neighborhood V0 of zp with 0 < zp <∞

and 0 < f(zp) <∞,
f ′ is bounded in V0.

Theorem 3.1. If the assumption (A) is satisfied, then

n1/2(Ẑ(np) − zp)f(zp)
σn

L→ N(0, 1)

where
σ2
n = E(Y 2

1 ) + 2(1− 1/n)E(Y1Y2).

Proof. The random variables Zi = εi+1/εi, i = 1, . . . , n, are 1-dependent.
Applying Lemma 4.1 (see Appendix), we obtain

(Ẑnp − zp)f(zp) = (p− Fn(z)) +O(n−3/4 log n)

with n1/2O(n−3/4 log n) P→ 0. We can write

(Ẑ(np) − zp)f(zp) =
1
n

n∑
i=1

(p− I(Zi≤zp)) +O(n−3/4 log n)

=
1
n

n∑
i=1

Yi +O(n−3/4 log n).

The desired result follows if we prove that n−1/2Sn converges to a normal
distribution. It is clear that the random variables Y1, Y2, . . . are 1-dependent
with E(Yi) = 0 and E(|Yi|3) < R for all i. Therefore, by stationarity of the
process, assuming m = 1 and using Lemma 3.2, the proof of Theorem 3.1 is
completed.

3.2. Asymptotic distribution of Hurwicz’s estimator under the
alternative hypothesis. Under the alternative hypothesis, the random
variables Zi are not m-dependent. Due to this difference, the asymptotic
limit of the estimator Tρ can be established under the assumption that the
linear process (1.1) has the strong mixing property. Mixing is rather hard to
verify and some regularity conditions are required. Necessary and sufficient
conditions for a linear process to be strong mixing is developed in Chanda
(1974), Gorodetskĭı (1977), Withers (1981), and Andrews (1984).

As in Theorem 3.1, in order to obtain the limiting distribution of the Hur-
wicz estimator, the key ingredient is the Bahadur representation of sample
quantiles for strong mixing random variables. Extension of Bahadur’s re-
sult (1966) has been obtained by Sen (1972) for φ-mixing random variables.
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Babu and Singh (1978), Yoshihara (1995), and Sun (2006) established the
Bahadur representation for α-mixing sequences. For weakly dependent ran-
dom variables, some recent contributions can be found in Wu (2005) and
Kulik (2007) and for negatively associated sequence in Ling (2008).

Set Zi = Xi+1/Xi, i = 1, . . . , n. Let F and f be the cumulative distribu-
tion function and the probability density function of the Zi’s respectively.
Denote by zp the pth quantile of F and let Yi = p − I(Zi≤zp). As in the
previous section, let Sn =

∑n
i=1 Yi and σ2

n = V (n−1/2Sn).

Theorem 3.2. Assume that condition (A) holds. Then

(Ẑ(np) − zp)f(zp) = (p− Fn(zp)) +Oa.s.(n−3/(4+δ) log n).

In addition, if infn σ2
n > 0, then

n1/2(Ẑ(np) − zp)f(zp)
σn

L→ N(0, 1)

where σ2
n = E(Y 2

1 ) + 2
∑n−1

k=1(1− k/n)E(Y1Y1+k).

Proof. In order to prove the theorem, we first need to establish the strong
mixing property of the linear process (1.1). To this end, we shall verify that
the conditions of Gorodetskĭı’s theorem hold (see Appendix, Theorem 4.3).
From the fact that the innovation εt is in the domain of attraction of an
α-stable law, conditions (1) and (2) of Gorodetskĭı’s theorem are satisfied. It
is easy to see that condition (3) is also satisfied. Let us verify condition (4).
Observe that cj = ρj , hence∑

i≥k

(∑
j≥i
|ρj |δ

)δ/(1+δ)
= C|ρ|kδ/(1+δ).

So the required assumptions for a linear process to be strong mixing are
satisfied. Hence, the linear process (1.1) is strong mixing and the condition
α(n) ≤ CO(n−β) for large n is fulfilled and

∑
j≥0 α(j) < ∞. In view of

Remark 2.1, the process (Zt)t, where Zt = Xt+1/Xt, is also α-mixing. Using
the Bahadur representation of sample quantiles for strong mixing random
variables (see Appendix Theorem 4.4), we have

(Ẑ(np) − zp)f(zp) =
1
n

n∑
i=1

(p− I(Zi≤zp)) +O(n−3/(4+δ) log n) a.s.

=
1
n

n∑
i=1

Yi +O(n−3/(4+δ) log n).

Moreover, from the well-known Billingsley inequality (see Appendix, Lemma
4.3), we have ∑

j≥1

cov(Y1, Yj) <∞.
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Note that

V (n−1/2Sn) = n−1
n∑
i=1

n∑
j=1

cov(Yi, Yj) = n−1
n∑

k=−n
(n− |k|)cov(Y1, Y1+k)

and we have
lim
n→∞

σ2
n = σ2 = E(Y 2

1 ) + 2
∑
j≥1

E(Y1Y1+j).

To complete the proof, it suffices to use the central limit theorem due to
Ibragimov and Linnik (1971) (see Appendix, Theorem 4.3) applied to uni-
formly bounded strong mixing random variables.

Finally, applying this theorem to Sn =
∑n

i=1 Yi, the desired result follows
immediately.

4. Appendix

Lemma 4.1 (Sen, 1968). Let (Zt)t be a sequence of m-dependent random
variables. If condition (A) holds, then

(Ẑ(np) − zp)f(zp) = p− Fn(zp) +O(n−3/4 log n) with probability one.

Lemma 4.2 (Sen, 1968). Let (Yt)t be a sequence of m-dependent random
variables with E(Yi) = 0 and E(|Yi|3) < R < ∞ for i = 1, 2, . . . . Let
Sn =

∑n
i=1 Yi and

σ2
n =

1
n

( n∑
i=1

E(Y 2
i ) + 2

m∑
h=1

n−h∑
i=1

E(YiYi+h)
)
.

If infn σ2
n > 0, then

n−1/2Sn
σn

L→ N(0, 1).

Note that in the above lemma, the sequence (Yt)t is not necessarily sta-
tionary.

Theorem 4.1 (Gorodetskĭı, 1977). Let (Xt)t be a linear process such
that Xt =

∑
j≥0 cjεt−j, where εt are i.i.d. centered random variables. Sup-

pose that

(1) There exists δ > 0 such that E(|εt|δ) <∞.
(2) The density fε of εt satisfies the condition (1.4).
(3)

∑
j≥0 cjz

j 6= 0 for some |z| ≤ 1.
(4)

∑
i≥k(

∑∞
j=i |cj |δ)1/(1+δ) <∞.

Then (Xt)t is strong mixing with coefficient not exceeding

M
∑
i≥k

( ∞∑
j=i

|cj |δ
)1/(1+δ)

where M is constant.
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Theorem 4.2 (Sun, 2006). Let (Xt)t be a strict stationary α-mixing
process with common distribution F . Assume that:

(1) There exists ε > 0 such that α(n) ≤ CO(n−β) for some β > 0.
(2) F satisfies condition (A).

Then, for any δ ∈
[

11
4(β+1 ,

1
4

]
and β > 10,

(Ẑ(np) − zp)f(zp) = (p− Fn(zp)) +O(n−3/(4+δ) log n) a.s.

with Fn(zp) = n−1
∑
I(Xi≤zp).

Lemma 4.3 (Billingsley inequality). Let (Xt)t be a stationary strong
mixing process. If X is measurable with respect to F t−∞ and Y with respect
to F∞t+k and if |X| ≤ C1, |Y | ≤ C2, then

|E(XY )− E(X)E(Y )| ≤ 4C1C2α(k).

The above lemma gives a bound of the covariance for strong mixing
sequences.

Theorem 4.3 (Ibragimov, 1969). Assume that (Xt)t is a strict station-
ary α-mixing process such that E(Xt) = 0, P (|Xt| < c) = 1 for some c > 0
and

∑
j≥1 α(j) <∞ and σ2 = E(X1

2) + 2
∑

j≥1E(X1X1+j) > 0. Then

Sn/
√
n

L→ N(0, σ2).
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